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Abstract: Let b ≥ 2 and n ≥ 2 be integers. For a b-adic n-digit integer x, let A (resp. B) be the b-adic
n-digit integer obtained by rearranging the numbers of all digits of x in descending (resp. ascending)
order. Then, we define the Kaprekar transformation T(b,n)(x) := A− B. If T(b,n)(x) = x, then x is called
a b-adic n-digit Kaprekar constant. Moreover, we say that a b-adic n-digit Kaprekar constant x is regular
when the numbers of all digits of x are distinct. In this article, we obtain some formulas for regular
and non-regular Kaprekar constants, respectively. As an application of these formulas, we then see
that for any integer b ≥ 2, the number of b-adic odd-digit regular Kaprekar constants is greater
than or equal to the number of all non-trivial divisors of b. Kaprekar constants have the symmetric
property that they are fixed points for recursive number theoretical functions T(b,n).
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1. Introduction

Let Z be the set of all rational integers. In this article, the symbol [α] with any rational number α

stands for the greatest integer that is less than or equal to α.
For integers b ≥ 2 and n ≥ 2, we denote by Z(b, n) the set of all b-adic n-digit integers, i.e.,

Z(b, n) = {x ∈ Z | 0 ≤ x ≤ bn − 1}
= {an−1bn−1 + · · ·+ a1b + a0 | 0 ≤ a0, a1, . . . , an−1 ≤ b− 1}.

For any:
x = an−1bn−1 + · · ·+ a1b + a0 ∈ Z(b, n)
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with 0 ≤ a0, a1, . . . , an−1 ≤ b− 1, we denote the b-adic expression of x by:

x = (an−1 · · · a1a0)b.

In the case where b = 10, we omit the subscript as:

x = an−1 · · · a1a0

as usual if any confusion occurs with the product of a0, a1, . . . , an−1.

Definition 1. Let cn−1 ≥ · · · ≥ c1 ≥ c0 be the rearrangement of the numbers a0, a1, . . . , an−1 of all digits of
x ∈ Z(b, n) in descending order. We define the Kaprekar transformation as:

T(b,n) : Z(b, n)→ Z(b, n); x 7→ (cn−1 · · · c1c0)b − (c0c1 · · · cn−1)b.

Definition 2. (1) For any x ∈ Z(b, n), we say that x is a b-adic n-digit Kaprekar constant if T(b,n)(x) = x.
(2) We see immediately that zero is a b-adic n-digit Kaprekar constant for any b ≥ 2 and n ≥ 2, which we

call the trivial Kaprekar constant. Then, we denote by ν(b, n) the number of all b-adic n-digit non-trivial
Kaprekar constants. By Ref. [1] (Proposition 1.3), we see that:

ν(b, n) ≤ b−1+[ n
2 ]

C[ n
2 ]
− 1,

where we put:

rCs :=
r!

s!(r− s)!
=

r(r− 1) · · · (r− s + 1)
s · · · 1

for any integers r > s > 0.
(3) We say that a b-adic n-digit non-trivial Kaprekar constant x = (an−1 · · · a1a0)b is regular when

ai 6= aj for any i 6= j. We denote by νreg(b, n) (resp. νnon-reg(b, n)) the number of all b-adic n-digit regular
(resp. non-regular) Kaprekar constants. By the definition, we see immediately that:

ν(b, n) = νreg(b, n) + νnon-reg(b, n)

and if b < n, then νreg(b, n) = 0 and ν(b, n) = νnon-reg(b, n).

Example 1. Kaprekar [2,3], who was the initiator of this research, discovered that ν(10, 4) = 1, and the only
non-trivial 10-adic four-digit Kaprekar constant is: 6174.
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Example 2. Here is the list of all b-adic n-digit non-trivial Kaprekar constants for 2 ≤ b ≤ 15 and 2 ≤
n ≤ 7. Note that, in the list below, we omit the subscript b. Further, the symbol − means that ν(b, n) = 0,
and non-trivial Kaprekar constants with the symbol ∗ are regular.

n 2 3 4 5 6 7
b = 2 01∗ 011 0111 01111 011111 0111111

1001 10101 101101 1011101
110001 1101001

3 − − − 20211 − 2202101
4 − 132∗ 3021∗ − 213312 3203211

310221
330201

5 13∗ − 3032 − − −
6 − 253∗ − 41532∗ 325523 −

420432
530421∗

7 − − − − − −
8 25∗ 374∗ − − 437734 6417532∗

640632
9 − − − 62853∗ − −

10 − 495∗ 6174∗ − 549945 −
631764

11 37∗ − − − − −
12 − 5(11)6∗ − 83(11)74∗ 65(11)(11)56 962(11)853∗
13 − − − − 951(10)74∗ −
14 49∗ 6(13)7∗ − − 76(13)(13)67 −
15 − − 92(11)6∗ (10)4(14)95∗ − −

Then, we obtain the following list of the numbers ν = ν(b, n), νr = νreg(b, n) and νnr = νnon-reg(b, n):

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
b ν νr νnr ν νr νnr ν νr νnr ν νr νnr ν νr νnr ν νr νnr

2 1 1 0 1 0 1 2 0 2 2 0 2 3 0 3 3 0 3
3 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
4 0 0 0 1 1 0 1 1 0 0 0 0 3 0 3 1 0 1
5 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
6 0 0 0 1 1 0 0 0 0 1 1 0 3 1 2 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 0 1 1 0 0 0 0 0 0 0 2 0 2 1 1 0
9 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
10 0 0 0 1 1 0 1 1 0 0 0 0 2 0 2 0 0 0
11 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
14 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0
15 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0

Now, we have the following:

Questions: (1) Are there any formulas for ν(b, n), νreg(b, n) and νnon-reg(b, n) in terms of b and n?
(2) Are there any formulas for b-adic n-digit regular or non-regular Kaprekar constants in terms

of b and n?
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Known results: There are some known results that answer some parts of the questions above
as follows:

(1) In the case where n = 2, by the results on the two-digit Kaprekar transformation given by
Young [4] (cf. [1], Theorem 3.1), we see that for any integer b ≥ 2, there exists a b-adic two-digit
non-trivial Kaprekar constant if and only if b + 1 is divisible by three.

Since there is no two-digit non-regular Kaprekar constant by definition, we see immediately that
for any integer b ≥ 2,

νnon-reg(b, 2) = 0 and ν(b, 2) = νreg(b, 2).

In this article, we shall prove in Theorem 4(1) and Corollary 3(1) that any two-digit regular Kaprekar
constant is of the form:

(m(2m + 1))3m+2

with any integers m ≥ 0 and:

νreg(b, 2) =

{
1 if 3 | (b + 1),

0 otherwise.

(2) In the case where n = 3, Eldridge and Sagong [5] proved that any three-digit non-trivial
Kaprekar constant is of the form:

(m(2m + 1)(m + 1))2m+2

with any integers m ≥ 0 and that for any integer b ≥ 2,

ν(b, 3) =

{
1 if b is even,

0 if b is odd.

In particular, we see immediately that:

νreg(b, 3) =

{
1 if b ≥ 4 is even,

0 if b = 2 or b ≥ 3 is odd,

and:

νnon-reg(b, 3) =

{
1 if b = 2,

0 if b ≥ 3.

(3) In the case where n = 4, Hasse and Prichett [6] obtained a formula:

((3m + 3)m(4m + 3)(2m + 2))5m+5

for (5m + 5)-adic four-digit non-trivial Kaprekar constants with any integer m ≥ 0. This implies that if
b ≥ 5 and 5 | b, then νreg(b, 4) ≥ 1.

In this article, we shall prove in Theorem 4(2) and Corollary 3(2) that any four-digit regular
Kaprekar constant is equal to (3021)4 or given by the above formula obtained by Hasse and Prichett
with m ≥ 1 and that for any integer b ≥ 2,

νreg(b, 4) =

{
1 if b = 4 or, b ≥ 10 and 5 | b,

0 otherwise.

(4) In the case where n = 5, Prichett [7] obtained a formula:

((2m + 2)m(3m + 2)(2m + 1)(m + 1))3m+3
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for (3m + 3)-adic five-digit non-trivial Kaprekar constants with any integers m ≥ 0. This implies that
if b ≥ 6 and 3 | b, then νreg(b, 5) ≥ 1.

In this article, we shall prove in Theorem 3(1) and Corollary 3(3) that any five-digit regular
Kaprekar constant is given by the above formula obtained by Prichett with m ≥ 1 and that for any
integer b ≥ 2,

νreg(b, 5) =

{
1 if b ≥ 6 and 3 | b,

0 otherwise.

(5) In the case where b = 2, the first author [1] showed that for any n ≥ 2, all two-adic n-digit
non-trivial Kaprekar constants are of the form:

(

k−1︷ ︸︸ ︷
1 · · · 1 0

n−2k︷ ︸︸ ︷
1 · · · 1

k−1︷ ︸︸ ︷
0 · · · 0 1)2

with all integers 1 ≤ k ≤
[ n

2

]
and ν(2, n) =

[ n
2

]
. In particular, we see immediately that:

νreg(2, n) =

{
1 if n = 2,

0 if n ≥ 3

and:

νnon-reg(2, n) =

 0 if n = 2,[ n
2

]
if n ≥ 3.

(6) In the case where b = 3, the authors [8] showed that for any n ≥ 2, all three-adic n-digit
non-trivial Kaprekar constants are of the form:

(

k︷ ︸︸ ︷
2 · · · 2

`−k−1︷ ︸︸ ︷
1 · · · 1 0

`−k︷ ︸︸ ︷
2 · · · 2

`−k︷ ︸︸ ︷
1 · · · 1

k−1︷ ︸︸ ︷
0 · · · 0 1)3.

with all pairs (k, `) of integers satisfying 0 < k < ` and n = 3`− k, and:

ν(3, n) =
[

1
6

(
n− 1 + 3(−1)n

2

)]
.

In particular, we see immediately that:

νreg(3, n) = 0, νnon-reg(3, n) = ν(3, n).

We have the impression that the behavior of the values of ν(b, n), νreg(b, n) and νnon-reg(b, n) in
the list in Example 2 is not only complicated, but also suggestive of some general rules. It seems that
it is very hard to obtain general results without observing any case-by-case results. The aim of this
article is to see formulas for b-adic n-digit regular and non-regular Kaprekar constants and to study
the properties of νreg(b, n) and νnon-reg(b, n) towards answers to the questions above.

Firstly, we see formulas for Kaprekar constants in the following:

Theorem 1. Let m ≥ 0 and n ≥ 2 be any integers. We put:

b(m, n) =


3m + 2 if n = 2,

2
n−4

2 (4m + 3) + m + 2 if n is even and n ≥ 4,
n + 1

2
(m + 1) if n is odd.
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(1) We assume that n is even and define the b(m, n)-adic n-digit integer:

K(m, n) =


(m(2m + 1))b(m,2) if n = 2,

((3m + 3)m(4m + 3)(2m + 2))b(m,4) if n = 4,

(an−1an−2 · · · ai · · · a n
2 +1a n

2
a n

2−1 · · · aj · · · a1a0)b(m,n) if n ≥ 6,

where we put:

an−1 = 2
n−4

2 (4m + 3)−m,

ai = (2
n−4

2 − 2n−i−2)(4m + 3) + m + 1 for n− 2 ≥ i ≥ n
2

+ 1,

a n
2
= m,

aj = 2j−1(4m + 3) for
n
2
− 1 ≥ j ≥ 1,

a0 = 2m + 2.

Then, K(m, n) is a non-trivial Kaprekar constant, which is regular if and only if n = 2 or m ≥ 1.
(2) We assume that n is odd and define the b(m, n)-adic n-digit integer:

L(m, n) =

(m(2m + 1)(m + 1))b(m,3) if n = 3,

(bn−1 · · · bi · · · b n+3
2

b n+1
2

b n−1
2

b n−3
2
· · · bj · · · b1b0)b(m,n) if n ≥ 5,

where we put:

bi =

(
i− n− 1

2

)
(m + 1) for n− 1 ≥ i ≥ n + 3

2
,

b n+1
2

= m,

b n−1
2

=
n + 1

2
(m + 1)− 1,

bj = (j + 1) (m + 1)− 1
(
= b n+1

2 +j − 1
)

for
n− 3

2
≥ j ≥ 1,

b0 = m + 1.

Then, L(m, n) is a non-trivial Kaprekar constant, which is regular if and only if m ≥ 1.

Remark 1. (1) We can see that for any integer n ≥ 2, the sequence:

b(n) := {b(m, n) | m = 0, 1, 2, . . .}

consisting of bases defined in Theorem 1 is the arithmetic progression with the common difference:
3 if n = 2,

2
n
2 + 1 if n is even and n ≥ 4,

n + 1
2

if n is odd

and the first term: 
2 if n = 2,

3× 2
n−4

2 + 2 if n is even and n ≥ 4,
n + 1

2
if n is odd.
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(2) As we have seen in the known results above, the regular Kaprekar constants K(m, 4), L(m, 3), and L(m, 5)
have already been obtained by Hasse and Prichett [6], Eldridge and Sagong [5], and Prichett [7], respectively.

Definition 3. (1) We call the double series:

K := {K(m, n) | m = 1, 2, 3, . . . , n = 2, 4, 6, . . .},
L := {L(m, n) | m = 1, 2, 3, . . . , n = 3, 5, 7, . . .}

the systems of regular Kaprekar constants.
(2) Let n ≥ 2 be any integer. We call the sequence:

K(n) := {K(m, n) | m = 1, 2, 3, . . .} with even n, or

L(n) := {L(m, n) | m = 1, 2, 3, . . .} with odd n

the progression of n-digit regular Kaprekar constants with arithmetic progression b(n) \ {b(0, n)} of bases.
By Theorem 1, we see that the formulas for the numbers an−1, . . . , a0 (resp. bn−1, . . . , b0) of digits of

members in K(n) (resp. L(n)) are given by polynomials in m of degree one. This implies that they can be regarded
as arithmetic progressions indexed by m = 1, 2, 3, . . ., as well as the arithmetic progression b(n) \ {b(0, n)}
of bases.

(3) Let m ≥ 1 be any integer. We call the sequences:

K[m] := {K(m, n) | n = 2, 4, 6, . . .}
(resp. L[m] := {L(m, n) | n = 3, 5, 7, . . .})

the m-th chain of regular Kaprekar constants in the system K (resp. L) with ascending even (resp. odd) digits.

Example 3. (1) Here are examples of some members K(m, n) in the progressions K(n) and the chains K[m] of
regular Kaprekar constants with 1 ≤ m ≤ 5 and n = 2, 4, 6.

K(2) K(4) K(6)
K[1] (13)5 (6174)10 ((13)91(14)74)17

K[2] (25)8 (92(11)6)15 ((20)(14)2(22)(11)6)26

K[3] (37)11 ((12)3(15)8)20 ((27)(19)3(30)(15)8)35

K[4] (49)14 ((15)4(19)(10))25 ((34)(24)4(38)(19)(10))44

K[5] (5(11))17 ((18)5(23)(12))30 ((41)(29)5(46)(23)(12))53

(2) Here are examples of some members L(m, n) in the progressions L(n) and the chains L[m] of regular
Kaprekar constants with 1 ≤ m ≤ 5 and n = 3, 5, 7.

L(3) L(5) L(7)
L[1] (132)4 (41532)6 (6417532)8

L[2] (253)6 (62853)9 (962(11)853)12

L[3] (374)8 (83(11)74)12 ((12)83(15)(11)74)16

L[4] (495)10 ((10)4(14)95)15 ((15)(10)4(19)(14)95)20

L[5] (5(11)6)12 ((12)5(17)(11)6)18 ((18)(12)5(23)(17)(11)6)24

Remark 2. By the cases where n = 4 and n = 6 in the lists in Examples 2 and 3, we see that the progressions
K(n) and L(n) of n-digit regular Kaprekar constants may not consist of all n-digit regular Kaprekar constants in
general. Actually, for any n ≥ 2, it seems that it is very hard to obtain formulas for all n-digit regular Kaprekar
constants. In Section 2, we obtain some partial results on them with specified n.
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As a corollary of Theorem 1, we immediately obtain some results on the positivity of the numbers
νreg(b, n) of all b-adic n-digit regular Kaprekar constants as in the following:

Corollary 1. (1) Let n ≥ 2 and b ≥ 2 be any integers. If n and b satisfy one of the following conditions:

(i) n = 2 and b = 3m + 2 with m ≥ 1,

(ii) n is even, n ≥ 4 and b = 2
n−4

2 (4m + 3) + m + 2 with m ≥ 1,

(iii) n is odd and b =
n + 1

2
(m + 1) with m ≥ 1,

then:
νreg(b, n) ≥ 1.

(2) If an integer b ≥ 4 is not a prime number, then for any non-trivial divisor d of b,

νreg(b, 2d− 1) ≥ 1.

Therefore, the number of all b-adic odd-digit regular Kaprekar constants is greater than or equal to the
number of all non-trivial divisors of b.

Secondly, we obtain formulas for non-regular Kaprekar constants by means of double series of
regular Kaprekar constants obtained in Theorem 1 in the following:

Theorem 2. Let the notation be as in Theorem 1.
(1) We assume that m ≡ 1 (mod 3) and n ≡ 0 (mod 4), and put:

βm,n =
b(m, n)− 1

3
.

For any integer r ≥ 2, we denote by K(m, n, r) the b(m, n)-adic (n + 2r)-digit integer:(3m + 3)

r︷ ︸︸ ︷
βm,4 · · · βm,4 m(4m + 3)

r︷ ︸︸ ︷
(2βm,4) · · · (2βm,4)(2m + 2)


b(m,4)

in the case where n = 4, and:an−1 · · · a n
2 +1

r︷ ︸︸ ︷
βm,n · · · βm,n a n

2
a n

2−1

r︷ ︸︸ ︷
(2βm,n) · · · (2βm,n) a n

2−2 · · · a0


b(m,n)

in the case where n ≥ 8. Then, K(m, n, r) is a non-regular Kaprekar constant.
(2) We assume that m = 1, n ≡ 3 (mod 6) and n ≥ 9. For any integer r ≥ 2, we denote by L(1, n, r) the

b(1, n)(= n + 1)-adic (n + 2r)-digit integer:bn−1 · · · b 2n
3

r︷ ︸︸ ︷
n
3
· · · n

3
b 2n

3 −1 · · · b n
3

r︷ ︸︸ ︷
2n
3
· · · 2n

3
b n

3−1 · · · b0


b(1,n)= T(b(1,n),n)

n · · · 2n + 3
3

r︷ ︸︸ ︷
2n
3
· · · 2n

3
2n
3
· · · n + 3

3

r︷ ︸︸ ︷
n
3
· · · n

3
n
3
· · · 1


 .
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Then, L(1, n, r) is a non-regular Kaprekar constant.

Example 4. (1) Here is an example of the non-regular constant K(m, n, r) obtained in Theorem 2(1) in the
case where m = 4, n = 8, and r = 2.

(m, n) (4, 8)
b(m, n) 82
K(m, n) ((72)(62)(43)4(76)(38)(19)(10))82

βm,n, 2βm,n 27, 54
K(m, n, r) ((72)(62)(43)(27)(27)4(76)(54)(54)(38)(19)(10))82

(2) Here is an example of the non-regular constant L(1, n, r) obtained in Theorem 2(2) in the case where
n = 9 and r = 4.

(1, n) (1, 9)
b(1, n) 10
L(1, n) (864197532)10
n
3 , 2n

3 3, 6
L(1, n, r) (86433331976666532)10

As a corollary of Theorem 2, we immediately obtain the following result on the positivity of the
numbers νreg(b, n) of all b-adic n-digit non-regular Kaprekar constants:

Corollary 2. For any integers m ≥ 1 and n ≥ 4 satisfying:

m ≡ 1 (mod 3) and n ≡ 0 (mod 4)

or:
m = 1, n ≡ 3 (mod 6) and n ≥ 9,

and for any integer r ≥ 2, we see that:

νnon-reg(b(m, n), n + 2r) ≥ 1.

In Section 1, we shall prove Theorems 1 and 2 and Corollaries 1 and 2. In Section 2.1, we shall
obtain some formulas for all n-digit regular Kaprekar constants in Theorem 3 for n = 5, 7, 9, 11 and
Theorem 4 for n = 2, 4, 6, 8. Moreover, we shall see some conditional results on formulas for n-digit
regular Kaprekar constants in Proposition 1 for n = 13, 15, 17. Then, we shall see in Section 2.2 some
observations on the values of νreg(b, n). We think that this article is fit for the Special Issue “Number
Theory and Symmetry,” since Kaprekar constants have the symmetric property that they are fixed
points for recursive number theoretical functions T(b,n).

2. Proofs of Theorems and Corollaries in the Introduction

In this section, we prove Theorem 1 and Corollary 1 on regular Kaprekar constants and Theorem 2
and Corollary 2 on non-regular Kaprekar constants, respectively.

2.1. A Proof of Theorem 1

(1) Let the notation be as in Part (1) of Theorem 1. Here, we omit proving the Parts (i)–(iii), since
they can be checked by direct calculations.

(iv) In the case where n ≥ 8 is even, let:

K(m, n) = (an−1an−2 · · · ai · · · a n
2 +1a n

2
a n

2−1 · · · aj · · · a1a0)b(m,n)
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be the b(m, n)-adic n-digit integer defined in the assertion of Theorem 1(1). Let cn−1 ≥ · · · ≥ c1 ≥ c0

be the rearrangement of the numbers a0, . . . , an−1 of all digits of K(m, n) in descending order. Then,
the relation between a0, . . . , an−1 and c0, . . . , cn−1 is given as in the following:

Lemma 1. In the situation above, we see that:

cn−1 = a n
2−1, cn−2 = an−1,

ci = ai+1, cn−i−1 = an−i−2 for n− 3 ≥ i ≥ n
2

,

c1 = a0, c0 = a n
2
.

Proof. Since for any n− 3 ≥ i ≥ n
2

,

ai+1 = (2
n−4

2 − 2n−i−3)(4m + 3) + m + 1,

an−i−2 = 2n−i−3(4m + 3),

we see easily that:
an−2 > an−3 > · · · > a n

2 +1

and:
a n

2−2 > a n
2−3 > · · · > a1.

Moreover,

a n
2−1 = 2

n−4
2 (4m + 3)

≥ 2
n−4

2 (4m + 3)−m = an−1

> 2
n−4

2 (4m + 3)− (3m + 2) = an−2,

a n
2 +1 − a n

2−2 = (2
n−4

2 − 2
n
2−3)(4m + 3) + (m + 1)− 2

n
2−3(4m + 3)

= m + 1 > 0

and:
a1 = 4m + 3 > a0 = 2m + 2 > a n

2
= m.

Therefore, the lemma is proven.

We put:
T(b(m,n),n)(K(m, n)) = (a′n−1 · · · a′1a′0)b(m,n)
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with integers 0 ≤ a′0, a′1, . . . , a′n−1 ≤ b(m, n)− 1. By Ref. [1] (Theorem 1.1 (6)) and Lemma 1, we then
see that:

a′n−1 = cn−1 − c0 = a n
2−1 − a n

2
= 2

n−4
2 (4m + 3)−m = an−1,

a′n−2 = cn−2 − c1 = an−1 − a0 = 2
n−4

2 (4m + 3)−m− (2m + 2)

= (2
n−4

2 − 1)(4m + 3) + m + 1 = an−2,

a′n
2
= c n

2
− c n

2−1 − 1 = a n
2 +1 − a n

2−2 − 1

= (2
n−4

2 − 2
n
2−3)(4m + 3) + (m + 1)− 2

n
2−3(4m + 3)− 1

= m = a n
2
,

a′n
2−1 = b(m, n)− 1− (c n

2
− c n

2−1)

= 2
n−4

2 (4m + 3) + m + 2− 1− (m + 1)

= 2
n−4

2 (4m + 3) = a n
2−1,

a′1 = b(m, n)− 1− (cn−2 − c1)

= 2
n−4

2 (4m + 3) + m + 2− 1− ((2
n−4

2 − 1)(4m + 3) + m + 1)

= 4m + 3 = a1,

a′0 = b(m, n)− (cn−1 − c0)

= 2
n−4

2 (4m + 3) + m + 2− (2
n−4

2 (4m + 3)−m)

= 2m + 2 = a0.

Moreover, we see that for any n− 3 ≥ i ≥ n
2

+ 1,

a′i = ci − cn−i−1 = ai+1 − an−i−2

= (2
n−4

2 − 2n−i−3)(4m + 3) + m + 1− 2n−i−3(4m + 3)

= (2
n−4

2 − 2n−i−2)(4m + 3) + m + 1 = ai,

a′n−i−1 = b(m, n)− 1− a′i

= 2
n−4

2 (4m + 3) + m + 2− 1− ((2
n−4

2 − 2n−i−2)(4m + 3) + m + 1)

= 2n−i−2(4m + 3) = an−i−1.

Therefore, we see that:

T(b(m,n),n)(K(m, n)) = (a′n−1 · · · a′1a′0)b(m,n)

= (an−1 · · · a1a0)b(m,n)

= K(m, n),

i.e., K(m, n) is a non-trivial Kaprekar constant, which is regular if and only if m ≥ 1, which implies
that a n

2−1 6= an−1.
(2) Let the notation be as in Part (2) of Theorem 1.
As we have seen in the known results (2) and (4) in the Introduction, the cases where n = 3 and

n = 5 have already been proven by Eldridge and Sagong [5] and Prichett [7], respectively. Therefore,
it suffices to prove Part (2) in the case where n ≥ 7.

For any odd integer n ≥ 7, let:

L(m, n) = (bn−1 · · · bi · · · b n+3
2

b n+1
2

b n−1
2

b n−3
2
· · · bj · · · b1b0)b(m,n)
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be the b(m, n)-adic n-digit integer defined in the assertion of Theorem 1(2). Let cn−1 ≥ · · · ≥ c1 ≥ c0

be the rearrangement of the numbers b0, . . . , bn−1 of all digits of L(m, n) in descending order. Then,
the relation between b0, b1, . . . , bn−1 and c0, c1, . . . , cn−1 is given as in the following:

Lemma 2. In the situation above, we see that:

cn−1 = b n−1
2

,

c2i−1 = b n−1
2 +i, c2i−2 = bi−1 for

n− 1
2
≥ i ≥ 2,

c1 = b0, c0 = b n+1
2

.

Proof. By the definition of the numbers of all digits of L(m, n) in Theorem 1(2), we see
immediately that:

cn−1 =
n + 1

2
(m + 1)− 1 = b n−1

2
,

c2i−1 = i(m + 1) = b n−1
2 +i, c2i−2 = i(m + 1)− 1 = bi−1 for

n− 1
2
≥ i ≥ 2,

c1 = m + 1 = b0, c0 = m = b n+1
2

.

Therefore, the lemma is proven.

Then, we can prove Part (2) in the case where n ≥ 7 by the same argument as in the proof of
Theorem 1(1)(iv). Therefore, we omit the details of the calculations here.

2.2. A Proof of Corollary 1

(1) In Cases (i) and (ii), we have the b(m, n)-adic n-digit regular Kaprekar constant K(m, n) by
Theorem 1 (1). On the other hand, in Case (iii), we have the b(m, n)-adic n-digit regular Kaprekar
constant L(m, n) by Theorem 1(2). Therefore, we see that for any integers b ≥ 2 and n ≥ 2 satisfying
Condition (i), (ii), or (iii),

νreg(b, n) ≥ 1,

and Part (1) is proven.
(2) For any integer b ≥ 4 that is not a prime number, let d be any non-trivial divisor of b, i.e., d is

a divisor of b satisfying 1 < d < b. We put:

md =
b
d
− 1, nd = 2d− 1.

Since md ≥ 1 is an integer and nd ≥ 3 is an odd integer satisfying b(md, nd) = b, by Theorem 1(2),
we have the b-adic nd-digit regular Kaprekar constant L(md, nd). Therefore, we see that:

νreg(b, nd) ≥ 1.

Moreover, since nd 6= nd′ for any non-trivial divisors d 6= d′ of b, we see that L(md, nd) 6=
L(md′ , nd′). Therefore, the number of all b-adic odd-digit regular Kaprekar constants is greater than or
equal to the number of all non-trivial divisors of b, and Part (2) is proven.

2.3. A Proof of Theorem 2

(1) We assume that:
m ≡ 1 (mod 3) and n ≡ 0 (mod 4).
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(a) In the case where n = 4, b(m, 4) = 5m + 5, and:

βm,4 =
b(m, 4)− 1

3
=

5m + 4
3

which is an integer, since the assumption m ≡ 1 (mod 3) implies that:

b(m, 4) ≡ 2m− 1 ≡ 1 (mod 3).

Then, for any r ≥ 2, the b(m, 4)-adic (2r + 4)-digit integer obtained by rearranging of the numbers
of all digits of K(m, 4, r) in descending order is:(4m + 3)

r︷ ︸︸ ︷
(2βm,4) · · · (2βm,4)(3m + 3)(2m + 2)

r︷ ︸︸ ︷
βm,4 · · · βm,4 m


b(m,4)

.

By Ref. [1] (Theorem 1.1 (6)) and the case where n = 4 in Theorem 1(1), we then see that:

T(b(m,4),2r+4)(K(m, 4, r)) = K(m, 4, r),

since b(m, 4)− 1− βm,4 = 2βm,4. Therefore, K(m, 4, r) is a non-regular Kaprekar constant.
(b) In the case where n ≥ 8, b(m, n) = 2

n−4
2 (4m + 3) + m + 2, and

βm,m =
b(m, n)− 1

3
=

1
3

(
2

n−4
2 (4m + 3) + m + 1

)
which is an integer, since n ≡ 0 (mod 4) implies that n−4

2 is even and m ≡ 1 (mod 3) implies that:

b(m, n) ≡ (−1)
n−4

2 m + m− 1 ≡ 1 (mod 3).

Let the notation be as in Theorem 1(1). Since, n ≥ 8, we see that:

a n
2−2 − βm,n = 2

n
2−3(4m + 3)− 1

3

(
2

n−4
2 (4m + 3) + m + 1

)
=

(
2

n
2

6
− 1

3

)
m +

2
n
2

8
− 1

3
> 0,

βm,n − a n
2−3 =

1
3

(
2

n−4
2 (4m + 3) + m + 1

)
− 2

n
2−4(4m + 3)

=

(
2

n
2

12
+

1
3

)
m +

2
n
2

16
+

1
3

> 0,

a n
2 +2 − 2βm,n =

(
2

n
2−2 − 2

n
2−4
)
(4m + 3) + m + 1

− 2
3

(
2

n−4
2 (4m + 3) + m + 1

)
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=

(
2

n
2

12
+

1
3

)
m +

2
n
2

16
+

1
3

> 0,

2βm,n − a n
2 +1 =

2
3

(
2

n−4
2 (4m + 3) + m + 1

)
−
((

2
n
2−2 − 2

n
2−3
)
(4m + 3) + m + 1

)
=

(
2

n
2

6
− 1

3

)
m +

2
n
2

8
− 1

3
> 0.

By Ref. [1] (Theorem 1.1 (6)) and Lemma 1, we then see that:

T(b(m,n),n+2r)(K(m, n, r)) = K(m, n, r),

since b(m, n) − 1− βm,n = 2βm,n. Therefore, K(m, n, r) is a b(m, n)-adic (n + 2r)-digit non-regular
Kaprekar constant for any r ≥ 2.

By (a) and (b) above, Part (1) of Theorem 2 is proven.
(2) We assume that:

m = 1, n ≡ 3 (mod 6) and n ≥ 9.

Let the notation be as in Theorem 1 (2). By the definition in loc. cit., the b(1, n)(= n + 1)-adic
n-digit integer obtained by rearranging of the numbers of all digits b0, b1, . . . , bn−1 of L(1, n) in
descending order is:

(n (n− 1) · · · 3 2 1)b(1,n)

given by all integers from 1–n. By Ref. [1] (Theorem 1.1 (8)) and Theorem 1 (2), we then see that:

T(b(1,n),n+2r)(L(1, n, r))

= T(b(1,n),n)

n · · · 2n + 3
3

r︷ ︸︸ ︷
2n
3
· · · 2n

3
2n
3
· · · n + 3

3

r︷ ︸︸ ︷
n
3
· · · n

3
n
3
· · · 1


= L(1, n, r),

since n ≥ 9 and b(1, n)− 1−
(

2n
3
− n

3

)
=

2n
3

. Therefore, L(1, n, r) is a b(1, n)-adic (n + 2r)-digit

non-regular Kaprekar constant for any r ≥ 2, and Part (2) of Theorem 2 is proven.

Remark 3. Although we omit the proof here, we can see that for any integer m ≥ 2 and odd integer n ≥ 3, it is
impossible to construct any b(m, n)-adic (n + 2r)-digit non-regular Kaprekar constant by adding βm,n’s and
(2βm,n)’s to the b(m, n)-adic expression of the b(m, n)-adic n-digit regular Kaprekar constant L(m, n), as well
as in Part (1) of Theorem 2.

2.4. A Proof of Corollary 2

We assume that:
m ≡ 1 (mod 3) and n ≡ 0 (mod 4)

(resp.
m = 1, n ≡ 3 (mod 6) and n ≥ 9).

By Theorem 2, for any integer r ≥ 2, we then have the b(m, n)-adic (n + 2r)-digit non-regular
Kaprekar constant K(m, n, r) (resp. L(1, n, r)). Therefore, we see that:

νnon-reg(b, n + 2r) ≥ 1,



Symmetry 2019, 11, 885 15 of 31

and Corollary 2 is proven.

3. On n-Digit Regular Kaprekar Constants with Specified n

3.1. Some Formulas for All n-Digit Regular Kaprekar Constants with Specified n

Let K(n) and L(n) be the progressions of n-digit regular Kaprekar constants defined in
Definition 3(2) for even and odd positive integers n, respectively. On the other hand, it seems
that it is very hard to obtain formulas for all n-digit regular Kaprekar constants. In this subsection,
we shall obtain partial results on such formulas by case-by-case arguments.

Firstly, we shall see formulas for all n-digit regular Kaprekar constants in the cases where
n = 5, 7, 9, 11 in Theorem 3. Note that, in the case where n = 3, Eldridge and Sagong [5] already
proved that a three-digit integer x is a regular Kaprekar constant if and only if x ∈ L(3), i.e., x is of
the form:

(m(2m + 1)(m + 1))2m+2

with m ≥ 1.
Although one can obtain a similar result for each odd integer n ≥ 13, the authors would not like

to do tedious calculations for solving simultaneous equations obtained by the uniqueness of b-adic
expressions of any positive integer for any integer b ≥ 2.

Theorem 3. (1) A five-digit integer x is a regular Kaprekar constant if and only if x ∈ L(5), i.e., x is of
the form:

((2m + 2)m(3m + 2)(2m + 1)(m + 1))3m+3

with m ≥ 1.
(2) A seven-digit integer x is a regular Kaprekar constant if and only if x ∈ L(7), i.e., x is of the form:

((3m + 3)(2m + 2)m(4m + 3)(3m + 2)(2m + 1)(m + 1))4m+4

with m ≥ 1.
(3) For any integer b ≥ 2, a b-adic nine-digit integer x is a regular Kaprekar constant if and only if x is of

the form:

((b−m− 1)(b− 2m− 2)(b− 3m− 3)m(b− 1)(b−m− 2)(3m + 2)(2m + 1)(m + 1))b,

where the base b is in the range 5m + 4 < b < 6m + 5 with m ≥ 1.
In particular, when b = 5m + 5, x is a member of L(9).
(4) An 11-digit integer x is a regular Kaprekar constant if and only if x ∈ L(11), i.e., x is of the form:

((5m + 5)(4m + 4)(3m + 3)(2m + 2)m(6m + 5)

(5m + 4)(4m + 3)(3m + 2)(2m + 1)(m + 1))6m+6

with m ≥ 1.

Proof. By Theorem 1, it suffices to show that any regular Kaprekar constant in each case is of the form
stated in the assertion. In the following, let b ≥ 2 be any integer.

(1) For any b-adic five-digit regular Kaprekar constant x, we denote by (c4c3c2c1c0)b with:

b− 1 ≥ c4 > c3 > c2 > c1 > c0 ≥ 0
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the rearrangement in descending order of the numbers of all digits of x. By Ref. [1] (Theorem 1.1 (7)),

x = T(b,5)((c4c3c2c1c0)b)

= ((c4 − c0)(c3 − c1 − 1)(b− 1)(b− 1− (c3 − c1))(b− (c4 − c0)))b.

We see the following magnitude relations among the numbers of all digits of x:

b− 1 ≥ c4 − c0 > c3 − c1 − 1,

b− 1 > b− 1− (c3 − c1) > b− (c4 − c0).

Then, we obtain the following:

Lemma 3.

b− 1 = c4, c4 − c0 = c3, b− 1− (c3 − c1) = c2,

b− (c4 − c0) = c1 and c3 − c1 − 1 = c0.

Proof. Since c4 is the maximum number among all digits of x,

b− 1 = c4.

This implies that:

c4 − c0 = b− 1− c0 and b− (c4 − c0) = c0 + 1.

Since c1 is the second smallest number among all digits of x, we then see that:

b− (c4 − c0) = c1.

This implies that:
c3 − c1 − 1 = c0

by the two inequalities above. Moreover, we see that:

b− 1− (c3 − c1) = b− 2− c0

< b− 1− c0 = c4 − c0,

which implies that:
c4 − c0 = c3 and b− 1− (c3 − c1) = c2

as desired.

We then see that the following equality holds:

((c4 − c0)(c3 − c1 − 1)(b− 1)(b− 1− (c3 − c1))(b− (c4 − c0)))b

=(c3c0c4c2c1)b.

This implies that b = 3c0 + 3 and:

c4 = 3c0 + 2, c3 = 2c0 + 2, c2 = 2c0 + 1, c1 = c0 + 1.

Putting m = c0 ≥ 0, we then see that:

x = ((2m + 2)m(3m + 2)(2m + 1)(m + 1))3m+3.
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If m = 0, then we see a contradiction that x = (20211)3 is not regular. Therefore, m ≥ 1, and Part
(1) is proven.

(2) For any b-adic seven-digit regular Kaprekar constant x, we denote by (c6c5c4c3c2c1c0)b with:

b− 1 ≥ c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By the same argument as in
the proof of Part (1), we then see that one of the following two equalities holds:

((c6 − c0)(c5 − c1)(c4 − c2 − 1)(b− 1)(b− 1− (c4 − c2))

(b− 1− (c5 − c1))(b− (c6 − c0)))b

=

{
(c5c2c0c6c4c3c1)b · · · (i)
(c5c3c0c6c4c2c1)b · · · (ii)

The equality (i) implies a contradiction that c2 = − 1
2

.
The equality (ii) implies that b = 4c0 + 4 and:

c6 = 4c0 + 3, c5 = 3c0 + 3, c4 = 3c0 + 2,

c3 = 2c0 + 2, c2 = 2c0 + 1, c1 = c0 + 1.

Putting m = c0 ≥ 0, we then see that:

x = ((3m + 3)(2m + 2)m(4m + 3)(3m + 2)(2m + 1)(m + 1))4m+4.

If m = 0, then we see a contradiction that x = (3203211)4 is not regular. Therefore, m ≥ 1,
and Part (2) is proven.

(3) For any b-adic nine-digit regular Kaprekar constant x, we denote by (c8c7c6c5c4c3c2c1c0)b with:

b− 1 ≥ c8 > c7 > c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By the same argument as in
the proof of Part (1), we then see that one of the following six equalities holds:

((c8 − c0)(c7 − c1)(c6 − c2)(c5 − c3 − 1)(b− 1)(b− 1− (c5 − c3))

(b− 1− (c6 − c2))(b− 1− (c7 − c1))(b− (c8 − c0)))b

=



(c7c5c4c0c8c6c3c2c1)b · · · (i)
(c7c5c3c0c8c6c4c2c1)b · · · (ii)
(c7c5c2c0c8c6c4c3c1)b · · · (iii)
(c7c4c3c0c8c6c5c2c1)b · · · (iv)
(c7c4c2c0c8c6c5c3c1)b · · · (v)
(c7c3c2c0c8c6c5c4c1)b · · · (vi)

The equalities (i) and (v) imply a contradiction that c4 = c3.
The equalities (iii), (iv), and (vi) imply a contradiction that c5 = c4.
The equality (ii) implies that b = c3 + 3c0 + 3 and:

c8 = c3 + 3c0 + 2, c7 = c3 + 2c0 + 2, c6 = c3 + 2c0 + 1,

c5 = c3 + c0 + 1, c4 = 3c0 + 2, c2 = 2c0 + 1, c1 = c0 + 1.
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Putting m = c0 ≥ 0, we then see that x is equal to:

((b−m− 1)(b− 2m− 2)(b− 3m− 3)m(b− 1)(b−m− 2)(3m + 2)(2m + 1)(m + 1))b,

where the base b is in the range 5m + 4 < b < 6m + 5, since:

c4 = 3m + 2 > c3 = b− 3m− 3 > c2 = 2m + 1.

If m = 0, then we see a contradiction that b is in the range 4 < b < 5. Therefore, m ≥ 1, and Part
(3) is proven.

(4) For any b-adic 11-digit regular Kaprekar constant x, we denote by (c10c9c8c7c6c5c4c3c2c1c0)b with:

b− 1 ≥ c10 > c9 > c8 > c7 > c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By the same argument as in
the proof of Part (1), we then see that one of the following twenty equalities holds:

((c10 − c0)(c9 − c1)(c8 − c2)(c7 − c3)(c6 − c4 − 1)(b− 1)(b− 1− (c6 − c4))

(b− 1− (c7 − c3))(b− 1− (c8 − c2))(b− 1− (c9 − c1))(b− (c10 − c0)))b

=



(c9c7c6c5c0c10c8c4c3c2c1)b · · · (i)
(c9c7c6c4c0c10c8c5c3c2c1)b · · · (ii)
(c9c7c6c3c0c10c8c5c4c2c1)b · · · (iii)
(c9c7c6c2c0c10c8c5c4c3c1)b · · · (iv)
(c9c7c5c4c0c10c8c6c3c2c1)b · · · (v)
(c9c7c5c3c0c10c8c6c4c2c1)b · · · (vi)

(c9c7c5c2c0c10c8c6c4c3c1)b · · · (vii)

(c9c7c4c3c0c10c8c6c5c2c1)b · · · (viii)

(c9c7c4c2c0c10c8c6c5c3c1)b · · · (ix)
(c9c7c3c2c0c10c8c6c5c4c1)b · · · (x)
(c9c4c3c2c0c10c8c7c6c5c1)b · · · (xi)

(c9c5c3c2c0c10c8c7c6c4c1)b · · · (xii)

(c9c5c4c2c0c10c8c7c6c3c1)b · · · (xiii)

(c9c5c4c3c0c10c8c7c6c2c1)b · · · (xiv)

(c9c6c3c2c0c10c8c7c5c4c1)b · · · (xv)

(c9c6c4c2c0c10c8c7c5c3c1)b · · · (xvi)

(c9c6c4c3c0c10c8c7c5c2c1)b · · · (xvii)

(c9c6c5c2c0c10c8c7c4c3c1)b · · · (xviii)

(c9c6c5c3c0c10c8c7c4c2c1)b · · · (xix)

(c9c6c5c4c0c10c8c7c3c2c1)b · · · (xx)

The equality (i) implies a contradiction that c5 ≤ c4.
The equalities (ii), (x), (xii), and (xiii) imply a contradiction that c10 = c9.
The equalities (iii), (iv), (vii), (xi), and (xviii) imply a contradiction that c7 < c6.
The equality (v) implies a contradiction that c6 < c5.
The equalities (viii) and (xvi) imply a contradiction that c7 = c6.
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The equality (ix) implies that:

c7 = c2 + 2c0 + 1, c6 = 4c0 + 2, c3 = 2c0 + 1,

which yields a contradiction that c2 > 2c0 + 1 > c2.
The equality (xiv) implies a contradiction that c6 = c5.
The equality (xv) implies a contradiction that c8 = c7.
The equality (xvii) implies that:

c7 = 2c3, c6 = 3c3 − 2c0 − 1, c2 = 2c0 + 1,

which implies a contradiction that c3 > 2c0 + 1 > c3.

The equality (xix) implies a contradiction that c7 = 4c0 +
8
3

.
The equality (xx) implies a contradiction that c8 < c7.
The equality (vi) implies that b = 6c0 + 6 and:

c10 = 6c0 + 5, c9 = 5c0 + 5, c8 = 5c0 + 4, c7 = 4c0 + 4, c6 = 4c0 + 3,

c5 = 3c0 + 3, c4 = 3c0 + 2, c3 = 2c0 + 2, c2 = 2c0 + 1, c1 = c + 1.

Putting m = c0 ≥ 0, we then see that:

x = ((5m + 5)(4m + 4)(3m + 3)(3m + 2)m(6m + 5)

(5m + 4)(4m + 3)(3m + 2)(2m + 1)(m + 1))6m+6.

If m = 0, then we see a contradiction that x = (54320543211)6 is not regular. Therefore, m ≥ 1,
and Part (4) is proven.

Secondly, we see formulas for all n-digit regular Kaprekar constants in the cases where n = 2, 4, 6, 8
in Theorem 4. Although one can obtain a similar result for each even integer n ≥ 10, the authors would
not like to do tedious calculations for solving simultaneous equations obtained by the uniqueness of
b-adic expressions of any positive integer for any integer b ≥ 2.

Note that we shall need more calculations of solving simultaneous equations in the proof for even
cases in Theorem 4 than odd cases in Theorem 3, because, in the case where n ≥ 2 is even, the Kaprekar
transformation T(b,n) may not necessarily give us the maximum number b− 1 among the numbers of
all digits.

Theorem 4. (1) A two-digit integer x is a regular Kaprekar constant if and only if x ∈ K(2) ∪ {(01)2}, i.e,
x is of the form:

(m(2m + 1))3m+2

with m ≥ 0.
(2) A four-digit integer x is a regular Kaprekar constant if and only if x = (3021)4 or x ∈ K(4), i.e., x is

of the form:
((3m + 3)m(4m + 3)(2m + 2))5m+5

with m ≥ 1.
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(3) A six-digit integer x is a regular Kaprekar constant if and only if x is equal to:

(530421)6,

((9m + 6)(5m + 3)(3m + 1)(2m + 7)(10m + 6)(6m + 4))15m+10,

((5m + 4)(3m + 2)m(6m + 4)(4m + 3)(2m + 2))7m+6 or

((7m + 6)(5m + 4)m(8m + 6)(4m + 1)(2m + 2))9m+8 (∈ K(6))

with m ≥ 1.
(4) An eight-digit integer x is a regular Kaprekar constant if and only if x is equal to:

(97508421)10, (75306421)8,

((11m + 7)(7m + 4)(5m + 3)(3m + 1)(14m + 8)

(12m + 7)(10m + 6)(6m + 4))17m+11,

((15m + 9)(9m + 5)(7m + 4)(3m + 1)(18m + 10)

(14m + 8)(12m + 7)(6m + 4))21m+13,

((13m + 10)(11m + 8)(7m + 5)m(14m + 10)

(8m + 6)(4m + 3)(2m + 2))15m+12 or

((15m + 12)(13m + 10)(9m + 7)m(16m + 12)

(8m + 6)(4m + 3)(2m + 2))17m+14 (∈ K(8))

with m ≥ 1.

Proof. (1) For any b-adic two-digit regular Kaprekar constant x, we denote by x = (c1c0)b with
b− 1 ≥ c1 > c0 ≥ 0 the rearrangement in descending order of numbers of all digits of x. By Ref. [1]
(Theorem 1.1 (2)),

x = T(b,2)((c1c0)b) = ((c1 − c0 − 1)(b− (c1 − c0)))b.

We then see that one of the following two equalities holds:

((c1 − c0 − 1)(b− (c1 − c0)))b =

{
(c1c0)b · · · (i)
(c0c1)b · · · (ii)

The equality (i) implies a contradiction that c0 = −1.
The equality (ii) implies that:

c1 =
2b− 1

3
and c0 =

b− 2
3

.

Putting m = c0 ≥ 0, we then see that:

b = 3m + 2 and c1 = 2m + 1

as desired.
(2) For any b-adic four-digit regular Kaprekar constant x, we denote by (c3c2c1c0)b with b− 1 ≥

c3 > c2 > c1 > c0 ≥ 0 the rearrangement in descending order of the numbers of all digits of x.
By Ref. [1] (Theorem 1.1 (6)),

x = T(b,4)((c3c2c1c0)b)

= ((c3 − c0)(c2 − c1 − 1)(b− 1− (c2 − c1)))(b− (c3 − c0)))b.
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Since:
c3 − c0 > c2 − c1 − 1 and b− 1− (c2 − c1) > b− (c3 − c0),

we see that one of the following six equalities holds:

((c3 − c0)(c2 − c1 − 1)(b− 1− (c2 − c1))(b− (c3 − c0)))b

=



(c3c2c1c0)b · · · (i)
(c3c1c2c0)b · · · (ii)
(c3c0c2c1)b · · · (iii)
(c1c0c3c2)b · · · (iv)
(c2c0c3c1)b · · · (v)
(c2c1c3c0)b · · · (vi)

The equalities (i), (ii), and (vi) imply a contradiction that c3 = b.
The equality (iii) implies that x = (3021)4.
The equality (iv) implies a contradiction that c3 < c2.
The equality (v) implies that b = 5c0 + 5 and:

c3 = 4c0 + 3, c2 = 3c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((3m + 3)m(4m + 3)(2m + 2))5m+5.

If m = 0, then we see a contradiction that x = (3032)5 is not regular. Therefore, m ≥ 1, and Part
(2) is proven.

(3) For any b-adic six-digit regular Kaprekar constant x, we denote by (c5c4c3c2c1c0)b with:

b− 1 ≥ c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By Ref. [1] (Theorem 1.1 (6)),

x = T(b,6)((c5c4c3c2c1c0)b)

= ((c5 − c0)(c4 − c1)(c3 − c2 − 1)(b− 1− (c3 − c2))

(b− 1− (c4 − c1))(b− (c5 − c0)))b.

Since c5 − c0 > c4 − c1 > c3 − c2 − 1 and:

b− 1− (c3 − c2) > b− 1− (c4 − c1) > b− (c5 − c0),

we see that c3− c2− 1 = c0 or b− (c5− c0) = c0. The equality b− (c5− c0) = c0 implies a contradiction
that b = c5, and the equality c4 − c1 = c4 implies a contradiction that c1 = 0 > c0. Therefore, we see
that one of the following nine equalities holds:
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((c5 − c0)(c4 − c1)(c3 − c2 − 1)(b− 1− (c3 − c2))

(b− 1− (c4 − c1))(b− (c5 − c0)))b

=



(c5c3c0c4c2c1)b · · · (i)
(c5c2c0c4c3c1)b · · · (ii)
(c5c1c0c4c3c2)b · · · (iii)
(c2c1c0c5c4c3)b · · · (iv)
(c3c1c0c5c4c2)b · · · (v)
(c3c2c0c5c4c1)b · · · (vi)

(c4c1c0c5c3c2)b · · · (vii)

(c4c2c0c5c3c1)b · · · (viii)

(c4c3c0c5c2c1)b · · · (ix)

The equality (i) implies that x = (530421)6.
The equality (ii) and (iii) imply a contradiction that c2 = c1.
The equality (iv) implies that c2 = c0 + 1, which contradicts the condition that c2 > c1 > c0.
The equality (vi) implies a contradiction that c2 = c0.
The equality (vii) implies a contradiction that x = (420432)6 is not regular.
The equality (v) implies that b = 5c0 + 5 and:

c5 = 4c0 + 3, c4 =
10c0 + 8

3
, c3 = 3c0 + 3,

c2 = 2c0 + 2, c1 =
5c0 + 4

3
.

Putting c0 = 3m + 1 with m ≥ 0, we then see that:

x = ((9m + 6)(5m + 3)(3m + 1)(12m + 7)(10m + 6)(6m + 4))15m+10.

If m = 0, then we see a contradiction that x = (631764)10 is not regular. Therefore, m ≥ 1.
The equality (viii) implies that b = 7c0 + 6 and:

c5 = 6c0 + 4, c4 = 5c0 + 4, c3 = 4c0 + 3,

c2 = 3c0 + 2, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((5m + 4)(3m + 2)m(6m + 4)(4m + 3)(2m + 2))7m+6.

If m = 0, then we see a contradiction that x = (420432)6 is not regular. Therefore, m ≥ 1.
The equality (ix) implies that b = 9c0 + 8 and:

c5 = 8c0 + 6, c4 = 7c0 + 6, c3 = 5c0 + 4,

c2 = 4c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((7m + 6)(5m + 4)m(8m + 6)(4m + 3)(2m + 2))9m+8.
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If m = 0, then we see a contradiction that x = (640632)8 is not regular. Therefore, m ≥ 1, and Part
(3) is proven.

(4) For any b-adic eight-digit regular Kaprekar constant x, we denote by (c7c6c5c4c3c2c1c0)b with:

b− 1 ≥ c7 > c6 > c5 > c4 > c3 > c2 > c1 > c0 ≥ 0

the rearrangement in descending order of the numbers of all digits of x. By Ref. [1] (Theorem 1.1 (6)),

x = T(b,8)((c7c6c5c4c3c2c1c0)b)

= ((c7 − c0)(c6 − c1)(c5 − c2)(c4 − c3 − 1)(b− 1− (c4 − c3))

(b− 1− (c5 − c2))(b− 1− (c6 − c1))(b− (c7 − c0)))b.

Since c7 − c0 > c6 − c1 > c5 − c2 > c4 − c3 − 1 and:

b− 1− (c4 − c3) > b− 1− (c5 − c2) > b− 1− (c6 − c1) > b− (c7 − c0),
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we see that c4− c3− 1 = c0 or b− (c7− c0) = c0. The equality b− (c7− c0) = c0 implies a contradiction
that b = c7, and the equality c6 − c1 = c6 implies a contradiction that c1 = 0 > c0. Therefore, we see
that one of the following thirty equalities holds:

((c7 − c0)(c6 − c1)(c5 − c2)(c4 − c3 − 1)(b− 1− (c4 − c3))

(b− 1− (c5 − c2))(b− 1− (c6 − c1))(b− (c7 − c0)))b

=



(c7c5c4c0c6c3c2c1)b · · · (i)
(c7c5c3c0c6c4c2c1)b · · · (ii)
(c7c5c2c0c6c4c3c1)b · · · (iii)
(c7c5c1c0c6c4c3c2)b · · · (iv)
(c7c4c3c0c6c5c2c1)b · · · (v)
(c7c4c2c0c6c5c3c1)b · · · (vi)

(c7c4c1c0c6c5c3c2)b · · · (vii)

(c7c3c2c0c6c5c4c1)b · · · (viii)

(c7c3c1c0c6c5c4c2)b · · · (ix)
(c7c2c1c0c6c5c4c3)b · · · (x)
(c3c2c1c0c7c6c5c4)b · · · (xi)

(c4c2c1c0c7c6c5c3)b · · · (xii)

(c4c3c1c0c7c6c5c2)b · · · (xiii)

(c4c3c2c0c7c6c5c1)b · · · (xiv)

(c5c2c1c0c7c6c4c3)b · · · (xv)

(c5c3c1c0c7c6c4c2)b · · · (xvi)

(c5c3c2c0c7c6c4c1)b · · · (xvii)

(c5c4c1c0c7c6c3c2)b · · · (xviii)

(c5c4c2c0c7c6c3c1)b · · · (xix)

(c5c4c3c0c7c6c2c1)b · · · (xx)

(c6c2c1c0c7c5c4c3)b · · · (xxi)

(c6c3c1c0c7c5c4c2)b · · · (xxii)

(c6c3c2c0c7c5c4c1)b · · · (xxiii)

(c6c4c1c0c7c5c3c2)b · · · (xxiv)

(c6c4c2c0c7c5c3c1)b · · · (xxv)

(c6c4c3c0c7c5c2c1)b · · · (xxvi)

(c6c5c1c0c7c4c3c2)b · · · (xxvii)

(c6c5c2c0c7c4c3c1)b · · · (xxviii)

(c6c5c3c0c7c4c2c1)b · · · (xxix)

(c6c5c4c0c7c3c2c1)b · · · (xxx)

The equality (i) implies that x = (97508421)10.
The equality (ii) implies that x = (75306421)8.
The equality (iii) implies a contradiction that c6 = c4.
The equality (iv) implies a contradiction that c5 = c3.
The equalities (v), (x), (xv), and (xxi) imply a contradiction that c6 = c5.

The equality (vi) implies a contradiction that c2 =
5
3

.
The equality (vii) implies a contradiction that c7 < c6.
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The equalities (viii) and (ix) imply a contradiction that c3 = c1.
The equalities (xi), (xii), (xiii), and (xiv) imply a contradiction that c2 = c1.
The equality (xvii) implies a contradiction that c1 = c0 = −2.

The equality (xviii) implies a contradiction that b = 5c0 +
14
3

.

The equality (xix) implies a contradiction that b = 2c2 −
2
3

.
The equality (xx) implies a contradiction that c7 = c5.
The equality (xxii) implies a contradiction that 4 > c1 > 3.

The equality (xxiv) implies a contradiction that b = 2c1 +
7
3

.

The equality (xxv) implies a contradiction that c5 = 6c1 +
14
3

.
The equality (xxvi) implies a contradiction that c4 = c1.
The equality (xxvii) implies a contradiction that c0 = −1.
The equality (xxviii) implies a contradiction that c7 = c4.

The equality (xvi) implies that b =
17c0 + 16

3
and:

c7 =
14c0 + 10

3
, c6 = 4c0 + 3, c5 =

11c0 + 10
3

, c4 =
10c0 + 8

3
,

c3 =
7c0 + 5

3
, c2 = 2c0 + 2, c1 =

5c0 + 4
3

.

Putting c0 = 3m + 1 with m ≥ 0, we then see that:

x = ((11m + 7)(7m + 4)(5m + 3)(3m + 1)

(4m + 8)(12m + 7)(10m + 6)(6m + 4))17m+11.

If m = 0, then we see a contradiction that x = (74318764)11 is not regular. Therefore, m ≥ 1.
The equality (xxiii) implies that b = 7c0 + 6 and:

c7 = 6c0 + 4, c6 = 5c0 + 4, c5 =
14c0 + 10

3
, c4 = 4c0 + 3,

c3 = 3c0 + 2, c2 =
7c0 + 5

3
, c1 = 2c0 + 2.

Putting c0 = 3m + 1 with m ≥ 0, we then see that:

x = ((15m + 9)(9m + 5)(7m + 4)(3m + 1)

(18m + 10)(14m + 8)(12m + 7)(6m + 4))21m+13.

If m = 0, then we see a contradiction that x = (9541(10)874)13 is not regular. Therefore, m ≥ 1.
The equality (xxix) implies that b = 15c0 + 12 and:

c7 = 14c0 + 10, c6 = 13c0 + 10, c5 = 11c0 + 8, c4 = 8c0 + 6,

c3 = 7c0 + 5, c2 = 4c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((13m + 10)(11m + 8)(7m + 5)m

(14m + 10)(8m + 6)(4m + 3)(2m + 2))15m+12.

If m = 0, then we see a contradiction that x = ((10)850(10)632)12 is not regular. Therefore, m ≥ 1.
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The equality (xxx) implies that b = 17c0 + 14 and:

c7 = 16c0 + 12, c6 = 15c0 + 12, c5 = 13c0 + 10, c4 = 9c0 + 7,

c3 = 8c0 + 6, c2 = 4c0 + 3, c1 = 2c0 + 2.

Putting m = c0 ≥ 0, we then see that:

x = ((15m + 12)(13m + 10)(9m + 7)m

(16m + 12)(8m + 6)(4m + 3)(2m + 2))17m+14.

If m = 0, then we see a contradiction that x = ((12)(10)70(12)632)14 is not regular. Therefore,
m ≥ 1, and Part (4) is proven.

We shall also obtain some conditional results on formulas for n-digit regular Kaprekar constants
in the following proposition for which we omit the proof because one can prove them by the same
arguments as in the proof of Theorem 3:

Proposition 1. Let the notation be as in Theorem 3. For any integer b ≥ 2, we see the following:
(1) A b-adic 13-digit integer x = (a12 · · · a0)b with 0 ≤ a0, . . . , a12 ≤ b− 1 satisfying the condition:

a11 > a4 > a10 > a3 > a9 > a2 > a8 > a1

is a regular Kaprekar constant if and only if x ∈ L(13) with b ∈ b(13), i.e., x is of the form:

((6m + 6)(5m + 5)(4m + 4)(3m + 3)(2m + 2)m

(7m + 6)(6m + 5)(5m + 4)(4m + 3)(3m + 2)(2m + 1)(m + 1))7m+7

with m ≥ 1.
(2) A b-adic 15-digit integer x = (a14 · · · a0)b with 0 ≤ a0, . . . , a14 ≤ b− 1 satisfying the condition:

a13 > a5 > a12 > a4 > a11 > a3 > a10 > a2 > a9 > a1

is a regular Kaprekar constant if and only if x is of the form:

((b−m1 − 1)(b− 2m1 − 2)(b− 3m1 − 3)(b− 2m1 −m2 − 2)

(b− 3m1 −m2 − 3)m2m1(b− 1)(b−m1 − 2)(b−m2 − 1)

(3m1 + m2 + 2)(2m1 + m2 + 1)(3m1 + 2)(2m1 + 1)(m1 + 1))b,

where m1 ≥ 1, m2 is in the range:
2m1 + 1 < m2 < 3m1 + 2

and b is in the range:
6m1 + m2 + 5 < b < 5m1 + 2m2 + 4.

(3) A b-adic 17-digit integer x = (a16 · · · a0)b with 0 ≤ a0, . . . , a16 ≤ b− 1 satisfying the condition:

a15 > a6 > a14 > a5 > a13 > a4 > a12 > a3 > a11 > a2 > a10 > a1
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is a regular Kaprekar constant if and only if x is of the form:

((b−m− 1)(b− 2m− 2)(b− 3m− 3)(
3b− 7m− 7

4

)(
3b− 11m− 11

4

)(
b− 3m− 2

2

)(
b−m− 1

4

)
m(b− 1)(b−m− 2)(

3b + m− 3
4

)(
b + 3m + 1

2

)(
b + 11m + 7

4

)(
b + 7m + 3

4

)
(3m + 2)(2m + 1)(m + 1))b,

where b satisfies the conditions:

9m + 7 < b < 11m + 9 and b ≡ m + 1 (mod 4)

with m ≥ 1.

3.2. Some Observations on νreg(b, n) with Specified n

As a corollary to Theorems 3 and 4, we can make some observations on the numbers νreg(b, n) of
all b-adic n-digit regular Kaprekar constants for n = 2, 4, 5, 6, 7, 8, 9, 11 as in the following:

Corollary 3. Let b ≥ 2 be any integer. Then, we see the following:

(1) νreg(b, 2) =

{
1 if 3 | (b + 1),

0 otherwise.

(2) νreg(b, 4) =

{
1 if b = 4 or, b ≥ 10 and 5 | b,

0 otherwise.

(3) νreg(b, 5) =

{
1 if b ≥ 6 and 3 | b,

0 otherwise.

(4) νreg(b, 6) =


2 if b ∈ (A1 ∩ A2) ∪ (A2 ∩ A3),

1 otherwise,

0 if b 6= 6 and b 6∈ A1 ∪ A2 ∪ A3,

where the sets A1, A2, and A3 are defined as:

A1 = {b ∈ Z | b ≥ 25 and b ≡ 10 (mod 15)},
A2 = {b ∈ Z | b ≥ 13 and b ≡ 6 (mod 7)},
A3 = {b ∈ Z | b ≥ 17 and b ≡ 8 (mod 9)}.

(5) νreg(b, 7) =

{
1 if b ≥ 8 and 4 | b,

0 otherwise.

(6) νreg(b, 8) =


2 if b ∈ (B1 ∩ B2) ∪ (B1 ∩ B3) ∪ (B2 ∩ B3) ∪ (B3 ∩ B4),

1 otherwise,

0 if b 6= 8, 10 and b 6∈ B1 ∪ B2 ∪ B3 ∪ B4.
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where the sets B1, B2, B3, and B4 are defined as:

B1 = {b ∈ Z | b ≥ 28 and b ≡ 11 (mod 17)},
B2 = {b ∈ Z | b ≥ 34 and b ≡ 13 (mod 21)},
B3 = {b ∈ Z | b ≥ 27 and b ≡ 12 (mod 15)},
B4 = {b ∈ Z | b ≥ 31 and b ≡ 14 (mod 17)}.

(7) νreg(b, 9) =



[
b

30

]
+ 1 if b ≡ 10, 15, 16, 20, 21, 22, 25, 26, 27, 28 (mod 30),

[
b

30

]
otherwise.

(8) νreg(b, 11) =

{
1 if b ≥ 12 and 6 | b,

0 otherwise.

Remark 4. (1) The intersections of the sets A1, A2, and A3 in Corollary 3 (4) are the following:

A1 ∩ A2 = {b ∈ Z | b ≥ 55 and b ≡ 55 (mod 105)},
A2 ∩ A3 = {b ∈ Z | b ≥ 62 and b ≡ 62 (mod 63)},
A1 ∩ A3 = ∅.

(2) The intersections of the sets B1, B2, B3, and B4 in Corollary 3 (6) are the following:

B1 ∩ B2 = {b ∈ Z | b ≥ 181 and b ≡ 181 (mod 357)},
B1 ∩ B3 = {b ∈ Z | b ≥ 147 and b ≡ 147 (mod 255)},
B2 ∩ B4 = {b ∈ Z | b ≥ 286 and b ≡ 286 (mod 357)},
B3 ∩ B4 = {b ∈ Z | b ≥ 255 and b ≡ 255 (mod 255)},
B1 ∩ B4 = B2 ∩ B3 = ∅.

Remark 5. We can see that Corollary 3(1)–(5) matches the values of νr in the list in Example 2.

Proof. We see immediately that Parts (1)–(6) and (8) are implied by the respective formulas obtained
in Theorem 3(1), (2), (4) and Theorem 4 for the respective digits n, since these formulas give distinct
n-digit regular Kaprekar constants for distinct positive integers m, and we see that:

A1 ∩ A3 = B1 ∩ B4 = B2 ∩ B3 = ∅

as mentioned in Remark 4.
Now, we prove Part (7) for the case where n = 9. Since the formula obtained in Theorem 3(3)

gives distinct b-adic nine-digit regular Kaprekar constants for distinct pairs (b, m) of suitable integers
b and m, we see that:

νreg(b, 9) = ]

{
m ∈ Z

∣∣∣∣ m ≥ 1,
b− 5

6
< m <

b− 4
5

}
,

where the symbol ] stands for the number of all elements in the set.
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For any integer b′ ≥ 0, we then see that:

νreg(b, 9) =



b′ if 30b′ + 2 ≤ b ≤ 30b′ + 9,

b′ + 1 if b = 30b′ + 10,

b′ if 30b′ + 11 ≤ b ≤ 30b′ + 14,

b′ + 1 if 30b′ + 15 ≤ b ≤ 30b′ + 16,

b′ if 30b′ + 17 ≤ b ≤ 30b′ + 19,

b′ + 1 if 30b′ + 20 ≤ b ≤ 30b′ + 22,

b′ if 30b′ + 23 ≤ b ≤ 30b′ + 24,

b′ + 1 if 30b′ + 25 ≤ b ≤ 30b′ + 28,

b′ if b = 30b′ + 29,

b′ + 1 if 30b′ + 30 ≤ b ≤ 30b′ + 31.

Therefore, Part (7) is proven.

Moreover, as a corollary to Proposition 1, we can obtain lower bounds for νreg(b, n) with
n = 13, 15, 17 as in the following:

Corollary 4. Let b ≥ 2 be any integer. Then, we have the following estimations:

(1) νreg(b, 13) ≥ 1 if b ≥ 14 and 7 | b.

(2) νreg(b, 15) ≥ ∑
b−7

9 ≤m≤ b−8
8

(b− 8m− 7) + ∑
b−5
11 ≤m≤ b−8

9

(
m−

[
b− 9m

2

]
+ 3
)

, where the symbol m in

the sums stands for positive integers.

(3) νreg(b, 17) ≥ ]

{
k ∈ Z

∣∣∣∣k ≥ 2, b ≡ k (mod 4), 0 ≤ b− 9k
4
≤
[

k
2

]
− 1
}

.

Proof. (1) We see immediately that Part (1) is implied by the conditional formula obtained in
Proposition 1(1), since the formula gives distinct (7m + 7)-adic 13-digit regular Kaprekar constants for
distinct positive integers m.

(2) Since the conditional formula obtained in Proposition 1(2) gives distinct b-adic 15-digit regular
Kaprekar constants for distinct triples (b, m1, m2) of suitable integers b, m1, and m2, we see that:

νreg(b, 15) ≥ ]{(m1, m2) ∈ Z×Z | m1 ≥ 1, 2m1 + 1 < m2 < 3m1 + 2,

6m1 + m2 + 5 < b < 5m1 + 2m2 + 4}.

For any integer m1 ≥ 1, the list of m2 and b satisfying the conditions:

2m1 + 1 < m2 < 3m1 + 2, 6m1 + m2 + 5 < b < 5m1 + 2m2 + 4

is the following:
m2 b

2m1 + 2 8m1 + 8, . . . , 9m1 + 7
2m1 + 3 8m1 + 9, . . . , 9m1 + 8, 9m1 + 9

...
...

. . .
...

...
. . .

3m1 + 1 9m1 + 7, . . . , 10m1 + 6, 10m1 + 7, . . . , 11m1 + 5
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Since the number of b’s appearing in the list above is equal to:
(b + 1)− (8m1 + 8) if 8m1 + 8 ≤ b ≤ 9m1 + 7,

(m1 − 1)−
[

b− (9m1 + 8)
2

]
if 9m1 + 8 ≤ b ≤ 11m1 + 5,

the right-hand side in the inequality above is equal to:

∑
b−7

9 ≤m≤ b−8
8

(b− 8m− 7) + ∑
b−5
11 ≤m≤ b−8

9

(
m−

[
b− 9m

2

]
+ 3
)

,

where the symbol m in the sums stands for positive integers. Therefore, Part (2) is proven.
(3) Since the conditional formula obtained in Proposition 1(3) gives distinct b-adic 17-digit regular

Kaprekar constants for distinct pairs (b, m) of suitable integers b and m, we see that:

νreg(b, 17) ≥ ]{m ∈ Z | m ≥ 1, 9m + 7 < b < 11m + 9, b ≡ m + 1 (mod 4)}.

For any integer m ≥ 1, the first term and the final term in the range 9m + 7 < b < 11m + 9 of the
arithmetic progression with the common difference of four, which are congruent to m + 1 modulo four,

are 9m + 9 and (9m + 9) + 4
([

m + 1
2

]
− 1
)

, respectively. Putting k = m + 1, we then see that:

]{m ∈ Z | m ≥ 1, 9m + 7 < b < 11m + 9, b ≡ m + 1 (mod 4)}

= ]

{
k ∈ Z

∣∣∣∣ k ≥ 2, b ≡ k (mod 4), 0 ≤ b− 9k
4
≤
[

k
2

]
− 1
}

,

and Part (3) is proven.
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Errata of [1]: Since the reference [1] is very important to readers of this article, we would like to
describe the errata of [1] here:

p. 263, `. 32, N(b, 2) and `(b, 2)→ N(b, 5) and `(b, 5)
p. 266, `.7, 14, 16, 18, 19, 20, 21, 23, 24: (c0)2 → (c0)b
p. 266, `.16: ((c− 1)(b− c))2 → ((c− 1)(b− c))b
p. 266, `.14, 19: ((δ1(c)− 1)(b− δ1(c)))2 → ((δ1(c)− 1)(b− δ1(c)))b
p. 266, `.21: (c− 1)(b− c))2 → ((c− 1)(b− c))b
p. 266, `.24: ((δv2(b+1)−v2+1(c)− 1)(b− δv2(b+1)−v2+1(c)))2

→ ((δv2(b+1)−v2(c)+1(c)− 1)(b− δv2(b+1)−v2(c)+1(c)))b
p. 267, `.2, 3: (c0)2 → (c0)b
p. 269, `.11: n ≥ 7 and→ n ≥ 7; n is odd and
p. 269, `.12: c n

2−2 → c n−1
2 −2

p.280, `.16: Delete the sentence “A.L. Ludington, A bound on Kaprekar
constants, J. Reine Angew. Math. 310 (1979) 196–203.”
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