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Abstract: We first formulate the mixed backward in time problem in the context of thermoelasticity for
dipolar materials. To prove the consistency of this mixed problem, our first main result is regarding
the uniqueness of the solution for this problem. This is obtained based on some auxiliary results,
namely, four integral identities. The second main result is regarding the temporal behavior of our
thermoelastic body with a dipolar structure. This behavior is studied by means of some relations on
a partition of various parts of the energy associated to the solution of the problem.

Keywords: backward in time problem; dipolar thermoelastic body; uniqueness of solution; Cesaro
means; partition of energies

1. Introduction

In our study, we approach a thermoelastic body having a dipolar structure. This kind of structure
falls within a more general theory, namely, the theory of bodies with microstructure. The first studies
in this context were published by Eringen (see, for instance, references [1,2]). One may deduce the
importance of the dipolar structure due to the large number of published studies dedicated to this
topic, of which we can mention [3–7]. As such, our present work can be considered a continuation in
this respect.

A continuation of the theories of microstructure, is a theory that takes into account the voids in
the materials. It is considered that the initiators of this theory were Nunziato and Cowin, in their
known paper [8]. After that, the number of studies within this topic has grown impressively. We want
to enumerate some of these [9–16]: The first result for the backward in time problem belongs to
Serrin, who approached this problem in the context of Navier–Stokes equations (see [17]). In the
paper [17], we find some uniqueness in the results with regards to the forward in time problem. After
that, the number of studies dedicated to the backward in time problem has increased considerably.
Of particular importance are the works [18–27]. We have to point out that the results obtained by
Ciarletta in [23], and Ciarletta and Chirita in [24] were improved by Quintanilla in [25]. In addition,
Quintanilla approached the question of location in time for solutions to the backward in time problem,

Symmetry 2019, 11, 863; doi:10.3390/sym11070863 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-1552-3763
http://dx.doi.org/10.3390/sym11070863
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/7/863?type=check_update&version=2


Symmetry 2019, 11, 863 2 of 16

in the context of thermoelasticity of Green and Naghdi [26,27] and the theory of porous thermoelastic
bodies. The elastic porous bodies were also approached by Iovane and Passarella in [28]. The forward
in time problem, in the context of theory for thermomicrostretch elastic solids, was approached by
Passarella and Tibullo in [29]. It is worth noting that the idea of considering non-standard problems,
in the context of the general theory of bodies having a dipolar structure, was inspired by Quintanilla
and Straughan’s work [30]. In [31,32] it is proved that the nonhomogenous temperature field has
a profound influence on the nanobeam mechanics. Additionally, [33] is a recent contribution on
stress-driven nonlocal modeling of thermoelastic nanostructures.

Here is the plane of our study. First of all, we summarize the main equations, the initial conditions,
and the boundary data of the mixed problem. Then, we prove some estimates for the gradient of
classical and dipolar displacements, and for the gradient of the function of voids. In the last part of
our study we prove the main result, namely, the continuous dependence of solutions—with regards to
the coefficients that couple the equations describing the dipolar deformation—with the equations that
describe the behavior of voids. The description of the continuous dependence was possible due to the
definition of an adequate measure.

2. Basic Equations and Conditions

In our paper, we approach a thermoelastic body having a dipolar structure. We will use an
anisotropic body, which is situated in a regular domain D, included in the physical space E3, that
is, the three-dimensional Euclidean space. Consider that the boundary of the domain is a piecewise
smooth surface ∂D. The closure of D is usual denoted by D̄, D̄ = D ∪ ∂D. An orthonormal system of
references is introduced, and then tensors and vectors have components with Latin subscripts over
1, 2, 3. Typical conventions for summation over repeated indices and for derivation operations are
implied. So, a subscript preceded by a comma is for a partial derivative with regards to corresponding
spatial coordinate; while a superposed dot is for a derivative with regards to time variable. All the
functions we use are assumed to be sufficiently regular as necessary. Additionally, if there is no
possibility of confusion, then the dependence of function with regards to its spatial or time variables
will be omitted. The evolution of the body with a dipolar structure will be described with the help of
the following specific variables:

ui(x, t), φij(x, t), θ(x, t), (x, t) ∈ D× [0, t0). (1)

Here, we denoted by ui the components of the displacement vector field, by φij the components of the
dipolar displacement tensor field, and by θ the absolute temperature.

Using the above variables ui(x, t), and φij(x, t) we will introduce the components of the tensors
of strain, namely, εij, κij, and χijk, as follows:

2εij = uj,i + ui,j, κij = uj,i − φij, χijk = φij,k. (2)

All our considerations are made within a linear theory, therefore it is natural to consider that the
Helmholtz’s free energy is a quadratic form with regards to its independent constitutive variables.
The Helmholtz’s free energy in the reference configuration will be denoted by W. So, in accordance
with the principle of conservation of energy, we develop in series the function W and we keep the
terms only until the second order. Because the reference state was assumed to be free of loadings, we
deduce that the Helmholtz’s free energy per mass can be considered of the following form (see [30]):

W = 1
2 Aijmnεijεmn + Dijmnεijκmn + Fijmnrεijχmnr +

1
2 Bijmnκijκmn

+Gijmnrκijχmnr +
1
2 Cijkmnrχijkχmnr − aijεijθ − bijκijθ − cijkχijkθ − 1

2 cθ2.
(3)

We will use this form of free energy used in the entropy production inequality and deduce the
motion equations. In addition, from the same inequality, the constitutive equations are obtained. These
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equations express the tensors of stress with the help of the tensors of deformation. We will denote the
components of the stress measures by τij, ηij, and µijk. In this way, the constitutive equations establish
a connection between the tensors τij, ηij, µijk and the tensors εij, κij, χijk.

We will use a procedure similar to that used by Green and Rivlin in [6], so that considering the
Helmholtz’ free energy (3) we deduce the next constitutive equations

τij =
∂W
∂εij

= Aijmnεmn + Dmnijκmn + Fmnrijχmnr − aijθ,

ηij =
∂W
∂κij

= Dijmnεmn + Bijmnκmn + Gijmnrχmnr − bijθ,

µijk =
∂W

∂χijk
=Fijkmnεmn+Gmnijkκmn+Cijkmnrχmnr−cijkθ,

η = − ∂W
∂θ = aijεij + bijκij + cijkχijk + cθ,

(4)

which are satisfied in D× [0, t0). Here, we denoted by η the entropy per unit mass.
For the vector of heat flux, having the components qi we have a classical constitutive relation, namely,

qi = Kijθ,j, (5)

where Kij is the thermal conductivity symmetric tensor.
Also, we can deduce the main equations that govern the thermoelasticity of bodies with a dipolar

structure, namely (see [5,6]):
- the motion equations: (

τij + ηij
)

,j + ρ fi = ρüi,

µijk,i + ηjk + ρgjk = Ikrφ̈jr; (6)

- the equation of energy:

ρT0η̇ = qi,i + ρr. (7)

The signification of the notations that we introduced in preceding equations is as follows: ρ,
the density of mass, which is a constant; Iij, the symmetric tensor of microinertia; k, the intrinsic
inertia; εij, κij, χijk, the strain tensors; τij, ηij, µijk, the stress tensors; fi, the body forces; gjk, the
dipolar charges; Aijmn, Bijmn, ..., aij, the functions that describe the properties of the material in terms
of elasticity. Suppose the following symmetry relations take place:

Aijmn = Ajimn = Amnij, Bijmn = Bmnij, aij = aji,
Cijkmnr = Cmnrijk, Fijkmn = Fijknm, Dijmn = Dijnm.

(8)

Assuming that there are no supply terms and taking into account the constitutive Equations (4)
and (5) and the kinematic Equation (2), Equations (6) and (7) become

ρüi =
[(

Cijmn + Gijmn
)
un,m +

(
Gmnij + Bijmn

)
(un,m − φmn) +

+
(

Fmnrij + Dijmnr
)

φnr,m −
(
aij + bij

)
θ
]

,j , (9a)

Ikrφ̈jr =
[

Fijkmnun,m+Dmnijk (un,m − φmn) + Aijkmnrφnr,m − cijkθ
]

,i
+

+Gjkmnum,n+Bjkmn(un,m−φmn)+Djkmnrφnr,m−bjkθ, (9b)

Kij
(
θ,j
)

,i = −T0

[
aiju̇i,j + bij

(
u̇j,i − φ̇ij

)
+ cijkφ̇ij,k + cθ̇

]
. (9c)

From now, we will assume that the Equations (2), (4), and (9) will be satisfied on the interval (−∞, 0].
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The outward unit normal to the surface ∂D has the components ni. With the help of this normal
we can define the surface traction’s of components ti, the surface couple of components µjk, and the
flux of heat, q. All of this makes sense in every point of regularity of the boundary ∂D and has the
following expressions

ti =
(
τij + ηij

)
nj, µjk = µijkni, q = qini. (10)

In close relation to these surface tractions, we consider the following homogeneous boundary
conditions:

ui(x, t) = 0, (x, t) ∈ ∂Du × (−∞, 0], ti = 0, (x, t) ∈ ∂Dc
u × (−∞, 0],

φij(x, t) = 0, (x, t) ∈ ∂Dφ × (−∞, 0], mjk = 0, (x, t) ∈ ∂Dc
φ × (−∞, 0], (11)

θ(x, t) = 0, (x, t) ∈ ∂Dθ × (−∞, 0], q = 0, (x, t) ∈ ∂Dc
θ × (−∞, 0],

where the surfaces ∂Du, ∂Dφ, ∂Dθ , and its complements ∂Dc
u, ∂Dc

φ, ∂Dc
θ are subsurfaces of the border

∂D, which are subject to the following restrictions:

∂D̄u ∪ ∂Dc
u = ∂D̄φ ∪ ∂Dc

φ = ∂D̄θ ∪ ∂Dc
θ = ∂D,

∂Du ∩ ∂Dc
u = ∂Dφ ∩ ∂Dc

φ = ∂Dθ ∩ ∂Dc
θ = ∅.

We still have to add the final restrictions. So, on the closed domain D̄ we have:

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), θ(x, 0) = θ0(x),
φij(x, 0) = φ0

ij(x), φ̇ij(x, 0) = φ1
ij(x), (12)

where u0
i (x), u1

i (x), φ0
ij(x), φ1

ij(x), and θ0(x) are continuous prescribed functions in all points where
they are defined. Additionally, these functions are assumed be compatible with conditions (11) on the
appropriate subsets of ∂D.

Let us consider the internal energy density Ψ (see [30]), which has the following expression:

Ψ = 1
2 Aijmnεijεmn + Dijmnεijκmn + Fijmnrεijχmnr+

+ 1
2 Bijmnκijκmn + Gijmnrκijχmnr +

1
2 Cijkmnrχijkχmnr.

(13)

P is denoted the so-called boundary-final value problem, which consists of Equation (9), the boundary
restrictions (11), and the final data (12).

To obtain the results we have proposed, we will have to impose some conditions on the functions
we are dealing with.

So, if Jm(x) is the minimum eigenvalue of the inertia tensor Iij(x), then we need to assume that Jm

and ρ are continuous functions and the constitutive coefficients are of class C1(D). We also assume that:

(a) ρ(x) ≥ a1, Jm(x) ≥ a2, c(x) ≥ c0, where a1, a2, c0 are real positive constants;
(b) the tensor Kij is positive definite;
(c) the internal energy density Ψ is a positive definite quadratic form.

Based on hypothesis (b), we deduce that there exist two positive numbers, Km and KM, so that

Kmθ,iθ,j ≤ Kijθ,iθ,j ≤ KMθ,iθ,j, (14)

and, as a consequence of the hypothesis (c), we can find the positive constants M1 and M2 so that the
next inequality is satisfied:

M1

2

(
εijεij + κijκij + χijkχijk

)
≤ Ψ ≤ M2

2

(
εijεij + κijκij + χijkχijk

)
. (15)



Symmetry 2019, 11, 863 5 of 16

These hypotheses are not considered as very restrictive, as they are commonly imposed in
mechanics of continuous media.

It is not difficult to equate our boundary-final value problem P with a boundary-initial problem,
denoted by P ′, by a convenient change of variables. In this regard, we set h′(t′) = h(t), for t′ = −t.
But, to simplify writing, we will give up the sign “prime” so that the P ′ problem will be defined by
the following conditions and equations:

- the motion Equations (9a) and (9b), satisfied in D× [0, ∞);
- the energy equation:

Kij
(
θ,j
)

,i = T0

[
aiju̇i,j + bij

(
u̇j,i − φ̇ij

)
+ cijkφ̇ij,k + cθ̇

]
, in D× [0, ∞); (16)

- the geometric Equation (2), satisfied in D× [0, ∞);
- the constitutive Equation (4), satisfied in D× [0, ∞);
- the initial conditions (11), satisfied in D̄;
- the boundary conditions:

ui(x, t) = 0, (x, t) ∈ ∂Du × [0, ∞), ti = 0, (x, t) ∈ ∂Dc
u × [0, ∞),

φij(x, t) = 0, (x, t) ∈ ∂Dφ × [0, ∞), mjk = 0, (x, t) ∈ ∂Dc
φ × [0, ∞), (17)

θ(x, t) = 0, (x, t) ∈ ∂Dθ × [0, ∞), q = 0, (x, t) ∈ ∂Dc
θ × [0, ∞).

3. Main Result

We first establish some integral identities regarding a solution u =
(
ui, φij, θ

)
of the mixed

problem P ′. These will be useful in obtaining the important results of our study.

Proposition 1. If the ordered array u =
(
ui, φij, θ

)
satisfies the mixed problem P ′, then the following equality

takes place:

∫
B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t) +

1
2

cθ2(t)
]

dV =

=
∫

B

[
ρu̇i(0)u̇i(0) + Ijkφ̇jm(0)φ̇km(0) + Ψ(0) +

1
2

cθ2(0)
]

dV + (18)

+
∫ t

0

∫
D

1
T0

Kijθ,i(τ)θ,j(τ)dVdτ, ∀t ∈ [0, ∞).

Proof. Taking into account the kinematics compatibility relations (2) and the differential conditions of
equilibrium (9a) and (9b), we obtain the following equality:

1
2

∂
∂t

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
=

=
[(

τij + ηij
)
u̇j + µijkφ̇jk

]
,i
−
(

τij ε̇ij + ηijκ̇ij + µijkχ̇ijk

)
.

(19)

Taking into account the constitutive Equation (4), the symmetry relations (8), and the expression of the
internal energy density Ψ from (13), the last parentheses in the right-hand side of (19) becomes(

τij ε̇ij + ηijκ̇ij + µijkχ̇ijk

)
=

∂

∂t

(
Ψ +

1
2

cθ2
)
+

(
1
T0

qjθ

)
,j
− 1

T0
Kijθ,iθ,i. (20)

We substitute Equation (20) into Equation (19), then the resulting equality is integrated on cylinder
[0, t]× D. If we use the theorem of divergence and consider the conditions to the limit (17), we are led
to equality (18), such that the proof of the proposition is finished.
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In a similar way, one can demonstrate the identity that follows, as a complement to identity (18):

∫
D

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t)− 1

2
cθ2(t)

]
dV =

=
∫

D

[
ρu̇i(0)u̇i(0) + Ijkφ̇jm(0)φ̇km(0) + Ψ(0)− 1

2
cθ2(0)

]
dV − (21)

−
∫ t

0

∫
D

{
u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
−

−bijφ̇ij(τ)θ(τ) +
1
T0

Kijθ,i(τ)θ,j(τ)

}
dVdτ, ∀t ∈ [0, ∞).

To simplify writing, we enter the notation

2F(x, y) = Aijmnεij(x)εmn(y) + Dijmn
[
εij(x)κmn(y) + εij(y)κmn(x)

]
+

+Fijmnr
[
εij(x)χmnr(y) + εij(y)χmnr(x)

]
+ Bijmnκij(x)κmn(y) + (22)

+Gijmnr
[
κij(x)χmnr(y) + κij(y)χmnr(x)

]
+ Cijkmnrχijk(x)χmnr(y).

By using the symmetry relations (8), from (22) we deduce

F(x, y) = F(y, x). (23)

By direct substitution in (22) and taking into account Equation (13), we also obtain

F(τ, τ) = Ψ(τ). (24)

Now, we can prove a result similar to (18), but in the case of homogeneous initial conditions.

Proposition 2. Consider a solution
(
ui, φij, θ

)
of the problem backward in time P ′, which corresponds to null

initial data. Then, the next identity takes place

∫
B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
− 1

2
cθ2(t)

]
dV =

=
∫

B

[
1
2

Aijmnεij(t)εmn(t) + Dijmnεij(t)κmn(t)+ (25)

+Fijmnrεij(t)χmnr(t) +
1
2

Bijmnκij(t)κmn(t) +

+Gijmnrκij(t)χmnr(t) +
1
2

Cijkmnrχijk(t)χmnr(t)
]

dV,

for all t ∈ [0, ∞).

Proof. By direct calculations, for a fixed t ∈ (0, ∞), we get the identity:

∂

∂t

(
ρu̇i(τ)u̇i(2t− τ) + Ijkφ̇jm(τ)φ̇km(2t− τ)− cθ(τ)θ(2t− τ)

)
=

= ρüi(τ)u̇i(2t− τ) + Ijkφ̈jm(τ)φ̇km(2t− τ) + cθ(τ)θ̇(2t− τ)− (26)

−ρu̇i(τ)üi(2t− τ) + Ijkφ̇jm(τ)φ̈km(2t− τ)− cθ̇(τ)θ(2t− τ).
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Taking into account the kinematic Equation (2), the constitutive Equation (4), the motion Equation (9),
and the symmetry relations (8), we are led to the equality

∂

∂t

(
ρu̇i(τ)u̇i(2t− τ) + Ijkφ̇jm(τ)φ̇km(2t− τ)− cθ(τ)θ(2t− τ)

)
=

=
[(

τij + ηij
)
(τ)u̇i(2t− τ)−

(
τij + ηij

)
(2t− τ)u̇j(τ)+ (27)

+µijkφ̈jk(τ)φ̇jk(2t− τ)− µijkφ̈jk(2t− τ)φ̇jk(τ)−

− 1
T0

θ(τ)qi(2t− τ) +
1
T0

θ(2t− τ)qi(τ)

]
,i
+ F(τ, 2t− τ),

the function F(., .) being defined in (22).
We just need to integrate this equality into [0, t]× D, to keep in mind that the initial data are

null and to use the definition (13), so we get the desired equality (25) and the proof of proposition is
complete.

The following two propositions are also useful in establishing the main outcomes of our study.

Proposition 3. Consider that the ordered array u =
(
ui, φij, θ

)
satisfies the mixed problem P ′. Then, the

following equality takes place

∫
D

[
ρui(t)u̇i(t) + Ijkφjm(t)φ̇km(t)−

1
2T0

Kij

(∫ t

0
θ(τ)dτ

)
,i

(∫ t

0
θ(τ)dτ

)
,j

]
dV =

=
∫

D

[
ρui(0)u̇i(0) + Ijkφjm(0)φ̇km(0)

]
dV +

∫ t

0

∫
D

ρη(0)θ(τ)dVdτ + (28)

+
∫ t

0

∫
D

[
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)− 2Ψ(τ)− cθ2(τ)

]
dVdτ,

for all t ∈ [0, ∞).

Proof. We will consider the constitutive relations (4), the geometric Equation (2), and the motion
Equations (9a) and (9b), we deduce

∂

∂t

(
ρui(t)u̇i(t) + Ijkφjm(t)φ̇km(t)

)
=

= ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t) + (29)

+
[(

τij(t) + ηij(t)
)
uj(t) + µijk(t)φjk(t)

]
,i
−

−
[(

τij(t) + ηij(t)
)

εij(t) + ηij(t)κij(t) + µijk(t)χijk(t)
]

.

Taking into account definition (13), the last parentheses from the right-hand side of (29) can be restated
in the following form:

τij(t)εij(t) + ηij(t)κij(t) + µijk(t)χijk(t) =

=

(
1
2

cθ2(t) + Ψ(t)
)
+

(
1
T0

θ(t)
∫ t

0
qi(τ)dτ

)
,i
− (30)

− 1
T0

Kij

(∫ t

0
θ(τ)dτ

)
,i

(∫ t

0
θ(τ)dτ

)
,i
− ρη(0)θ(t).

Here, the expression of the entropy η is obtained by integrating its equation of evolution (19), with
regards to time variable.
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We integrate the equality (30) on [0, t]× D, and take into account the data on the border (17) and
the theorem of divergence. As such, we arrive at the proposed equality (29), and the demonstration of
proposition is over.

Proposition 4. Let us consider a solution
(
ui, φij, θ

)
of the mixed problem P ′. Then, the following equality

takes place

2
∫

D

[
ρui(t)u̇i(t)+ Ijkφjm(t)φ̇km(t)−

1
2T0

Kij

(∫ t

0
θ(τ)dτ

)
,i

(∫ t

0
θ(τ)dτ

)
,j

]
dV

=
∫

D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV + (31)

+
∫

D

[
ρui(0)u̇i(2t) + Ijkφjm(0)φ̇km(2t)

]
dV −

−
∫ t

0

∫
D

ρη(0) [θ(t + τ)− θ(t− τ)] dVdτ,

for all t ∈ [0, ∞).

Proof. We will take into account the geometric relations (2) and the motion Equations (9a) and (9b),
we deduce the following identity

∂

∂t
[ρ (u̇i(t + τ)ui(t− τ) + ui(t + τ)u̇i(t− τ))] +

+
∂

∂t

[
Ijk
(
φ̇jm(t + τ)φkm(t− τ) + φjm(t + τ)φ̇km(t− τ)

)]
=

=
[(

τij + ηij
)
(t + τ)ui(t− τ)−

(
τij + ηij

)
(t− τ)uj(t + τ)+ (32)

+µijk(t + τ)φjk(t− τ)− µijk(t− τ)φjk(t + τ)
]

,i
−

−
[(

τij + ηij
)
(t + τ)εij(t− τ)−

(
τij + ηij

)
(t− τ)εij(t + τ)

]
−

−
[
µijk(t + τ)χijk(t− τ)− µijk(t− τ)χjk(t + τ)

]
.

On the other hand, by using the symmetry Equation (8) and the constitutive relations (4), the last two
brackets receive the following form:[(

τij + ηij
)
(t + τ)εij(t− τ)−

(
τij + ηij

)
(t− τ)εij(t + τ)

]
+

+
[
µijk(t + τ)χijk(t− τ)− µijk(t− τ)χjk(t + τ)

]
=

=
1
T0

[
θ(t + τ)

∫ t−τ

0
qi(s)ds− θ(t− τ)

∫ t+τ

0
qi(s)ds

]
,i
− (33)

− 1
T0

Kij

[(∫ t+τ

0
θ(s)ds

)
,i

(∫ t−τ

0
θ(s)ds

)
,j
−
(∫ t+τ

0
θ(s)ds

)
,i

(∫ t−τ

0
θ(s)ds

)
,j

]
−

−ρη(0) [θ(t + τ)− θ(t− τ)] .

Here, the expression of the entropy η is obtained by integrating its equation of evolution (19), with
regards to time variable.

Let us integrate the equality (33) on [0, t]× D, and take into account the border data (17) and the
theorem of divergence. As such, we arrive at the proposed equality (31) and the demonstration of the
proposition is over.
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If we combine the results from Equations (25) and (31), then we obtain a new useful equality

2
∫

B

[(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
− cθ2(t)

]
dV =

= −2
∫

D

[
ρui(0)u̇i(0) + Ijkφjm(0)φ̇km(0)

]
dV +

+
∫

D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV + (34)

+
∫

D

[
ρui(0)u̇i(2t) + Ijkφjm(0)φ̇km(2t)

]
dV +

−
∫ t

0

∫
D

ρη(0) [2θ(τ) + θ(t + τ)− θ(t− τ)] dVdτ,

for all t ∈ [0, ∞).
Based on the previously demonstrated integral identities, we are able to address the main results

of our study. First, we established a result of uniqueness for the solution of the backward in time
problem. As a consequence, we approach the question of localization of the solutions of the backward
in time problem.

Theorem 1. At most, an ordered array u =
(
ui, φij, θ

)
can satisfy the equations and conditions of the backward

problem P ′.

Proof. As usual, we will assume, by absurdum, that the problem would admit two solutions.
The difference of the two solutions is also a solution, because the problem P ′ is a linear one. Suffice
it to show that this difference is null. For this we have to show that the problem P ′, for which the
boundary and initial data are null, admits the null solution. It is clear that for the difference of two
solutions, the boundary and initial conditions become homogeneous.

To simplify writing, we introduce the function M as a measure of the solution, defined by

M(t) =
∫

D

[ ε

2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ (ε + 2)Ψ(t) +

ε

2
cθ2(t)

]
. (35)

Here, ε is a small positive number.
Based on assumptions (a), (b), and (c), it can be deduced that the function M is positive.
Because the initial data are zero, the identity (18) received the simpler form:∫

B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t) + 1

2 cθ2(t)
]

dV =

=
∫ t

0

∫
D

1
T0

Kijθ,i(τ)θ,j(τ)dVdτ, ∀t ∈ [0, ∞).
(36)

Analogously, the identity (21) becomes

∫
B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t)− 1

2
cθ2(t)

]
dV =

= −
∫ t

0

∫
D

{
u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
− (37)

−bijφ̇ij(τ)θ(τ) +
1
T0

Kijθ,i(τ)θ,j(τ)

}
dVdτ, ∀t ∈ [0, ∞).

If we use Equations (36) and (37), then the function M from (35) becomes

M(t) = −
∫ t

0

∫
D

{
2u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
−

−bijφ̇ij(τ)θ(τ) +
1−ε
T0

Kijθ,i(τ)θ,j(τ)
}

dVdτ, ∀t ∈ [0, ∞).
(38)
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By direct derivation with regards to the variable t in (37), we are led to the following equality:

dM(t)
dt = −2

∫
D

{
u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
−

−bijφ̇ij(τ)θ(τ) +
1−ε
2T0

Kijθ,i(τ)θ,j(τ)
}

dV, ∀t ∈ [0, ∞).
(39)

With the help of Schwarz’ inequality and by using the arithmetic–geometric mean inequality, from (39)
we can deduce the following inequality:

dM(t)
dt ≤ C1

∫
D

[
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t) + cθ2(t)

]
dV+

+ δ−1+ε
T0

∫
D Kijθ,i(τ)θ,j(τ)dV, ∀t ∈ [0, ∞).

(40)

Now, we take into account that the internal energy density Ψ is a positive definite quadratic form,
according to the hypothesis (c), using the definition (35) of the function M and choose δ ≤ 1− ε. Then,
from (40) we obtain the inequality:

dM(t)
dt

≤ C1

ε

∫
D

ε
[
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t) + cθ2(t)

]
dV ≤ C1

ε
M, (41)

and it is then clear that a solution to this inequality meets the next inequality:

0 ≤ M(t) ≤ M(0)eC1/ε. (42)

We recall that for the difference of the two supposed solutions, the initial conditions are homogeneous,
then we have M(0) = 0, so from (42) we get

M(t) = 0, ∀t ∈ [0, ∞)

and this together with the assumptions leads to the conclusion that our problem has only the solution

ui(t) = 0, φij(t) = 0, θ(t) = 0, ∀t ∈ [0, ∞),

and the proof of Theorem 1 is concluded.

Our final result is dedicated to the partition of various energies associated with the solution of the
backward in time problem P∗. We recall that this problem consists of the equations of motion (9), the
constitutive relations (4), the kinematic Equation (2), the initial data (12), and the boundary restrictions
in their homogeneous form (11).

First, using the procedure outlined at the end of Section 2, we transform the boundary-final
value problem P∗ into the boundary-initial value problem P ′. In this way, in what follows, we will
be able to make the considerations only on the problem P ′. Let us denote by T the set of of those
thermoelastodynamic processes defined in the cylinder (−∞, 0]× D, which satisfy the restriction∫

D

1
T0

Kijθ,i(τ)θ,j(τ)dV ≤ C1, (43)

for all t ∈ [0, ∞). Here, C1 is a given positive constant.
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We will introduce the known Cesaro means necessary to evaluate the various types of energies
that can be attached to a solution to the problem P ′. So, if

(
ui, φij, θ

)
is a solution of the mixed problem,

then the Cesaro means are:

K(t) =
1
t

∫ t

0

∫
D

[
ρu̇i(τ)u̇i(τ) + Ijkφ̇jm(τ)φ̇jm(τ)

]
dVdτ;

S(t)=
1
t

∫ t

0

∫
D

[
1
2

Aijmnεij(τ)εmn(τ)+Dijmnεij(τ)κmn(τ)+Fijmnrεij(τ)χmnr(τ)+

+
1
2
Bijmnκij(τ)κmn(τ)+Gijmnrκij(τ)χmnr(τ)+

1
2

Cijkmnrχijk(τ)χmnr(τ)

]
dVdτ; (44)

R(t) =
1
t

∫ t

0

∫
D

1
2

c θ2(τ)dVdτ;

D(t) =
1
t

∫ t

0

∫ τ

0

∫
D

1
T0

Kijθ,i(s)θ,j(s)dVds dτ.

In the particular case when meas(∂Du)= 0 and meas(∂Dφ)= 0, it can be determined a rigid
displacement, a rigid dipolar displacement, and a null temperature, which satisfy the equations of
motion (9), the constitutive relations (4), the kinematic relations (2), and verify the homogeneous
boundary conditions (17). In this case, the initial data can be decomposed as follows:

u0
i = u′i + V0

i , u̇0
i = u̇′i + V̇0

i ,

φ0
ij = φ′ij + Ψ0

ij, φ̇0
ij = φ̇′ij + Ψ̇0

ij. (45)

The rigid displacements u′i, u̇
′
i, φ′ij, φ̇′ij can be computed using the functions

Wi(ω) =
∫

D
ρωiDv, Wjk(ψ) =

∫
D

ImnψmjψnkdV,

such that we have

Wi(V0
i ) = 0, Wi(V̇0

i ) = 0,

Wjk(Ψ
0
ij) = 0, Wjk(Ψ̇

0
ij) = 0. (46)

Together with known notation C1(D), we will use the notation Wn(D) for a Sobolev space defined on
the domain D, and Wn(D) = [Wn(D)]3.

Other new notations:

C1(D) =
{(

ui, φij
)
∈ C1(D)3 × C1(D)9 : ui = 0 on ∂Du, φij = 0 on ∂Dφ;

if meas(∂Du) = 0 and meas(∂Dφ) = 0, then Wi(ui) = 0, Wjk(φ
0
ij) = 0

}
;

C̃1(D) =
{

θ ∈ C1(D) : θ = 0 on ∂Dθ

}
;

W1(D) the completion of C1(D);

W̃1(D) the completion of C̃1(D),

the completion is by means of the original norm of the respective Sobolev space. Based on
definition (13), and taking into account the hypothesis (15), we can obtain the following inequality
(see [34]): ∫

D
Ψ(u)dV ≥ M1

2

∫
D

[
ρuiui + Ijkφjmφkm

]
dV, (47)

for any u =
(
ui, φij

)
∈ W1(D). M1 > 0 is a convenient chosen constant.
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On the other hand, if we take into account the hypothesis (14), we can obtain the next inequality
of Poincare’ type: ∫

D
Kijθ,iθ,jdV ≥ M2

∫
D

θ2dV, (48)

for any θ ∈ W̃1(D). M2 > 0 is a convenient chosen constant.
Let us consider a solution

(
ui, φij, θ

)
to the problem P ′ in the particular case when meas(∂Du)= 0

and meas(∂Dφ)= 0. We can represent this solution in the following form:

ui(t, x) = ui(t, x) + u′i(t, x) + tu̇′i(t, x), θ(t, x) = ϑ(t, x),
φij(t, x) = ψij(t, x) + φ′ij(t, x) + tφ̇′ij(t, x), (t, x) ∈ [0, ∞)× D,

(49)

in which
(
ui, ψij, ϑ

)
∈ W1(D)× W̃1(D). In addition, the ordered array

(
ui, ψij, ϑ

)
satisfies the problem

P ′, which corresponds to the following initial data:

ui(0, x) = Vi(x), u̇i(0, x) = V̇i(x), θ(t, x) = ϑ(x),

φij(0, x) = Ψij(x), φ̇ij(0, x) = Ψ̇ij(x), ∀x ∈ D.

We now have everything prepared to address the problem of the equipartition of the various types of
energies associated with the solution to the problem P ′.

Theorem 2. Consider a solution
(
ui, φij, θ

)
of the backward in time problem P ′. If the initial data satisfy the

following conditions:

u = (ui) ∈ W1(D), u̇ = (u̇i) ∈ W0(D),

φ =
(
φij
)
∈ W1(D), φ̇ =

(
φ̇ij
)
∈ W0(D), θ ∈W0(D),

then the following three statements are true:
i) The thermal component of energy, R, vanishes as t→ ∞:

lim
t→∞

R(t) = 0; (50)

ii) if meas(∂Du)= 0 and meas(∂Dφ)= 0, then we have

lim
t→∞

K(t) = lim
t→∞

S(t) +
1
2

∫
D

[
ρu̇′iu̇

′
i + Ijkφ̇′jmφ̇′km

]
dV, (51)

lim
t→∞

D(t) = 2 lim
t→∞

K(t)− 1
2

∫
D

[
ρu̇′iu̇

′
i + Ijkφ̇′jmφ̇′km

]
dV − E(0) =

= 2 lim
t→∞

S(t) + 1
2

∫
D

[
ρu̇′iu̇

′
i + Ijkφ̇′jmφ̇′km

]
dV − E(0);

(52)

iii) if meas(∂Du) 6= 0 or meas(∂Dφ) 6= 0, then we have

lim
t→∞

K(t) = lim
t→∞

S(t),

lim
t→∞

D(t) = 2 lim
t→∞

K(t)− E(0) = (53)

= 2 lim
t→∞

S(t)− E(0),

where, to simplify writing in (52) and (53), we used the notation:

E(t) =
∫

D

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t) +

1
2

cθ2(t)
]

dV, (54)
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the internal energy density Ψ being defined in (13).

Proof. Taking into account the relations (18), (54), and (44) we immediately deduce the following
equality:

K(t) + S(t) + R(t) = D(t) + E(0), ∀t ∈ (0, ∞). (55)

Now, we consider the restrictions (43) and (48), the definitions (44), and the notation (54) in order to
deduce the following estimation:

R(t) ≤ T0C1

2M2t
max
x∈D
{c(x)}, ∀t ∈ (0, ∞). (56)

Clearly, since c(x) is a continuous function, we deduce that max
x∈D
{c(x)} is bounded, such that after we

pass to the limit in (56) for t→ ∞, we obtain the result (50).
If we consider the identity (34) and use the notations (44), we are led to the the following identity:

K(t)− S(t)− R(t) =

= − 1
2t

∫
D

[
ρui(0)u̇i(0) + Ijkφjm(0)φ̇km(0)

]
dV +

+
1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV + (57)

+
1
4t

∫
D

[
ρui(0)u̇i(2t) + Ijkφjm(0)φ̇km(2t)

]
dV +

− 1
4t

∫ t

0

∫
D

ρη(0) [2θ(τ) + θ(t + τ)− θ(t− τ)] dVdτ,

for all t ∈ [0, ∞).
On the other hand, taking into account the hypothesis (15), the inequalities (43) and (48), and the

identity (18) we obtain the estimates∫
D

ρu̇i(t)u̇i(t)dV≤2(C1+E(0)),
∫

D
Ijkφ̇jm(t)φ̇km(t)dV≤2(C1+E(0)),

c0

∫
D

ρθ2(t)dV ≤ 2(C1 + E(0)),
∫

D
2Ψ(t)dV ≤ 2(C1 + E(0)), (58)

where c0 is from hypothesis (a), C1 is from (43), and E from (54).
In (57) we use the Schwarz’s inequality and taking into account the estimates (58), we pass the

limit—for t→ ∞—so we get the equality

lim
t→∞

K(t) = lim
t→∞

S(t) + lim
t→∞

1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φ̇km(2t)

]
dV. (59)

In this way, it will be easy to demonstrate the relation (53), if we show that the integral from the
right-hand side of the identity (59) is bounded.

For this aim, we will use the fact that meas(∂Du) 6= 0 or meas(∂Dφ) 6= 0 and
(
ui, ψij

)
∈ W1(D).

Furthermore, we consider the relations (47), (54), and (18) in order to get the following estimates:

M1

∫
D

ρui(t)ui(t)dV ≤
∫

D
2Ψ(t)dV ≤ 2(C1 + E(0)),

M1

∫
D

Ijkφjm(t)φkm(t)dV ≤
∫

D
2Ψ(t)dV ≤ 2(C1 + E(0)),
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such that it is easy, after we apply the Schwarz’s inequality, to deduce

lim
t→∞

1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV = 0. (60)

From (59) and (60) we obtain the first result from (53), and after we consider the equality (55), the second
equality from (53) is proven.

Finally, we will prove the equalities (51) and (52). In this regard, we take into account that
meas(∂Du)= 0 and meas(∂Dφ) 6= 0 such that with the help of the decompositions (45) and (49), and
conditions (46), we are led to the equality

1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV =

=
1
4t

∫
D

ρu̇′iu
′
i(2t)dV +

1
4t

∫
D

ρ
(
u̇′i + V̇0

i

)
ui(2t)dV + (61)

+
1
2

∫
D

ρu̇′iu̇
′
idV +

1
4t

∫
D

Ijkφ̇′jmφ′kmdV +

+
1
4t

∫
D

Ijk

(
φ̇′jm + Ψ̇0

jm

)
ψjk(2t)dV +

1
2

∫
D

Ijkφ̇′jmφ̇′kmdV.

Let us observe that relations (47), (54), and (18) involve the estimates

M1

∫
D

ρui(t)ui(t)dV ≤ 2(C1 + E(0)),

M1

∫
D

Ijkψjm(t)ψkm(t)dV ≤ 2(C1 + E(0)),

such that from (61) we are led to the equality

lim
t→∞

1
4t
∫

D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV =

= 1
2

∫
D ρu̇′iu̇

′
idV + 1

2

∫
D Ijkφ̇′jmφ̇′kmdV.

(62)

Now, we substitute (62) into Equation (59) and then obtain the relation (51). Lastly, we consider the
relations (50), (51), and (55) in order to obtain (52). With this, the proof of the theorem is completed.

4. Conclusions

We first formulate the mixed backward in time problem in the context of thermoelasticity for
dipolar materials. To prove the consistency of this mixed problem, our first main result is regarding
the uniqueness of the solution for this problem. This is obtained based on some auxiliary results,
namely, four integral identities. The second main result is regarding the temporal behavior of our
thermoelastic body with dipolar structure. This behavior is studied by means of some relations on
partition of various parts of the energy associated to the solution of the problem. After we introduce
the Cesaro means for all parts of the total energy, we can evaluate the asymptotic partition of these
parts. We have to say that the kinetic energy and potential energy become asymptotically equal when
the variable time tends to infinity.
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