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Abstract: We present an efficient linear second-order method for a Swift–Hohenberg (SH) type of
a partial differential equation having quadratic-cubic nonlinearity on surfaces to simulate pattern
formation on surfaces numerically. The equation is symmetric under a change of sign of the density
field if there is no quadratic nonlinearity. We introduce a narrow band neighborhood of a surface
and extend the equation on the surface to the narrow band domain. By applying a pseudo-Neumann
boundary condition through the closest point, the Laplace–Beltrami operator can be replaced by
the standard Laplacian operator. The equation on the narrow band domain is split into one linear
and two nonlinear subequations, where the nonlinear subequations are independent of spatial
derivatives and thus are ordinary differential equations and have closed-form solutions. Therefore,
we only solve the linear subequation on the narrow band domain using the Crank–Nicolson method.
Numerical experiments on various surfaces are given verifying the accuracy and efficiency of the
proposed method.

Keywords: Swift–Hohenberg type of equation; surfaces; narrow band domain; closest point method;
operator splitting method

1. Introduction

A Swift–Hohenberg (SH) type of partial differential equation [1] has been used to study pattern
formation [2–5]:

∂φ

∂t
= −

(
φ3 − gφ2 +

(
−ε + (1 + ∆)2

)
φ
)

,

where φ is the density field and g ≥ 0 and ε > 0 are constants. In general, the equation does not have
an analytical solution, thus various computational algorithms [6–13] have been proposed to obtain a
numerical solution. However, most of them were solved on flat surfaces except [12,13].

In this paper, we present an efficient linear second-order method for the SH type of equation on
surfaces, which is based on the closest point method [14,15]. We introduce a narrow band domain of
a surface and apply a pseudo-Neumann boundary condition on the boundary of the narrow band
domain through the closest point [16]. This results in a constant value of φ in the direction normal to
the surface, thus the Laplace–Beltrami operator can be replaced by the standard Laplacian operator.
In addition, we split the equation into one linear and two nonlinear subequations [17,18], where
the nonlinear subequations are independent of spatial derivatives and thus are ordinary differential
equations and have closed-form solutions. Therefore, we only solve the linear subequation on the
narrow band domain using the Crank–Nicolson method. As a result, our method is easy to implement
and linear.
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This paper is organized as follows. In Section 2, we describe the SH type of equation on a narrow
band domain. In Section 3, we propose an efficient linear second-order method for the equation on
the narrow band domain. Numerical examples on various surfaces are given in Section 4. Finally,
we conclude in Section 5.

2. Swift–Hohenberg Type of Equation on a Narrow Band Domain

The SH type of equation on a surface S is given by

∂φ(x, t)
∂t

= −
(

φ3(x, t)− gφ2(x, t) +
(
−ε + (1 + ∆S )2

)
φ(x, t)

)
, x ∈ S , 0 < t ≤ T, (1)

where ∆S is the Laplace–Beltrami operator [19,20]. Next, let Ωδ = {y| x ∈ S , y = x +

ηn(x) for |η| < δ} be a δ-neighborhood of S , where n(x) is a unit normal vector at x. Then, we extend
the Equation (1) to the narrow band domain Ωδ:

∂φ(x, t)
∂t

= −
(

φ3(x, t)− gφ2(x, t) +
(
−ε + (1 + ∆S )2

)
φ(x, t)

)
, x ∈ Ωδ, 0 < t ≤ T (2)

with the pseudo-Neumann boundary condition on ∂Ωδ:

φ(x, t) = φ(cp(x), t), (3)

where cp(x) is a point on S , which is closest to x ∈ ∂Ωδ [14]. For a sufficiently small δ, φ is constant in
the direction normal to the surface. Thus, the Laplace–Beltrami operator in Ωδ can be replaced by the
standard Laplacian operator [14], i.e.,

∂φ(x, t)
∂t

= −
(

φ3(x, t)− gφ2(x, t) +
(
−ε + (1 + ∆)2

)
φ(x, t)

)
, x ∈ Ωδ, 0 < t ≤ T. (4)

3. Numerical Method

In this section, we propose an efficient linear second-order method for solving Equation (4)
with the boundary condition (3). We discretize Equation (4) in Ω = [−Lx/2, Lx/2]× [−Ly/2, Ly/2]×
[−Lz/2, Lz/2] that includes Ωδ. Let h = Lx/Nx = Ly/Ny = Lz/Nz be the uniform grid size, where Nx,
Ny, and Nz are positive integers. Let Ωh = {xijk = (xi, yj, zk)| xi = −Lx/2 + ih, yj = −Ly/2 +

jh, zk = −Lz/2 + kh for 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz} be a discrete domain. Let φn
ijk be an

approximation of φ(xijk, n∆t), where ∆t is the time step. Let Ωh
δ = {xijk| |ψijk| < δ} be a discrete narrow

band domain, where ψ is a signed distance function for the surface S , and ∂Ωh
δ = {xijk| Iijk|∇h Iijk| 6=

0} are discrete domain boundary points, where ∇h Iijk = (Ii+1,j,k − Ii−1,j,k, Ii,j+1,k − Ii,j−1,k, Ii,j,k+1 −
Ii,j,k−1)/(2h). Here, Iijk = 0 if xijk ∈ Ωh

δ , and Iijk = 1, otherwise.
We here split Equation (4) into the following subequations:

∂φ

∂t
= −(φ3 − εφ), (5)

∂φ

∂t
= gφ2, (6)

∂φ

∂t
= −(1 + ∆)2φ. (7)

Equations (5) and (6) are solved analytically and the solutions φn+1
ijk are given as follows:

φn+1
ijk =

φn
ijk√

(φn
ijk)

2/ε + (1− (φn
ijk)

2/ε)e−2ε∆t
and φn+1

ijk =
φn

ijk

1− g∆tφn
ijk

,
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respectively. In addition, Equation (7) is solved using the Crank–Nicolson method:

φn+1
ijk − φn

ijk

∆t
= − (1 + ∆h)

2

2
(φn+1

ijk + φn
ijk) (8)

with the boundary condition on ∂Ωh
δ :

φn
ijk = φn(cp(xijk)).

Here, ∆hφijk = (φi+1,j,k + φi−1,j,k + φi,j+1,k + φi,j−1,k + φi,j,k+1 + φi,j,k−1− 6φijk)/h2. The numerical
closest point cp(xijk) for a point xijk ∈ ∂Ωh

δ is defined as

cp(xijk) = xijk − |ψijk|
∇h|ψijk|
|∇h|ψijk||

.

In general, cp(xijk) is not a grid point in Ωh
δ , i.e., cp(xijk) 6∈ Ωh

δ , and thus we use trilinear
interpolation and take δ >

√
3h to obtain φ(cp(xijk)). The resulting implicit linear discrete system of

Equation (8) is solved efficiently using the Jacobi iterative method. We iterate the Jacobi iteration
until a discrete L2-norm of the consecutive error on Ωh

δ is less than a tolerance tol. Here, the discrete

L2-norm on Ωh
δ is defined as ‖φ‖L2(Ωh

δ )
=
√

∑xijk∈Ωh
δ

φ2
ijk/#Ωh

δ , where #Ωh
δ is the cardinality of Ωh

δ .

Then, the second-order solution of Equation (4) is evolved by five stages [21]

φ
(1)
ijk =

φn
ijk√

(φn
ijk)

2/ε + (1− (φn
ijk)

2/ε)e−ε∆t
,

φ
(2)
ijk =

φ
(1)
ijk

1− (g∆t/2)φ(1)
ijk

,

φ
(3)
ijk − φ

(2)
ijk

∆t
= − (1 + ∆h)

2

2
(φ

(3)
ijk + φ

(2)
ijk ),

φ
(4)
ijk =

φ
(3)
ijk

1− (g∆t/2)φ(3)
ijk

,

φn+1
ijk =

φ
(4)
ijk√

(φ
(4)
ijk )

2/ε + (1− (φ
(4)
ijk )

2/ε)e−ε∆t
.

4. Numerical Experiments

4.1. Convergence Test

In order to verify the rate of convergence of the proposed method, we consider the evolution of φ

on a unit sphere. An initial piece of data is

φ(x, y, z, 0) = 0.15 + 0.1 cos(2πx) cos(2πy) cos(2πz)

and a signed distance function for the unit sphere is

ψ(x, y, z) =
√

x2 + y2 + z2 − 1
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on Ω = [−1.5, 1.5]3. We fix the grid size to h = 0.125 and vary ∆t = T/2, T/22, T/23, T/24 for
T = 0.00025 with ε = 0.25, δ = 2.2

√
3h, and tol = ∆t. Table 1 shows the L2-errors of φ(x, y, z, T) and

convergence rates with g = 0. Here, the errors are computed by comparison with a reference numerical
solution using ∆t = T/26. It is observed that the method is second-order accurate in time. Note that
we obtain the same result for g = 1.

Table 1. L2-errors and convergence rates for g = 0.

∆t T/2 T/22 T/23 T/24

L2-error 5.445× 10−3 1.341× 10−3 2.862× 10−4 5.519× 10−5

Rate 2.02 2.22 2.37

4.2. Pattern Formation on a Sphere

Unless otherwise stated, we take an initial piece of data as

φ(x, y, z, 0) = 0.15 + rand(x, y, z),

where rand(x, y, z) is a uniformly distributed random number between −0.1 and 0.1 at the grid points,
and use ε = 0.25, h = 1, ∆t = 0.1, δ = 1.1

√
3h, and tol = 10−4.

For g = 0 and 1, Figures 1 and 2 show the evolution of φ(x, y, z, t) on a sphere with ψ(x, y, z) =√
x2 + y2 + z2 − 32 on Ω = [−36, 36]3, respectively. Depending on the value of g, we have different

patterns, such as striped (Figure 1) and hexagonal (Figure 2) [11]. Figure 3 shows the energy decay
with g = 0 and 1, where the energy E(φ) is defined by

E(φ) =
∫

Ωδ

(
1
4

φ4 − g
3

φ3 +
1
2

φ
(
−ε + (1 + ∆)2

)
φ

)
dx.

(a) t = 12 (b) t = 20 (c) t = 100

Figure 1. Evolution of φ(x, y, z, t) with g = 0. The yellow and blue regions indicate φ = 0.7540 and
−0.7783, respectively.

(a) t = 12 (b) t = 16 (c) t = 100

Figure 2. Evolution of φ(x, y, z, t) with g = 1. The yellow and blue regions indicate φ = 1.4320 and
−0.7152, respectively.
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Figure 3. Evolution of E(φ)/E(φ0) on the sphere with g = 0 and 1.

4.3. Pattern Formation on a Sphere Perturbed by a Spherical Harmonic

In this section, we perform the evolution of φ on a sphere of center (0, 0, 0) and radius 32 perturbed
by a spherical harmonic 10 Y7

10(θ, ϕ). Here, θ and ϕ are the polar and azimuthal angles, respectively,
and the computational domain is Ω = [−40, 40]3. Figures 4 and 5 show the evolution of φ(x, y, z, t)
with g = 0 and 1, respectively. From the results in Figures 4 and 5, we can see that our method can
solve the SH type of equation on not only simple but also complex surfaces. Figure 6 shows the energy
decay with g = 0 and 1.

(a) t = 12 (b) t = 20 (c) t = 100

Figure 4. Evolution of φ(x, y, z, t) with g = 0. The yellow and blue regions indicate φ = 0.8717 and
−0.8372, respectively.

(a) t = 12 (b) t = 16 (c) t = 100

Figure 5. Evolution of φ(x, y, z, t) with g = 1. The yellow and blue regions indicate φ = 1.4833 and
−0.7135, respectively.
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Figure 6. Evolution of E(φ)/E(φ0) on the perturbed sphere with g = 0 and 1.

4.4. Pattern Formation on a Spindle

Finally, we simulate the evolution of φ on a spindle that has narrow and sharp tips. The spindle is
defined parametrically as

x = 16 cos θ sin ϕ, y = 16 sin θ sin ϕ, z = 32
(

2ϕ

π
− 1
)

,

where θ ∈ [0, 2π) and ϕ ∈ [0, π), and the computational domain is Ω = [−20, 20] × [−20, 20] ×
[−36, 36]. Figures 7 and 8 show the evolution of φ(x, y, z, t) with g = 0 and 1, respectively. The results
in Figures 7 and 8 suggest that pattern formation on a surface having narrow and sharp tips can be
simulated by using our method. Figure 9 shows the energy decay with g = 0 and 1.

(a) t = 12 (b) t = 20 (c) t = 100

Figure 7. Evolution of φ(x, y, z, t) with g = 0. The yellow and blue regions indicate φ = 0.7059 and
−0.7593, respectively.

(a) t = 12 (b) t = 16 (c) t = 100

Figure 8. Evolution of φ(x, y, z, t) with g = 1. The yellow and blue regions indicate φ = 1.3842 and
−0.6224, respectively.
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Figure 9. Evolution of E(φ)/E(φ0) on the spindle with g = 0 and 1.

5. Conclusions

We simulated pattern formation on surfaces numerically by solving the SH type of equation on
surfaces by using the efficient linear second-order method. The method was based on the closest point
and operator splitting methods and thus was easy to implement and linear. We confirmed that the
proposed method gives the desired order of accuracy in time and observed that pattern formation on
surfaces is affected by the value of g.
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