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Abstract

:

We define a family of observables for abelian Yang-Mills fields associated to compact regions U⊆M with smooth boundary in Riemannian manifolds. Each observable is parametrized by a first variation of solutions and arises as the integration of gauge invariant conserved current along admissible hypersurfaces contained in the region. The Poisson bracket uses the integration of a canonical multisymplectic current.
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1. Introduction


In Classical Covariant Field Theory two desirable conditions are required for a family of observables: In one side we require this function to separate solutions of the Euler-Lagrange equations. On the other hand, we need the Jacobi identity in order to have a Lie (Poisson) bracket. It is a known problem to characterize those theories accomplishing these two requirements, as pointed out in [1,2] and others. There are two main difficulties. On one hand, under locality assumptions, Jacobi identity is well established but generically there are few observables associated with conservation laws given by Noether’s First Theorem, see for instance [3]. On the other hand, extending to non-locality of variations of solutions, we may provide enough observables, see for instance [4,5], nevertheless the Jacobi identity does not necessarily hold, see [6].



For linear theories there are no such difficulties, and vector fields in the space of solutions can be modeled as in Theorem 2, see also [7]. For instance, in Lorentzian globally hyperbolic spacetimes, Maxwell equations [8] exhibit a family of observables, related to the Aharomov-Bohm effect, and a Poisson bracket constructed with Peierls method for local variables. We provide a similar set of observables for the abelian Yang-Mills (YM) fields on Riemannian manifolds. This could be mentioned as the novelty introduced in this work, although our aim is to prepare the scenario for non-abelian (non-linear) YM fields. We adopt the Lagrangian approach of the variational bicomplex formalism, see [9,10,11] rather than the Hamiltonian multysimplectic formalism approach to describe non abelian YM fields, see [12,13].



We consider regions U with smooth boundary ∂U both contained in a n-dimensional Riemannian manifold, usually n=4. Here we avoid the complications of corners in ∂U which will be treated elsewhere. For a principal bundle we take solutions of the Yang-Mills (YM) equations for the abelian U(1) structure group. We are interested in defining a family of observables for YM solutions in U, η∈AU, of the integral form


fΣ(η)=∫Σjη*F








defined for a 3-dimensional compact Riemannian admissible smooth hypersurface iΣ:Σ↪U with volume form νΣ, where admissibility means ∂Σ⊆∂U, see [14]. Observable currents, are horizontal (n−1)-forms, F∈Ωn−1,0(JY|U), in the ∞− jet bundle JY associated to sections of the affine bundle Y→M of connections. The local invariance condition is then assumed by imposing dhF|U=0, when restricted to the locus of the YM equations EL. dh is the horizontal differential, see the notation of the variational bicomplex formalism in Appendix A. We adapt helicity for hypersurfaces embedded properly in general compact regions U, rather than considering cylinder regions with space-like slices, Σ×[t1,t2], this is related to the General Boundary Formalism for field theories, see [15] and references therein.



The idea is to define the relative helicity from hydrodynamics properly adapted to YM fields as a local observable. In order to motivate this definition we recall the notion of helicity from magneto-hydrodynamics. For a divergence (non-autonomous) free vector field, ξ=ξ(t)∈X∂Σ(Σ) in a three-dimensional Riemannian manifold Σ tangent to the boundary ∂Σ, helicity is defined as


∫Σg¯(v,ξ)νΣ



(1)




where one considers the vector field v=v(t), as a potential in Σ. Helicity of ξ measures globally the degree of self-linking of its flow. Helicity remains an invariant for every νΣ-preserving diffeomorphism of Σ that carries the boundary ∂Σ into itself, where νΣ is given by the volume form on Σ. The situation can be dually described in terms of 1-forms. If α=g¯(v,·) where g¯ is the Riemannian metric on Σ, then under the additional topological condition, HdR2(Σ)=0, there exists a potential α∈Ω1(Σ) such that dα=ιξνΣ. Here helicity reads as


∫Σα∧dα



(2)







It does depend just on the vorticity dα although for its definition the potential 1-form α or the vector field v, respectively, may intervene.



If we adopt v∈X∂Σ(Σ) divergence-free or d★Σ(α)=0, respectively, then the property of isovorticity holds for v(t) for the magnetic potential, as well as for any solution of the Euler equation of hydrodynamics. This means that ξ(t2) can be constructed as the image of ξ(t1) under a diffeomorphism and if we consider a space-time domain Σ×[t1,t2], then helicity does not depend on the parameter t of the non-autonomous flow. To review this concepts see for instance [16,17].



Under the assumption of simple connectednes of Σ, then the Lie algebra of divergence-free vector fields, have a bilinear form, relative helicity, defined as


[α,β]Σ=∫Σdα∧β











Notice that helicity is [α,α]Σ and also that [·,·]Σ is a symmetric bilinear form under the assumption of closedness for Σ.



Considering YM solutions η=η0+φ∈AU, where η0∈AU is a fixed connection and φ=η−η0 is a 1-form in M, we would like to define the field strength helicity as in (2). Choose a tubular neighborhood Σε⊆U of Σ0:=iΣ(Σ,τ) with exponential coordinates XΣ:Σ×[−ε,ε]→Σε, with embedding iΣ=XΣ(·,0). We take φ˜=φ+df|Σε an axial gauge fixing, that is a 1-form such that in Σ0 has no normal component. In addition, we may suppose that ψηΣ0=iΣ*φ˜, as well as ddτ|τ=0ψηΣτ are divergence-free. See Appendix on the geometry of abelian YM fields in [15].



Then the helicity for abelian YM fields could be defined as


[φ˜,φ˜]Σ=∫ΣψηΣ0∧★ΣdψηΣτdττ=0,








where ★Σ is the Hodge operator associated to the induced Riemannian metric g¯ on Σ. Hence we could define helicity as in (1) for the vector fields v,ξ defined as g¯(v,·)=ψηΣ0,g¯(ξ,·)=dψηΣτdττ=0.



Nevertheless, this notion of helicity would depend on the gauge fixing choice, therefore cannot be generalized as a gauge invariant observable. Moreover, we do not get a local dh-closedness condition for an observable current: if U′⊆U is an open region such that ∂U′=Σ−Σ′, then


[φ˜,φ˜]Σ=[φ˜,φ˜]Σ′+∫U′L(jη)








where L is the Lagrangian density. We will rather try to define the relative helicity of YM fields. Take η′=η0+φ′∈AU any other solution. Take a first variation of solutions φ, let us define


[φ,φ′]Σ=∫ΣiΣ*(φ′∧★dφ).











Then for gauge translations η′+df we would have [φ,φ′]Σ=[φ,φ′+df]Σ. Moreover, if U′⊆U is an open region such that ∂U′=Σ−Σ′, then [φ,φ′]Σ=[φ,φ′]Σ′. Thus for every couple η,φ where η∈AU and φ is a first variations of solutions, we consider the antisymmetric component of the relative helicity or simply φ-helicity,


hΣφ(η′):=12[φ,φ′]Σ−[φ′,φ]Σ.



(3)







In Section 4 we formalize this construction in the language of the variational bicomplex, see Appendix A.




2. Variational Bicomplex Formalism for Abelian YM Fields


Along this section we adopt the terminology and notation of the variational bicomplex formalism, for the readers convenience we give a brief presentation and references for this in Appendix A. Let P→M be a principal bundle on a Riemannian manifold (M,g) with structure group G=U(1) and U⊆M a region with smooth boundary. Let π:Y→M with Y=J1P/G be the affine bundle whose sections Γ(Y) are the G-covariant connections on P.



For abelian YM, the Lagrangian density L=Lν∈Ωn,0(JY) is defined by the Lagrangian


L=14∑i,j=1nϖijAij−Aji2








where this expresion corresponds to local coordinates (x1,…,xn;A1,…,An;Aji) in J1Y, ν=dx1∧…∧dxn is a fixed volume form in the base and ϖij=|detg|giigjj, with gij the Riemannian metric in U.



Then E(L)=∑i=1nEi(L)ϑi∧ν denote the Euler-Lagrange equations, where ϑi=dvAi stands for the basis for the vertical 1—forms in J1Y. Thus YM equations have locus which is the prolongation EL⊆JY of {E(L)=0}⊆J2Y. In the local coordinate chart,


Ei(L)=∑j=1nddxjϖijAij−Aji=0,∀i=1,…,n.











The space of solutions over U is


AU=η∈Γ(Y|U):jη(x)∈EL



(4)







Thus solutions η satisfy jη*E(L)=0.



The linearized equations for any (local) evolutionary vector field, V∈Ev(JY), are


I(dvιjVE(L))|EL=0



(5)




where I:Ωn,k(JY)→Ωn,k(JY) is the integration by parts operator, see its definition in [18]. In local coordinates this linearized equation reads as


∑j=1nddxjϖijddxiVj−ddxjViEL=0,∀i=1,…,n,V=∑i=1nVi∂∂Ai.











Let FU⊆Ev(JY) be the Lie subalgebra of those evolutionary vector fields satisfying the linearized Euler-Lagrange equations. The Lie algebra FU will turn out to be our model for variations of YM solutions. For example, the radial evolutionary vector field R=∑aAa∂∂Aa whose prolongation is


jR=∑aAa∂∂Aa+∑iAia∂∂Aia+…



(6)




is a symmetry of the YM PDE, i.e. R∈FU. This is a general constructions of symmetries for linear PDEs, see [5].



The presymplectic current


ΩL=∑i,j=1nϖij(ϑji−ϑij)∧ϑj∧νi








with dxi∧νi=ν, has the property stated in the following general Lemma.



Lemma 1 (Multysimplectic formula).

For every V,W∈FU we have


dhιjWιjVΩL|EL=0.













Definition 1 (Gauge).






	1. 

	
Those first variations of solutions V∈FU satisfying


ιjWLjVΩL|EL=ιjWdv(ιjVΩL)|EL=ιjWdhσV,∀W∈FU,



(7)




define the Lie subalgebra of locally Hamiltonian first variations as F^ULH⊆FU.




	2. 

	
We define the Lie algebra G^U of gauge first variations as those X∈FU satisfying locally the presymplectic degeneracy condition, i.e.,


ιjWιjXΩLEL=ιjWdhρX,∀W∈FU.



(8)















For instance, the radial vector R∈FU defined in (6) is not locally hamiltonian, since it satisfies the Liouville condition ιjRdvΩL=ΩL, rather than condition (7).



In the second part of Definition 1 we may also have adopted X∈Ev(JY) instead of X∈FU and


ιjWιjXΩLEL=ιjWdhρX,∀W∈Ev(JY|U)








as is stated in the following assertion.



Proposition 1.

Suppose that V∈Ev(JY|U) satisfies


ιjWdh(ιjVΩL)|EL=0








for every variation of solutions W∈FU. Then V∈FU.





Notice that the locally Hamiltonian condition is stronger than the property exhibited in Proposition 1 for every variation of solutions. Thus G^U⊆F^ULH.



Lemma 2.

G^U⊆F^ULH is a Lie ideal.





Proof. 

If X,X′∈G^U then


ιj[X,X′]ΩL=dvιjXιjX′ΩL±ιjXdvιjX′ΩL±ιjX′dvιjXΩL



(9)




which by hypothesis and by anticommutativity of dvdh=−dhdv is dh-exact, hence [X,X′]∈G^U and therefore G^U⊆FU is a Lie subalgebra. To see that G^U⊆F^ULH, apply vertical derivation to (8).



Take V∈F^ULH, then [V,X] apply vertical derivation to Equation (9) with V=X′ and the condition of dh-exactness for ιjXdvιjVΩL implies the dh-exactness of ιj[X,V]ΩL holds. Therefore [V,X]∈G^U. □





Form Proposition 1 it follows also the following assertion.



Lemma 3.

G^U⊆Ev(JY|U) is a Lie ideal, hence F^ULH/G^U⊆Ev(JY|U)/G^U.





Lemma 4.

If for every W∈FU


ιjW(ιjXΩL)|EL=ιjWdhρX|EL,ρX=∑i,j=1nρijϑij∧νji.








holds, then in local coordinates ϖijXj=ddxjρij holds in EL for each i,j=1,…,n, where dxj∧νji=νi.





Definition 2 (Gauge with boundary condition).






	1. 

	
The Lie subalgebra


FULH⊆F^ULH








of locally Hamiltonian first variations with null boundary conditions, consists of those V∈F^ULH satisfying (7) and


σV|∂U=dhλ|∂U.








when evaluated in EL,FU. In particular LjVΩL∂U=0.




	2. 

	
The Lie ideal of gauge variations with null boundary conditions


GU⊆FULH








consists of those X∈G^U such that (8) holds together with


jX|∂U=0.








Which means that there is no gauge action in the boundary.











The following assertions are used in the definition.



Lemma 5.

The following inclusions are Lie ideal inclusions into Lie algebras:


GU⊆FULH,GU⊆F^ULH,GU⊆G^U,FULH∩G^U⊆FULH.













Proof. 

X,X′∈GU imply that j[X,X′]|∂U=0 hence GU is indeed a Lie algebra. To see that it is an ideal in F^ULH we just consider the fact that j[X,V]|∂U=0 for every V∈FULH.



To see that GU is an ideal in FULH, derive vertically (8) and notice that σX=−dvρX is null along ∂U thanks to Lemma 4, in particular σX|∂U is dh-exact.



We claim that GU is an ideal of G^U. For if X∈GU,X′∈GU then j[X,X′]=[jX,jX′]|∂U vanishes.



Finally, to see that FULH∩G^U⊆FULH is an ideal, dvιj[X,V]ΩL is dh-exact by (9). □






3. Linear Theory


Recall that each fiber of π:Y→M is an affine bundle modeled over a linear bundle πL:YL→M with YL⊆Ω1(M).



Since the space of YM solutions AU is an affine space, take a fixed connection η0∈AU, then φ=η−η0∈Γ(YL|U) is such that d★dφ=0. Here ★ denotes the Hodge star operator. In addition, there exists Vφ∈FU, such that


jVφ=j∑i=1nφi(x)∂∂Ai



(10)







Even though Equation (5) imposes a condition on-shell, i.e., on EL for V∈FU, the linearized equations, d★dφ=0, induce Vφ∈FU that satisfies (5) off-shell, that is in JY.



As a complementary definition to (10) we may define for every solution, η∈AU, and every first variation of solutions, V∈FU the section


ηV=jη*V∈ΓYL|U⊆Ω1(U).



(11)







Here we use the isomorphism, depending on a fixed connection, η0∈AU, between the pullback jη0*(Yv) of the vertical bundle πv:Yv→JY|U, and the linear bundle πL|U:YL→U.



For the previous definitions the following properties hold


jη*VηV=jη*V,η(Vφ)=φ.








The following assertion holds as an observation that will follow from Lemma 9.



Lemma 6.

We have that Vφ∈FULH for every φ∈Ω1(U), solution of the linearized equation d★dφ=0. Hence, VηV∈FULH for every V∈FU.





The following assertion holds for linear theories.



Lemma 7.

For every solution, η∈AU, and every first variation of solutions, V∈FU, in a linear theory, there exists φ∈Γ(YL|U) such that V|jη(U)=Vφ|jη(U) or equivalently ηV=φ.





If we want to consider the gauge classes on AU we can consider the gauge representatives consisting of Lorentz gauge fixing conditions, i.e., for every η=η0+φ∈AU there exists a gauge related


η˜=η0+φ˜∈AU,d★φ˜=0



(12)




where η˜−η=φ˜−φ∈GU being a gauge translation by exact 1-forms in AU.



Recall the Hodge-Morrey-Friedrichs L2-ortogonal decomposition, see [19]. For null normal components we have,


Ω1(U)=dΩD0(U)⊕HN1(U)⊕H1(U)∩dΩ0(U)⊕d★ΩN2(U)



(13)




where


ΩN1(U):=β:β∈Ω1(U):i∂U*★β=0,HN1(U):=H1(U)∩ΩNk(U).











Given a fixed point, η0∈AU, the linear space of Lorentz gauge fixing, d★φ=0, defines a linear subspace


LU⊆HN1(U)⊕d★ΩN2(U)








of linearized solutions, d★dφ=0, such that there is a covering, eη0(φ)=[η0+φ],


eη0:LU→AU/GU



(14)




of the [η0]-componentspace of solutions modulo gauge,AU/GU.



The following results of this section recover the usual characterizations of gauge symmetries in GU as translations by exact forms.



Lemma 8.

For every X∈G^U and η∈AU, dηX=0.





Proof. 

If we calculate the square of the L2-norm, ∥dηX∥22=∫UdηX∧★dηX, of dηX where ★ stands for the Hodge star operator for the Riemannian metric g, then we get


∫UηX∧★d★dηX−∫∂UηX∧★dηX











If X∈FU, d★dηX=0 then due to Lemma 4, the norm ∥dηX∥22 can be calculated as


−∫∂UηX∧★dηX=−∫∂Ujη*(ρX)∧dηX=∫∂Udjη*(ρX)∧ηX.











Recall (8) and that jη*(dhρX)=jη*(ιjXΩL). Hence


djη*(ρX)∧ηX=jη*(ιjXιjXΩL)=0











Therefore dηX=0. □





Proposition 2.

For every solution, η∈AU, and every gauge first variation with null boundary condition, X∈GU, the induced 1-form in the base, ηX, defined as in (11), is exact. Therefore, ηX∈GU.





Proof. 

We solve the Poisson BVP for ψ:U→R with Dirichlet boundary conditions


Δψ=d★ηX,inU,ψ|∂U=0,in∂U.











Notice that the necessary integral condition for the Poisson equation ∫Ud★ηXdν=0 follows from the boundary condition ηX|∂U=0.



Thus η˜X=ηX−dψ is a solution of d★dη˜X=0 with Lorentz gauge fixing condition d★η˜X=0 and Dirichlet boundary condition.



Recall (13). Since ηX∈G^U, according to Lemma 8, dηX=0 and dη˜X=0.



There are two cases:



Case 1. The normal component ∂ψ/∂xn|∂U does not vanish. Here in local coordinates, ∂U={xn=0}. Then η˜X is harmonic (dη˜X=0 and d★η˜X=0). Therefore, it belongs to H1(U)∩dΩ0(U), i.e., it is exact.



Case 2. ∂ψ/∂xn|∂U=0, that is, η˜X∈ΩN1(U). Then η˜X∈HN1(U)∩HD1(U), i.e., η˜X=0, where


ΩD1(U):=β:β∈Ω1(U):β(ξ)=0,ξ∈X(∂U),HD1(U):=H1(U)∩ΩDk(U).











In any case η˜X is exact and so is ηX. □





Proposition 3.

Take any solution η, and any gauge symmetry, X∈FULH∩G^U. Then there exists X′∈G^U such that X−X′∈GU. Hence ηX−X′∈GU is exact.





Proof. 

Take X∈FULH∩G^U. According to the argument given in Proposition 2 we just need to show that the pullback i∂U*ηX∈Ω1(∂M) is null for the inclusion i∂U:∂U→U. Then ηX−dψ would have null Dirichlet condition and would be exact for suitable ψ.



Notice that the following boundary conditions are in general different objects:


i∂U*ηX,ηX|∂U,(jX)|∂U,j|∂U(X|∂U).



(15)







Since X∈FULH, then we are assuming a boundary condition on X, namely dvρ|∂U=λ, with dhλ=0, when evaluating in EL,FU. Due to Lemma 4 we have that X|∂U does not depend on vertical coordinates, uj when evaluating in EL.



We claim that indeed i∂U*ηX=0. Recall that, according to Lemma 4, for every W∈FU we have


∫∂Ujη*∑j=1n−1ϖnjXjdWjdxn−dWndxjνn=










∫∂Ujη*ιjWιjXΩL=∫∂Ujη*(ιjWdhρ)=∫∂Udjη*(ιjWρ)=0.











Therefore, Xj(jη)|∂U=0 for j=1,…,n−1, hence null Dirichlet boundary conditions hold for ηX. There exists a smooth function f:U→R such that i∂U*df=i∂U*ηX=0, and ∂f∂xn|∂U=Xn(jη). If


jXdf=j∑i=1n∂f∂xi∂∂ui,








then Xη′:=jη*(X−Xdf)=ηX−df has null both Neumann and Dirichlet conditions on ∂U. We just need to refine the choice of f, so that jX′|∂U=0. Hence X′∈GU. □





Theorem 1.

There is an inclusion of the gauge quotients of Lie algebras,


FULH/GU↪·^F^ULH/G^U.













Proof. 

By the Second Isomorphism Theorem for Lie algebras


F^ULH/G^U≃F^ULH/GU/G^U/GU.











Notice that


GU⊆FULH∩G^U⊆kerΨ








where Ψ is the Lie algebra morphism defined as the composition in the diagram below.


 [image: Symmetry 11 00880 i001]











By the first isomorphism theorem, there exists an induced monomorphism Ψ˜ and a commutative diagram


 [image: Symmetry 11 00880 i002]











There is an inclusion FULH∩G^U⊆FULH. Hence kerΨ=FULH∩G^U. By Proposition 3, the inclusion GU⊆FULH∩G^U, is a section of the projection  [image: Symmetry 11 00880 i009], given by X↦X−X′.



Therefore, we have the required inclusion


 [image: Symmetry 11 00880 i003]








 □





Recall that HdR1(U,∂U)≃HD1(U) in the exact sequence,


HdR1(U,∂U)→HdR1(U)→i∂U*HdR1(∂U).



(16)







Hence, the demand in the proof of Proposition 3 for i∂U*ηX to be null is equivalent to demanding ηX to lie into ΩD1(U). Thus, ηX defines a relative cohomology class [ηX]∈HdR1(U,∂U). Further considerations actually explain that [ηX]=0.



Proposition 4.

If HdR1(U,∂U)=0, then FULH/GU≃F^ULH/G^U.





Proof. 

For every V∈FULH we have that dvιjVΩL|∂U=dhσV, with σV|∂U=dhλ|∂U. Take η∈AU any YM solution. For ηV|∂U=jη*V|∂U, we solve the Poisson BVP


Δψ=d★ηV,inU,∂ψ/∂xn|∂U=−Vn(x),in∂U={xn=0},








then ηV may be gauge translated by an exact form dψ so that η˜V=ηV+dψ has no normal components along ∂U and satisfies d★η˜V=0 as well as the linearized YM equation, d★dη˜V=0.



Notice that the induced linearized solution Xdψ∈FU in fact belongs to G^U∩FULH.



By (13) η˜V∈HN1(U)⊕(H1(U)∩dΩ0(U))⊕d★ΩN2(U). For the coclosed projection ηV′∈HN1(U)⊕d★ΩN2(U) of η˜V, we have the orthogonal decomposition, ηV′=ηV′′⊕d★χ.



Consider the boundary conditions linear map, dr∂U[η]:FULH/GU→L∂U, such that


(dr∂U)[η](V)=(ηV′)D⊕(ηV′)N:=[ι∂U*ηV′]⊕★∂Ui∂U*(★dηV′),








where the codomain is the linear space of Dirichlet-Neumann boundary conditions modulo gauge,


L∂U:=kerd★∂U/(dΩ0(U)∩kerd★∂U)⊕kerd★∂U.



(17)




See [15] for further considerations of this space. Recall the isomorphisms


HN1(U)≃HdR1(U),HD1(U)≃HdR1(U,∂U).











Since HD1(U)≃HdR1(U,∂U)=0, then by (16) we have HN1(U)⊆HdR1(∂U). Hence, the closed projection of i∂U*(ηV′)∈Ω1(∂U) would have cohomology class i∂U*[ηV′′] in HdR1(∂U) induced by [ηV′′]∈HdR1(U). Therefore, (dr∂U)[η] is injective.



If we proceed as in the previous argument with [V]∈F^LH/G^U, we can define an injective map d^r∂U such that the following diagram commutes


 [image: Symmetry 11 00880 i004]











Notice that d^r∂U[η] and dr∂U[η] have the same image. □





Remark that we have the commutative diagram


 [image: Symmetry 11 00880 i005]



(18)




where


LU˜:=rU,∂U(LU)⊆L∂U








with rU,∂U the map of boundary conditions of solutions modulo gauge, see [15] for further properties of this map. Here we use axial gauge fixing in a tubular neighborhood of ∂U as well as the linear map rU,∂U(φ)=φD⊕φN is defined in (17). The linear map p is induced by pη(V)=η+φ where φ∈Ω1(U) is a coclosed linearized solution, d★dφ=0 such that ηV=φ, see notation (11).



By composing the projection pη with the map eη we get the map expη:FULH/GU→AU/GU. Diagram (18) suggests that Hamiltonian first variation modulo gauge, FULH/GU is a Lie algebra isomorphic as linear space to the tangent space of the moduli space AU/GU at η.



The following assertion related to Proposition 4 explains how the relative cohomology codifies the description of AU/GU with respect to the boundary conditions, see also [15].



Proposition 5.

HdR1(U,∂U)=0 if and only if r∂U:LU→L∂U is injective and r∂U:LU→LU˜ is a linear isomorphism.






4. Poisson-Lie Algebra of Hamiltonian Observables


Definition 3 (Hamiltonian observable currents).

We say that an observable current F∈Ωn−1,0(JY|U) is a Hamiltonian observable current if there exist V∈FU and a residual form σF such that the following relation holds when restricted to EL and evaluated on W∈FU,


dvF|EL=−ιjVΩL+dhσF



(19)







We denote the space of Hamiltonian observable currents over U as HOC^U. The evolutionary vector field V, is actually a locally Hamiltonian first variation, i.e., V∈F^ULH. If in addition in (19) we have the boundary condition


dvσF|∂U=dhλF



(20)




then we call F a Hamiltonian observable current with boundary condition. Here V∈FULH. We denote the space of these kind of observable currents as HOCU.





Definition 4 (Helicity current).

Suppose that φ∈Ω1(U) is a solution of the linearized YM equation, d★dφ=0. Define the φ-helicity current as


Fφ=ιjVφιjRΩL∈Ωn−1,0(JY|U),








where R∈FU was defined in (6). More explicitly


Fφ=∑i=1n∑j=1nϖijφj(x)·(Aij−Aji)−Aj·∂φj(x)∂xi−∂φi(x)∂xjνi.













Form the very definition and the multysimplectic formula it can be seen that dhFφ|EL=0.



Remark that we could have defined observable currents, Fφ, for any divergence-free φ in U, d★φ=0, with evolutionary Hamiltonian vector field, Vφ∈Ev(JY|U), rather than in restricting ourselves to Hamiltonians first variations in FU, just as the observables considered in [8]. Nevertheless, if we had adopted this definition, then we would have to restrict the domain of Fφ and evaluate only ob solutions η′=η0+φ′∈AU with Lorentz gauge fixing (12), φ′∈LU in order to have local invariance dhFφ|EL=0.



From the following assertion it follows that helicity currents are Hamiltonian observable currents restricted to U, that is Fφ∈HOCU.



Lemma 9.

The φ-helicity current, Fφ∈Ωn−1,0(JY|U, defines a locally Hamiltonian observable current with Hamiltonian Vφ∈FULH whenever d★dφ=0.





Proof. 

Recall the notation in (10). Notice that the relation dvFφ+ιjVφΩL=0 is valid off-shell. Therefore we have


dvFφ|EL=−ιjVφΩL








in particular when evaluated on W∈FU. □





Lemma 10.

If φ,φ′∈Ω1(U) are solutions of d★dφ′=0=d★dφ, then the Lie derivative, LjVφ′Fφ, lies in HOCU with Hamiltonian [Vφ,Vφ′]∈FU. Under integration over Σ, it yields the symplectic product observable, associated to ιjVφιjVφ′ΩL∈HOCU,


fΣVφVφ′(η):=∫Σjη*ιjVφιjVφ′ΩL,∀η∈AU,ϕ∈LU.













Proof. 

Notice that


LjVφ′Fφ=ιjVφ′dvFφ=−ιjVφ′ιjVφΩL








evaluated on W∈FU on Shell. On the other hand a general formula (9) states that


dvιjVφιjVφ′ΩL=−ι[jVφ,jVφ′]ΩL+ιjVφ′LjVφΩL−ιjVφLjVφ′ΩL.











Therefore dvιjVφιjVφ′ΩL=−ι[jVφ,jVφ′]ΩL. Recall that [jVφ,jVφ′]=j[Vφ,Vφ′], see for instance [20] por the explicit form of the Lie bracket of evolutionary vector fields. Hence [Vφ,Vφ′] is Hamiltonian first variation for ιjVφιjVφ′ΩL∈HOCU. □





Define the family of φ-helicity observables as


fΣφ(η)=∫Σ(jη)*Fφ,∀η∈AU.











We see that fΣφ is related to the anti-symmetric component of the helicity as bilinear form, see Section 1, in the sense of (3). Notice also that [·,·]Σ is not necessarily symmetric, unless ∂Σ=0. Hence fΣφ not necessarily equals 0.



We say that fΣφ is a Hamiltonian observable with Hamiltonian first variationvφ so that the following formal identity holds:


LwfΣφ(η)=−ωΣL[η](vφ,w),∀w=δη,∀η∈AU.



(21)







Let us explain the formal notation of (21). Any first variation of solutions, W∈FU, encodes a variation of any fixed solution η∈AU, which we denote as w=δη,


w=dϕεdεε=0,ϕ0=η



(22)




for a one-parameter family of smooth solutions ϕε∈AU. This means that d(jηε)dεε=0=jW(jη).



In the r.h.s. we have an evaluation of a symplectic form,


ωΣL[η](v,w):=∫Σ(jη)*ΩL(jV,jW).



(23)







While in the l.h.s. we have


LwfΣφ(η)=ddεε=0fΣφ(ϕε),



(24)







With this notation we suggest that we are modeling a Lie derivative Lw(·) in the tangent space of the moduli space AU/GU, while w=δη corresponds to local vector fields near [η]∈AU/GU.



If X∈GU corresponds to a first variation of a one-parametric family of gauge equivalent solutions, ϕε, then LxfΣφ=0, which follows from jX|∂U=0. Thus fΣφ is well defined for the gauge class [Vφ]∈FULH/GU.



Lemma 11.

Consider the linear space


fΣU:=fΣφ:d★dφ=0,[Vφ]∈FULH/GU/R








where fΣφ1−fΣφ2 is a constant function iff represent the same R-class. Then fΣU is a Lie algebra with bracket


fΣφ,fΣφ′Σ=fΣVφVφ′,








which means


fΣφ,fΣφ′Σ=fΣVφVφ′+const.













Proof. 

Let φ,φ′ be 1-forms as in the hypothesis. As in the proof of Lemma 10, recall that


dvιjVφιjVφ′ΩL=−ιj[Vφ,Vφ′]ΩL.











There are gauge translations X=Xψ,X′=Xψ′∈GU,ψ,ψ′:U→R such that the gauge translations V,V′ are divergence-free, see for instance the Appendix [15]. Recall that V,V′ are defined by φ−dψ,φ′−dψ′, respectively. Hence V=Vφ−X and V′=Vφ′−X′. By (9)


−ιj[Vφ,Vφ′]ΩL=−ιj[V,V′]ΩL−ιj[V,X′]ΩL−ιj[X,V′]ΩL−ιj[X,X′]ΩL











Hence


dvιjVφιjVφ′ΩL=−ιj[V,V′]ΩL+dhσVV′








with


σVV′=−ρ[V,X′]−ρ[X,V′]−ρ[X,X′].











Denote φ˜∈Ω1(U) as the a 1-form such that [V,V′]=Vφ˜. In local coordinates:


φ˜j=∑i=1nφ1i(x)dφ2j(x)dxi−φ2i(x)dφ1j(x)dxi,φ1=φ−dψ,φ2=φ′−dψ′,.








Recall that divergence-free vector fields form a Lie algebra, that is d★φ˜=0. Then


dvFφ˜+ιjVφιjVφ′Ω=dhσVV′.











Therefore,


LwfΣVφVφ′−fΣφ˜=0,








for every variation of solutions w associated to every W∈FU. See the explanation of the notation in (21). Hence fΣVφVφ′=fΣφ˜+const. □





We claim that fΣU yields a family of local observables sufficiently rich to separate solutions, see also [7]. Suppose that we consider a non-gauge variation v=δη of a solution η∈AU. More precisely, take a one-parametric family of solutions ηε=η+εφ encoded by the symmetry V∈FU, that is ddεε=0j(ηε)=jV(jη). Without loss of generality we can also suppose that V=Vφ with d★dφ=0. Hence, for any 0≠[V]∈FULH/GU, there exists [W]∈FULH/GU,[W]≠0, such that jη*ιjVιjWΩL in a suitable open n-dimensional ball U′⊆U. We choose an embedded (n−1)-dimensional ball, Σ′⊆U′,∂Σ′⊆∂U′ such that


∫Σ′jη*ιjWφ′ιjVφΩL≠0








for W=Wφ′ associated to φ′∈Ω1(U),d★dφ′=0, a non trivial solution to linearized equations in U′ that also vanishes in the exterior of U′.



We then extend Σ′ to Σ⊆U,∂Σ⊆∂U, such that fΣVW(η)≠0. The variation of fΣφ along w in the space of YM solutions is


LwfΣφ(η)=fΣVW(η)≠0.











Remark that for every YM solution η∈AU and for every variation V∈FU, if φ=jη*V, then and jVφjη=jVjη. Thus we could change notation and index the family {fΣφ} as {fΣV} where we take V in FULH.



We summarize the results exposed in this section in the following result and regard the family of observables {fΣV} as a “Darboux local coordinate system” for our gauge field theory.



Theorem 2 (Darboux’s Theorem).

Given η∈AU a fixed YM solution. For each Σ⊆U an admissible hypersurface, ∂Σ⊆∂U, with relative homology class [Σ]∈Hn−1(U,∂U), there exists an infinite dimensional gauge invariant Lie algebra (modulo constant functions)


fΣU=fΣV:[V]∈FULH/GU/R








such that the following assertions hold:




	1. 

	
fΣU is gauge invariant: If X is a variation of one-parametric family of gauge equivalent solutions then LxfΣV=0. Moreover, [fΣV]∈fΣU depends just on the gauge GU-class, [V]∈FULH/GU.




	2. 

	
Each variation V is in fact locally Hamiltonian, V∈FULH hence fΣV is an observable that satisfies the Hamilton’s equation (recall notation in (21)):


LwfΣV(η)=−ωΣL[η](v,w),∀w=δη












	3. 

	
fΣU, locally separates solutions near η: For every non-gauge variation v=δη modeled by V∈FU, there exists a locally Hamiltonian variation w modeled by W∈FULH and Σ⊆U with


LvfΣW(η)≠0.



















The following commutative diagram of Lie algebra morphisms and vertical exact sequences summarizes our results
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(25)




where CU denote subset of the the constant observable currents


C^U:=F∈HOC^U:(dvF−dhσF)|FU,EL=0








with the additional boundary condition (dvσF−λF)|FU,EL=0, dhλF|FU,EL=0.



Definition 5 (Poisson algebra).

Let Σ be any admissible hypersurface Σ⊆U. The (polynomial) Poisson algebra of helicity Hamiltonian observables,


PfΣU,{·,·}Σ








is generated by the Lie algebra fΣU={[fΣφ]:AU/GU→R}.





The proof of the following assertion follows from the fact that the space of boundary conditions of solutions, LU˜⊆L∂U, is a Lagrangian subspace with respect to the symplectic form ω∂U,L, see [21].



Proposition 6.

For a hypersurface Σ⊆∂U (such that [Σ]=0∈Hn−1(U,∂U)) and for its complement, Σ′=U−Σ⊆∂U, the corresponding observables uniquely define an observable


f∂Σφ:=fΣφ=−fΣ′φ∈fΣU








associated to the oriented and closed (n−2)-dimensional boundary ∂Σ⊆∂U.





The Lie algebra


f∂U:={f∂Σφ:Σ⊆∂U}/R








will suffice to separate boundary conditions of solutions, while the Lie algebras fΣU corresponding to 0≠[Σ]∈Hn−1(U,∂U) will be necessary if we want to separate solutions yielding the same boundary conditions, hence in the fibers of rU,∂U:LU→LU˜⊆L∂U. This happens when HdR1(U,∂U)≠0 according to Proposition 5. This also allows us to consider the fibers of rU,∂U:LU→LU˜ as the symplectic leafs the coisotropic linear space LU. This image has been described in detail for the moduli space AU/GU of non-abelian YM solutions in the two dimensional case, see for instance [22].




5. Gluing Observable Currents


Suppose that a region U is obtained by gluing U1,U2 along the closed hypersurfaces Σ1⊆∂U1,Σ2⊆∂U2, to avoid corners case we suppose ∂Σ1=∅=∂Σ2. This includes an isometry of Σ1 with Σ2 together with the compatibility of normal derivatives of the metric. We also suppose that the principal bundle P over U is induced by the corresponding principal bundle P1,P2 over U1,U2. From the projection map p:U1×U2→U we fix base points η∈AU obtained by gluing p*ηi∈AUi,i=1,2.



Suppose that Vi∈FUi,i=1,2 satisfy the continuity gluing condition along Σi


jΣV1|Σ1=jΣV2|Σ2



(26)




and denote those couples (V1,V2) satisfying (26) as FU1#ΣFU2, where Σ=p(Σi)⊆U. It is a Lie subalgebra of FU1⊕FU2. The continuity gluing condition (26) is trivially satisfied for the gauge Lie algebras so that GU1#ΣGU2=GU1⊕GU2, hence there is a well defined Lie algebra


FU1#ΣFU2/GU1#ΣGU2⊆FU1⊕FU2/GU1#ΣGU2











Let G^U1Σ⊆G^U1 denote those gauge variations whose jet vanish along the boundary components of ∂U1 except for Σ1. Similarly define G^U2Σ. If we define


GΣ=G^U1Σ#ΣG^U2Σ/GU1#ΣGU2








then by an Isomorphism Theorem for Lie algebras,


FU1#ΣFU2/G^U1Σ#ΣG^U2Σ≃FU1#ΣFU2/GU1#ΣGU2/GΣ.











There is a commutative diagram of linear maps as follows. Recall the gluing procedure for abelian YM, see [15]. The doted arrow is a Lie algebra morphism.
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From the Lagrangian embedding of LU˜ with respect to the symplectic structure, ω∂U,L, it follows that the Dirichlet conditions along Σ1 and Σ2 completely determine the Neumann conditions in U1 and U2, respectively. Here we consider an axial gauge fixing for solutions in ∂U satisfying also the Lorentz gauge fixing condition in ∂U, see Appendix in [15]. This means that the continuous gluing condition (26) will suffice to reconstruct modulo gauge the first variation Vφ=Vφ1#Vφ2 for Vφi∈FUi,i=1,2 disregarding the normal derivatives along Σ. This proves the following assertion.



Theorem 3 (Gluing of symmetries modulo gauge).

There is an isomorpmhism of Lie algebras


FU1#ΣFU2/GU1#ΣGU2/GΣ≃FU/GU.














6. Outlook: Further Problems


We just remark that in further directions of research. In the first place, it is highly desirable to see whether or not fΣVV′ observables can be defined for non abelian (non-linear) YM equations and if it will suffice to separate solutions just as in Theorem 2. Extension of the variationa bicomplex ttreatment need to be extended to non-local first variations to get enough observables to separate solutions. The existence of a Jacobi bracket needs also to be verified in this case. Gluing properties for observables need also to be developed and explained in detail. Namely the continuous gluing of currents HOCU1#ΣHOCU2 in relation to HOCU, as well as the gluing fΣ′V1#ΣfΣ′′V2 for hypersurfaces Σ′⊆U1,Σ′⊆U′′ intersecting transversally the gluing boundary component Σi,i=1,2. Finally, considerations of Riemannian manifolds with corners may introduce further difficulties in the results we have established for the smooth boundary case.
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Appendix A. Variational Bicomplex Formalism


For the convenience of the reader, in this section we fix notation by recalling basic definitions of the variational formalism for variational PDEs taken from [3,11,18,20,24,25].



Let M be an n-dimensional manifold, and let π:Y→M be a fiber bundle with m-dimensional fiber F. Denote its sections or histories as Γ(Y∣U) where U⊆M is a compact domain with piecewise smooth boundary.



The k-jet bundle πk,0:JkY→Y, k=1,2,…. On π−1(U)⊂Y take the local coordinates


x;u(k):=(x1,…,xi,…,xn;u1,…,ua,…,um;…,uIa,…)∈Jkπ−1(U)








where i=1,…,n;a=1,…,m; and I=(i1,…,in) denotes a multiindex of degree |I|:=i1+…+in=0,1,…,k, ij≥0,ij∈Z. For I=∅, we define u∅a=ua. We denote the projection of the (k+1)-jet onto the k-jet as πk+1,k:Jk+1Y→JkY. For a section ϕ:M→Y, we denote its k-jet as jkϕ:M→JkY, where


jkϕ(x)=ϕ1(x),…,ϕm(x);…,∂|I|ϕa∂x1i1…∂xnin,…











Denote the space of p-forms on JkY as Ωp(JkY). For the decomposition p=r+s, denote the space of r-horizontal and s-vertical forms on JkY as Ωr,s(JkY), have as basis the (r+s)-forms ϑI1a1∧…∧ϑIsas∧dxj1∧…∧dxjr, where



The Cartan distribution on JkY is generated by the basis of contact 1-forms (A1)


ϑIa:=duIa−∑j=1nu(I,j)adxj∈Ω1J|I|+1Y,|I|≤k−1,a=1,…,m.



(A1)







The vertical differential dv for F∈Ω0(JkY) defined as


dv:Ωr,sJkY→Ωr,s+1JkY,dvF:=∑0≤|I|≤k∑a=1m∂F∂uIaϑIa,








then we are forced to consider the horizontal differential with range in the (p+1)-forms in Jk+1Y


dh:Ωr,sJkY→Ωr+1,sJk+1Y,dhF:=∑i=1nddxi(k+1)(F)dxi.








where


ddxi(k):=∂∂xi+∑0≤|J|≤k−1∑a=1mu(J,i)a∂∂uJa.











The injective limit Ωr,s(JY):=lim→πk+1,k*Ωr,s(JkY), models the p forms in the infinite jet space JY=lim←πk+1,kJkY. We have the identities


dv2=0,dh2=0,dvdh+dhdv=0.











Hence, the following diagram commutes
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Derivations in the algebra of smooth functions on Ω0(JY),


V=∑i=1naix;u∂∂xi+∑a=1mVax;u∂∂ua








are in correspondence with sections V∈Γ(π∞,0*(πv)), where π∞,0*(πv) is the pullback under π∞,0:JY→Y of the vertical (vector) bundle, πv:Yv→Y, whose fiber at each (x,u)∈Y is consists of the vertical fibers Y(x,u)v=T(x,u)π−1(x). In fact, its prolongations


jkV=∑i=1naix;uddxi(k)+∑0≤|I|≤k−1∑a=1mbIax;u(k)∂∂uIa



(A2)




where bIa:=DI(k)Va+∑j=1nujIaaj, |I|≤k−1, act as infinitesimal symmetries of the Cartan distribution in JY in the sense that


LjVϑIa=0.



(A3)







Here the horizontal derivative operator DI(k) equals Di1(k)∘Di2(k)∘⋯∘Din(k), with


Dis(k)=ddxs(k)∘⋯∘ddxs(k)=ddxs(k)∘is,











We will assume that V∈Γ(π∞,0*(πv)) has no horizontal component. Hence ai=0 and


jV=∑a=1mVa∂∂ua+∑i=1nddxi(k)(Va)∂∂uia+∑2≤|I|≤kDI(k)(Va)∂∂uIa.



(A4)







We call this space the space of evolutionary vector fields,


Ev(JY)=V∈Γπ∞,0*(πv):∂Va∂uia=∂Vb∂uib,∂Vb∂uia=0,a≠b



(A5)




where the functions Va are local in the sense that they depend on a finite number of derivatives of u.



For a first-order Lagrangian variational problem in a region U⊆M, the space of first variations of histories, v=δϕ, for a fixed ϕ∈Γ(Y|U), can be modeled as


V∈V∈Γπ1,0*(π)|U:V∈EvU⊆JY








where U⊆JY, is a neighborhood of the graph jϕ(U).



Let ν=dx1∧⋯∧dxn∈Ωn(M) be a fixed volume n-form on M, and consider the Lagrangian density, L=L·ν∈Ωn,0(J1Y), with Lagrangian


L=L(xi,ua,uia)∈Ω0(J1Y).











Consider the action functional on U⊂M,


SU(ϕ)=∫U(j1ϕ)*L








if we take the vertical derivative


π2,1*(dvL)=dhΘL+E(L)



(A6)






ΘL=−∑i=1n∑a=1m∂L∂uiaϑa∧νi∈Ωn−1,1J1Y,dxi∧νi=ν








and E(L)x;u(2)=∑a=1mEa(L)·ϑa∧ν∈Ωn,1(J2Y), then the Euler-Lagrange equations are


Ea(L)=∂L∂ua−∑i=1nddxi(2)∂L∂uia=0,a=1,…,m.











Recall that (d/dxi)(2)=∂/∂xi+∑buib∂/∂ub+∑juijb∂/∂ujb. Another way of obtaining the Euler-Lagrange equations is by E(L)=I(dvL) where we use the integration by parts operator I:Ωn,s(J1Y)→Ωn,s(J2Y) for s>0, satisfying I∘dh=0,I∘I=I and that α−Iα is dh-exact. In coordinates I it is given by


I(α)=1sϑa∧∑a=1mι∂∂uaα−∑j=1nddxjι∂∂ujaα.











Meanwhile, the locus of the Euler-Lagrange PDEs


EL:=jx;u(2)∈J2Y:E(L)x;u(2)=0⊆JY.











The space of solutions of the Euler-Lagrange equations


AU:=ϕ∈Γ(Y):jϕ(M)⊆EL.











On the other hand, if we define the form ΩL=−dvΘL∈Ωn−1,2J1Y, or


ΩL=∑i=1n∑b,a=1m∂2L∂ub∂uaϑb∧ϑa+∑j=1n∂2L∂ujb∂uiaϑjb∧ϑa∧νi.











For a first variation δϕ modeled by V∈Ev(JY|U), let us consider the Cartan formula for vertical derivation


LVb=dvιjVb+ιjVdvb



(A7)




see [18] Proposition 1.16. Then


π2,1*LjVb=dπ2,1*ιj1Vb+ιj1V(d(π2,1*b))



(A8)







Therefore,


dhιj1Vb=(d∘π2,1*−π2,1*∘dv)ιj1Vb=










−ιj2V(d∘π2,1*−π2,1*∘dv)b=−ιj2Vdhb








or


dhιj1V(·)=−ιj2Vdh(·).



(A9)







In particular dhιj1VΘL=−ιj2VdhΘL. Hence the variation for the action is


ddεε=0SU(ϕε)=ddεε=0∫U(j1ϕε)*L=










∫Uj1ϕ*Lj1VL=∫Uj1ϕ*ιj1VdvL=










∫Uj2ϕ*ιj2Vπ2,1*(dvL)=










∫Uj2ϕ*ιj2XdhΘL+ιj2VE(L)=










−∫Uj2ϕ*(dh+π2,1*∘dv)ιj1VΘL+∫Uj1ϕ*ιj2VE(L)










+∫Uj1ϕ*dv(ιj1VΘL)










=−∫Uj2ϕ*dιj1VΘL+∫Uj2ϕ*ιj2VE(L)










=−∫∂Uj1ϕ*ιj1VΘL+∫Uj2ϕ*ιj2VE(L).











Proposition A1.

Let Θ^L=−ΘL+L be for the Poincarè-Cartan form, which is also the principal Lepage equivalent of ΘL, and let ϕ be a section. The following assertions are equivalent




	1. 

	
ϕ∈AU.




	2. 

	
For every vertical vector field, V∈Ev(JY|U), the n-form (jϕ)*ιjVΩ^L in U⊆M, vanishes.




	3. 

	
The Euler-Lagrange equations hold for every x∈U


∂L∂ua(jϕ(x))−∑i=1n∂2L∂xi∂uia(jϕ(x))=0,∀a=1,…,m.



















Notice that in the Euler-Lagrange equations Ea(L)=0 arising from j2ϕ*E(L)=0, the total horizontal derivations d/dxi are involved. Meanwhile, the Euler-Lagrange equations mentioned in Proposition A1 deal with partial horizontal derivations, ∂/∂xi, see [1,14].



In general for an (n−1)-dimensional manifold Σ⊆U, we can define the 1-form


(θLΣ)ϕ(v):=∫Σjϕ*ιjVΘL,∀ϕ,v=δϕ,








where the variation v=δϕ corresponds to V∈Ev(JY|U). For ϕ∈AU,


dSU|AUϕ(v)=−θL,∂UAUϕ(v)











Define the presymplectic structure ωLΣ:=−dθLΣ, ∀ϕ, so that ∀v=δϕ,v′=(δϕ)′ we have


(ωLΣ)ϕ(v,v′)=∫Σjϕ*ιjV′ιjVΩL.











From dvΩL=0 it follows that dωLΣ=0.
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