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Abstract: Statistical analysis of the results of minisodar measurements of vertical profiles of wind
velocity components in a 5–200 m layer of the atmosphere shows that this problem belongs to the
class of robust nonparametric problems of mathematical statistics. In this work, a new consecutive
nonparametric method of adaptive pendular truncation is suggested for outlier detection and
selection in sodar data. The method is implemented in a censoring algorithm. The efficiency of the
suggested algorithm is tested in numerical experiments. The algorithm has been used to calculate
statistical characteristics of wind velocity components, including vertical profiles of the first four
moments, the correlation coefficient, and the autocorrelation and structure functions of wind velocity
components. The results obtained are compared with classical sample estimates.

Keywords: robust nonparametric pendular truncation method; outlier detection and selection;
acoustic sounding; statistical characteristics of vertical profiles of wind velocity components

1. Introduction

Sodars or acoustic radars are widely used all over the world to investigate the atmospheric
boundary layer (ABL) [1–5]. The principle of their operation is based on sound scattering by small-scale
atmospheric turbulent inhomogeneities. Possessing high spatiotemporal resolution and being capable
of obtaining data in real time around the clock, they are unique instruments for ABL monitoring.
Three-component Doppler monostatic sodars, based on effects of sound backscattering and Doppler
frequency shift of the transmitted signal due to scatterer motion, identify the thermal structure of the
atmosphere, and measure vertical profiles of wind velocity components. Depending on the working
frequency, sodars are subdivided into conventional ones with working frequencies in the range
1–2 kHz, 50–1000 m sounding altitudes, and 20–30 m vertical resolution, and minisodars with working
frequencies in the range 3–6 kHz, 5–200 m sounding altitudes, and 5–20 m vertical resolution. In recent
decades, a trend toward the development and application of high-frequency compact minisodars
equipped with phased antenna arrays has been observed.

Sodars allow one to obtain long time series of continuous observations of atmospheric parameters
with high spatial resolution to several meters and high temporal resolution (statistically reliable profiles
of the wind velocity and turbulence characteristics are obtained with averaging, as a rule, from 10 to
30 min) and to analyze their spatiotemporal dynamics.

However, processing of sodar wind velocity measurements in the ABL reveals some problems
associated with the determination of the Doppler frequencies of echo signals, and hence, the wind
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velocity components [3,4] are caused by signal fluctuations and taking measurements in the presence
of background noise and reflections from local objects [3,4]. The large volume of measurements,
the presence of various outliers in the measured Doppler frequencies, and difficulties of selection of
parametric models (due to nonparametricity of the problems being solved) exclude manual fitting
of the results obtained to the well-known parametric models and require the application of robust
nonparametric methods of statistics [6–8].

Experimenters have long been familiar with the problem of anomalous observations (outliers) in
data samples. The bearing on outliers is twofold. On the one hand, outliers may significantly distort
results of the investigation and the process of decision-making and hence must be removed using
various robust procedures [7,8]. On the other hand, the outlier itself can represent the most valuable
result of the investigation—a new physical property. In this case, outliers carry information, and it is
necessary not only to detect, but also to select the outliers.

In this regard, the problem of outlier detection and selection in data processing has been a focus of
attention of experimenters for a long time and it remains urgent from both a theoretical and a practical
point of view. There are a number of reviews, for example in References [9–11] where an extensive
bibliography of works on this subject is presented. Hereafter, an outlier is understood to be any
observation whose statistical or geometric characteristics differ from the main group (class or cluster) of
observations [7–18]. This definition is qualitative in character, and when solving particular problems,
what statistical or geometric parameters determine the anomalous observation is usually indicated.
The problems of outlier detection and selection for one-dimensional problems were initially considered
as remote extreme observation in a sample with a normal distribution. In this case, a number of
parametric criteria were proposed, including the Grubbs criteria [12] and their generalizations (the
Tietjen–Moore, Rosner, and Ferguson criteria) [13–15]. Further research [16] has shown that these
criteria are unstable when the distributions deviate from normal ones. This has caused a certain amount
of skepticism about their application. Efforts toward the creation of a nonparametric criterion in the
classical sense have not been successful. The typical technique used in this situation and widely used
in practice is the application of robust truncation procedures for experimental data processing [19].
The full complexity of synthesis and application of the robust truncation procedures is due to the fact
that there is no a priori information on the outlier fraction and location. In this case, the problem is
reduced to semiparametric or semi-nonparametric classes of problems of robust statistics [6,8].

A shift of emphasis to problems of multidimensional statistics and random processes, for example,
to problems of detection of outliers in correlation analysis and regression analysis and problems of
detection of the change point of a random process, has revealed a number of difficulties and has
resulted in the development of new research directions [9–11,17,18]. In this case, the problem of
detection of outliers in the form of remote multidimensional observations (objects or patterns) reduces
to problems of pattern recognition and the development of adaptive algorithms [9,17]. For example,
the problem of detection of outliers changing the form (symmetry) of the distribution of the main group
of observations should be mentioned. The most important direction of research here is associated with
problems of correlation analysis and regression analysis. Among these problems, the simplest one
is the problem of the estimation of the correlation coefficient. Classical estimators of the correlation
coefficients and correlation matrices are very sensitive to the occurrence of specific outliers that can
substantially change the sample correlation coefficient [18].

In the present work, based on a new approach to processing data of acoustic sounding in the ABL,
the diurnal dynamics of the vertical profiles of the first four moments of wind velocity components
(their mean value, variance, skewness, and kurtosis) are analyzed together with their correlation
coefficient and structure functions. The variance is an important statistical characteristic of the wind
velocity field. The skewness is a measure of the lack of distribution symmetry; it measures the relative
size of the two tails of the wind velocity distribution function. It should be mentioned that, for normal
distributions, it is equal to zero. The kurtosis is a measure of the combined sizes of the two tails of
the distribution. It measures the amount of probability in the tails. These characteristics of the wind
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velocity field determine its dynamics and are used to construct mathematical models of the atmospheric
boundary layer and to make weather forecasts. On the basis of the empirical influence-and-sensitivity
function [7,8], an iterative nonparametric procedure is suggested that allows one to rank sample values
of applicants for outliers. For formal substantiation of the procedure, the assumption of continuity
and econd-order stationarity of the sensitivity function is required [7,8]. Thus, the new consecutive
nonparametric method of adaptive pendular truncation (APT) for outlier detection and selection is
used for data processing. The method is implemented in the algorithm of pendular truncation of
sample values based on sorting of the empirical influence functions. On the basis of this algorithm, it is
convenient to construct adaptive robust estimates based on operations of sample truncation without a
preliminary analysis of distribution symmetries and tail behavior [7].

2. Procedure of Outlier Detection and Selection

2.1. Adaptive Pendular Truncation Algorithm

Let
→
x N = {x1, . . . xN} be a sample of size N of independent, identically-distributed random

variables with unknown distribution F(x), where F(x) = (1 − ε)G(x) + εH(x) is Tukey’s model of
outliers, G(x) is the reference aprioristic distribution, H(x) is the outlier distribution, ε is the outlier
fraction, and k = [N · ε] is the number of outliers in the sample. We assume that F(x), G(x), and H(x)
are absolutely continuous unimodal distributions with densities f (x), g(x), and h(x), respectively.

The standard problem of detection and selection of k outliers remote from the center of the
distribution F(x) reduces to the problem of testing of hypotheses:

H0 : k = 0, (F = G)

H1 : k , 0, (F = (1− ε)G + εH)

Let us consider an anomaly measure based on the functional

T =

∫
ϕ(x)dF(x)

where ϕ(x) is the known function, and introduce a sample
→
x n = {x1, . . . xn}, n = N, N − 1, . . . , [N

2 ] with
variable size. According to the anomaly measure, we transform the sample observations to the form

Ti(xi) = (ϕ(xi) − Tn(
→
x n)), Tn(

→
x n) =

1
n

n∑
i=1

ϕ(xi) (1)

ti(n) =
∣∣∣Ti(xi)

∣∣∣ (2)

Let us sort the variables ti(n) =
∣∣∣Ti(xi)

∣∣∣, t(1)(n) < t(2)(n) < . . . < t(n)(n), and consider the
consecutive procedure of detection of applicants for outliers. The outliers according to the anomaly
measure T are represented by extreme ordinal statistics t(N)(n), . . . , t(N−k+1)(n). The observation xi0
(xi0 = argmax

∣∣∣Ti(xi)
∣∣∣) corresponding to t(n)(n) is an applicant for outlier status; therefore, we remove it

from the sample
→
x n = {x1, . . . xn}. As a result, we obtain the sample

→
x n−1 of size (n − 1). This procedure

of detection of applicants for outlier status is repeated for n = N, N− 1, . . . , [N
2 ]. The sample observations

thus removed are not outliers; they are only applicants for outliers. To determine which of them are
outliers, an additional decision making procedure is required.

Let us introduce the statistic
Ln =

Sn

SN
(3)
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where

Sn =
n∑

i=1

(Ti(xi))
2, n = N, N − 1, . . . , [

N
2
] (4)

Since Sn = Sn−1 + (t(n)(n))
2 and SN = const(N), it follows that Sn−1 < Sn and, hence, the statistic

0 < Ln ≤ 1 is a monotonically decreasing function of n.
Let us find average values of the statistics ESN, ESn, E(t(n)(n))

2, and ELn = ESn
ESN

+ 0(N−1):

E
1
N

SN =

∫
(t− ETN)

2d[(1− ε)G(t) + εH(t)] = (1−
k
N
)σ2

1 +
k
N
σ2

2 (5)

E 1
n Sn =

∫
(t− ETn)

2d[(1− ε)G(t) + εH(t)]

=

{ 1
n (N − k)σ2

1 + (n−N + k)σ2
2, n = N, N − 1, . . . , N − k + 1,

σ2
1, n = (N − k), . . . , 1,

(6)

ELn ≈
ESn

ESN
=


N
n ×

(N−k)σ2
1+(n−N+k)σ2

2
(N−k)σ2

1+kσ2
2

, n = N, N − 1, . . . , N − k + 1,
Nσ2

1
(N−k)σ2

1+kσ2
2
, n = (N − k), . . . , 1,

(7)

Et2
n =

∫
(t)2d[(1− ε)G(t) + εH(t)]=

{
σ2

1 + σ
2
2, n = N, N − 1, . . . , N − k + 1,
σ2

1, n = (N − k), . . . , 1,
(8)

where σ2
1 =

∫
(t− Et)2dG(t) and σ2

2 =
∫
(t− Et)2dH(t). Let us consider the first-order differences of Ln:

∆1
n = Ln − Ln−1 =

(t(n)(n))
2

SN
(9)

and find the average value of the difference E∆1
n(n):

E∆1
n(l) ≈

E(t(n)(n))
2

ESN

=
[
(1− k

N )σ2
1 +

k
Nσ

2
2

]−1
{
σ2

1 + σ
2
2, n = N, N − 1, . . . , N − k + 1,
σ2

1, n = (N − k), . . . , 1.

(10)

As follows from Equation (10), the first-order differences E∆1
n(n) in the presence of k outliers

(n = N, N − 1, . . . , N − k + 1) are, on average, constant at the level B · (σ2
1 + σ

2
2), and in the absence

of outliers (n = (N − k), (N − k − 1), . . . , [N
2 ]), they are, on average, constant at the level B · σ2

1, where
B = const(N). At the point n = N − k, the function E∆1

n(n) jumps on average by δ = σ2
2.

Let us consider the second-order differences ∆2
n(n) = ∆1

n(n)−∆1
n−1(n). They are on average equal

to zero, and at the point n = N − k, a delta-shaped spike of the function E∆2
n(n) is observed.

The special features in the behavior of the statistics Ln, ∆1
n, and ∆2

n indicated above allow us to
construct a consecutive procedure of adaptive pendular truncation (APT) for outlier detection and
selection based on the empirical influence and sensitivity functions [7,8] that generalizes the adaptive
pendular truncation algorithm (APTA) [20].

2.2. Adaptive Pendular Truncation Algorithm

For the sample
→
x N = {x1, . . . xN}, n = N, N − 1, . . . , [N

2 ], we perform the following procedures:

1. Calculate Tn(
→
x n) =

1
n

n∑
i=1
ϕ(xi),

2. Calculate Ti(xi) = (ϕ(xi) − Tn(
→
x n)),

3. Sort the variables ti(n) =
∣∣∣Ti(xi)

∣∣∣, t(1)(n) < t(2)(n) < . . . < t(n)(n),
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4. Calculate Sn = 1
n−1

n∑
j=1

(Ti(xi))
2,

5. Calculate Ln = Sn
SN

,

6. Find the first-order differences ∆1
n = Ln − Ln−1,

7. Find the second-order differences ∆2
n(n) = ∆1

n(n) − ∆1
n−1(n),

8. Remove the observation xi0 corresponding to t(n)(n) from the sample,

9. Execute the above cycle from item 1 to item 9 for n = N, N − 1, . . . , [N
2 ].

We note that the APTA is nonparametric, that is, the result of its execution is independent of the

form of the distribution and automatically finds on which side of the center Tn(
→
x n) =

1
n

n∑
i=1
ϕ(xi) the

applicant for the outlier status is located.

Generalization of the Algorithm

As the anomaly measure and the transformation Ti(xi) described by Equation (1), the functionals

T =
∫
ϕ(x, θ)dF(x), Ti(xi) = ϕ(xi, θN) − Tn(

→
x n, θN), and Tn(

→
x n) =

1
n

n∑
i=1
ϕ(xi, θN) can be used, where

ϕ(x, θ) is a continuous function with bounded variation, θ is a parameter, and θN is an estimate of the
parameter θ.

3. Simulation

To test the efficiency of the APT algorithm, we performed a number of computer-based
numerical experiments.

3.1. Remote Outliers

Let us consider an example of remote outliers. Asymmetric outliers for distributions of the same
type were generated with the location parameter set equal to seven. The sample size was N = 100.
The outlier fraction was ε = 0.1. Five symmetric (fourth-order generalized normal distribution,
normal distribution, and Laplace distribution) and asymmetric distributions (Weibull distribution
and exponential distribution) with different tails were chosen. The scaling parameters of all of the
distributions were chosen so that their quantile level 0.99 coincided with quantile level 0.99 of the
standard normal distribution.

Figures 1 and 2 show the results of numerical simulation. Here, curves 1 are for the fourth-order
generalized normal distribution, curves 2 are for the normal distribution, curves 3 are for the Weibull
distribution, curves 4 are for the Laplace distribution, and curves 5 are for the exponential distribution.
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without outliers: (a) Dependence of the statistic Ln on the number n1 of truncated observations,
(b) dependence of the statistic ∆1

n on the number of truncated observations, and (c) dependence of the
statistic ∆2

n on the number of truncated observations.
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asymmetric outliers: (a) Dependence of the statistic Ln on the number of truncated observations,
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statistic ∆2
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Analysis of the results of the application of the algorithm to distributions without outliers
(Figure 1) shows that the empirical influence function is continuous for all symmetric and asymmetric
distributions (Figure 1a). Figure 1c demonstrates that for distributions with heavy tails (exponential (5)
and Laplace (4)), delta-shaped spikes are observed for single observations. Here, it is appropriate to
recall R. Hubert’s remark that small truncation always brings more good than harm [21].

Figure 2 shows results of application of the algorithm to distributions with asymmetric outliers.
From Figure 2a, it can be seen that the empirical influence function has a point of discontinuity of the
first kind and is a continuous function to the left of it with the distribution F and to the right of it
with the distribution G for all symmetric and asymmetric distribution models. Figure 2b confirms
conclusions (10) and the presence of the change point of the process ∆1

n(n). In Figure 2c, delta-shaped
spikes of ∆2

n(n) characterizing the outlier fraction are observed.

3.2. Asymmetry

Let
→
x N = {x1, . . . xN} be a sample from an independent identically-distributed random variable

that obeys an unknown distribution of the form

F(x,θ) = (1− ε)G(x− θ) + εH(x− µ),

where G(x− θ) = 1−G(θ− x) is the aprioristic unimodal distribution symmetric about θ, H(x− µ)
is the distribution of outliers, θ , µ, and ε is the outlier fraction; accordingly, g(x − θ) = g(θ − x).
Consider the anomaly measure having the form

T(x) =
∫ ∣∣∣g(x− θ) − g(θ− x)

∣∣∣dF(x).

Figure 3 shows changes of the form of the standard normal distribution density with remote and
internal outliers.
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Consider transformation (1.1) of sample values xi to the form

Ti(xi) = gn(xi − θn) − gn(θn − xi) − Tn(
→
x n, θN), θn =

1
n

n∑
i=1

xi,

Tn(
→
x n) =

1
n

n∑
i=1

[gn(xi − θn) − gn(θn − xi)]

where gn(x) is the Rosenblatt–Parzen nonparametric kernel density estimator [22]:

gn(x) =
1

nhn

n∑
i=1

k
(x− xi

hn

)
hn is the bandwidth parameter, and k(x) is the kernel function. The standard normal distribution

density (curve 1), the standard normal distribution density with internal outliers (µ = 1) (curve 2),
the Rosenblatt–Parzen density estimator (curve 3), and the histogram (N = 100 and ε = 0.1) are shown
in Figure 3.

In the adaptive pendular truncation algorithm presented in Section 2.2, we now replace item 3 by
the new item.

3. Sort variables ti(n) =
∣∣∣Ti(xi)

∣∣∣ for gn(xi − θn) > gn(θn − xi).
Figure 4 shows the simulation results.
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Figure 4. Results of application of the adaptive pendular algorithm to truncation of internal outliers:
(a) Dependence of the statistic Ln on the number of truncated observations, (b) dependence of the
statistic ∆1

n on the number of truncated observations, and (c) dependence of the statistic ∆2
n on the

number of truncated observations.

The delta-shaped spike in Figure 4c testifies to the presence of 10 outliers.

3.3. Correlation

Let
→
z N = (x1, y1), . . . , (xN, yN) be a sample from the two-dimensional distribution F(

→
z ) =

(1− ε)G(
→
z ,ρ1) + εH(

→
z ,ρ2), where G(

→
z ,ρ1) is the reference distribution with correlation coefficient ρ1,

H(
→
z ,ρ2) is the distribution of outliers with the correlation coefficient ρ2, and ε is the outlier fraction.

Since the classical estimate of the sample correlation coefficient is non-robust, different robust estimates
of the correlation coefficient are suggested in robust statistics [18]. Here, we consider the following
transformation of the sample:

Ti(
→
z i) = (xi − xi)(yi − yi) − Tn(

→
z n)
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where Tn(
→
z n) =

1
n

n∑
i=1

(xi − xi)(yi − yi), xn = 1
n

n∑
i=1

xi, yn = 1
n

n∑
i=1

yi, and
→
z i = (xi, yi). As a model of the

outliers, we consider Tukey’s model of a bivariate normal distribution

F(
→
z ) = (1− ε)G(

→
z ) + εH(

→
z )

where G(
→
z ,ρ1) = Φ(µ

(1)
1 : µ(1)2 : (σ(1)1 )

2
: (σ(1)2 )

2
: ρ1), H(

→
z ,ρ2) = Φ(µ

(2)
1 : µ(2)2 : (σ(2)1 )

2
: (σ(2)2 )

2
: ρ2),

Φ(µ
(i)
1 : µ(i)2 : (σ(i)1 )

2
: (σ(i)2 )

2
: ρi) is the bivariate normal distribution with average values EX = µ

(i)
1

and EY = µ
(i)
2 and variances DX = (σ

(i)
1 )

2
and DY = (σ

(i)
2 )

2
, correlation coefficient ρi, and outlier

fraction ε.
Let us apply the consecutive APT procedure. In all our experiments, the reference sample was

generated from the distribution G(
→
z ,ρ1) = Φ(0 : 0 : 1 : 0, 2 : 0, 9) with 10% fraction of the outliers

(ε = 0.1). Samples with distributions G(
→
z ,ρ1) = Φ(0 : 0 : 1 : 0, 2 : 0, 9) and H(

→
z ,ρ2) = Φ(0 : 0 : 1 :

0, 2 : −0, 9) (ε = 0.1 and N = 20 = 18 + 2 outliers) were also generated. We found that the sample
correlation coefficient without outliers was RS = 0.93, and the sample correlation coefficient with

outliers was RS = 0.42. The independence criterion based on the statistic Tobs = RS ·
√

N − 2/
√

1−R2
S

at the significance level α = 0.01 for the critical value Tcrit = 2.88 demonstrates that with outliers,
Tobs = 2.04 < Tcrit = 2.88, and the zero hypothesis is accepted; without outliers, Tobs = 7.61 > Tcrit =

2.88, and the zero hypothesis is rejected.
The outliers seriously worsen the situation. Without outliers, RS = 0.91, and the criterion

unambiguously rejects the zero hypothesis, but in the presence of two outliers, RS decreased by more
than twice, down to RS = 0.42, and the criterion unambiguously accepts the zero hypothesis. Figure 5
shows the results of application of the APT algorithm for N = 18 + 2 outliers depending on the number
of truncated observations n1. From Figure 5c, it can be seen that the algorithm detects and selects
2 outliers.
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statistic of the sample correlation coefficient RS on the number of truncated observations.

4. Statistical Analysis of Vertical Profiles of Wind Velocity Components from Results of
Minisodar Measurements using the Pendular Truncation Algorithm

The pendular truncation algorithm was used to process results of measurements of vertical profiles
of wind velocity components with an AV4000 Doppler minisodar. The working frequency of the
sodar was 4900 Hz, its pulse duration was 60 ms, and its pulse repetition period was 4 s. Radiation
was successively transmitted in three directions—vertical and at angles of 14◦ to the vertical in two
mutually orthogonal planes. The radial components of the wind velocity were calculated from the
Doppler shifts of the echo signal frequencies in the three receiving minisodar channels. They were
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then recalculated to the orthogonal wind velocity components, and one vertical profile of the wind
velocity vector V =

(
Vx, Vy, Vz

)
was retrieved for each sounding cycle.

Data of measurements of wind velocity components in 40 strobes of vertical extent 5 m each at
altitudes of 5–200 m were processed. To analyze the spatiotemporal variations of the first four moments
of wind velocity components in the ABL, results of morning measurements were processed. Series
from N = 150 profiles (sample size) were processed, which provided a 10 min data averaging period.

Statistical analysis of the results of minisodar measurements of vertical profiles of wind velocity
components at altitudes of 5–200 m showed that this problem belongs to the class of robust
nonparametric problems of mathematical statistics [6,19]. Using the APT algorithm, outliers were
excluded from the samples, and the truncated estimates of the first four moments of the wind velocity
components were calculated. Figures 6–8 illustrate the vertical profiles of the first four moments of the
wind velocity components, including their average values Vi, in m/s (a), variances σi

2, in m2/s2 (b),
skewnesses Ki sc (c), and kurtoses Ki kurt (d), where i = x, y, z.

From Figures 6–8, it can be seen that the application of the APT algorithm changes the average
values of the wind velocity components and decreases the variances, which demonstrates its efficiency.
The forms of the distributions of sample values of the wind velocity components differ from the
symmetric and normal ones even for the vertical wind velocity component, although at small altitudes,
the distribution of the vertical wind velocity component is close to normal. At higher altitudes,
significant air-flows are observed.Symmetry 2019, 11, x FOR PEER REVIEW 10 of 13 
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Figure 6. Vertical profiles of four moments of the x-component of the wind velocity Vx retrieved from
minisodar measurements in the morning (from 07:00 till 07:10, local time) using the standard minisodar
data processing algorithm [23] (solid curves) and the adaptive pendular truncation algorithm (dashed
curves): (a) Average Vx values, in m/s; (b) variances, in m2/s2; (c) skewnesses; and (d) kurtoses.
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Figure 7. Vertical profiles of four moments of the y-component of the wind velocity Vy retrieved from
minisodar measurements in the morning (from 07:00 till 07:10, local time) using the standard minisodar
data processing algorithm [23] (solid curves) and the adaptive pendular truncation algorithm (dashed
curves): (a) Average Vy values, in m/s; (b) variances, in m2/s2; (c) skewnesses; and (d) kurtoses.
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Figure 8. Vertical profiles of four moments of the z-component of the wind velocity Vz retrieved from
minisodar measurements in the morning (from 07:00 till 07:10, local time) using the standard minisodar
data processing algorithm [23] (solid curves) and the adaptive pendular truncation algorithm (dashed
curves): (a) Average Vz values, in m/s, (b) variances, in m2/s2, (c) skewnesses, and (d) kurtoses.

Using the APT algorithm, censoring of the samples was performed to obtain estimates of the
autocorrelation and structure functions. As an example, Figure 9 show the dependences of the
autocorrelation function ρ(τ) of the x-component of the wind velocity Vx on the lag τ retrieved
from minisodar measurements at the indicated altitudes in the morning, and Figure 10 show the
corresponding dependences of the structure functions St(τ) in m2/s2. The red curves here show the
results of calculations for the full sample, and the black curves show the results of calculations for the
truncated sample using the APTA.
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minisodar measurements of the x-component of the wind velocity Vx at altitudes of 45 m (a) and 180 m
(b) from 08:00 till 08:10, local time, on the lag τ.
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As expected, the correlation at the altitude z = 45 m (Figure 9a) decreases with increasing lag,
and for the censored sample, it decreases monotonically and faster, whereas for the full sample,
the process becomes nonstationary already at lags exceeding 1–2 min. The process proceeds even faster
at an altitude of 180 m (Figure 9b), where Vx for individual sounding cycles (individual vertical profiles)
becomes uncorrelated. Here, the influence of atmospheric turbulence and noise becomes pronounced.

The structure function at an altitude of 35 m (Figure 10a) behaves in the classical manner, and even
better for the censored sample. Here, the inflection point of the dependence is observed at 160–280 s
with its subsequent saturation. At an altitude of 175 m (Figure 10b), the structure function acquires
large values, and for the censored samples, it remains on average unchanged with the lag. It is natural
to suggest that the results of measurements with increasing sounding altitude are more strongly
influenced by noise that has an uncorrelated character [3,4] and lead to the occurrence of false outliers.

5. Conclusions

In the present work, the nonparametric consecutive pendular algorithm of censoring intended for
the detection and selection of outliers of various origins in the observation samples has been studied.
Results of numerical simulation with different outliers demonstrated the high efficiency of the APT
algorithm. The application of the APT algorithm to processing of measurements of vertical profiles of
wind velocity components obtained with a Doppler minisodar revealed significant asymmetric outliers
of wind velocity components that lead to biased estimates of their moments and structure functions.
Therefore, the application of the algorithm of sodar data processing is expedient, especially at low
signal-to-noise ratios. In addition, it should be noted that the application of symmetric censoring at the
2σ level [19] did not remove asymmetric outliers and bias of the estimates, but decreased the efficiency
of the estimates.

Author Contributions: Conceptualization, N.K., V.S., L.S., and O.C.; Methodology, N.K., V.S., L.S., and O.C.;
Validation, N.K., V.S., L.S., and O.C.; Formal Analysis, N.K., V.S., L.S., and O.C.; Investigation, N.K., V.S., L.S.,
and O.C.; Data Curation, N.K., V.S., L.S., and O.C.; Writing—Original Draft Preparation, N.K., V.S., L.S., and
O.C.; Writing—Review & Editing, N.K., V.S., L.S., and O.C.; Visualization, N.K., V.S., L.S., and O.C.; Supervision,
N.K., V.S., L.S., and O.C.; Project Administration, N.K., V.S., L.S., and O.C.; Funding Acquisition, N.K., V.S., L.S.,
and O.C.

Funding: The results were obtained with financial support from the Ministry of Science and Higher Education of
the Russian Federation (Project No. 5.3279.2017/4.6) and from the Siberian Branch of the Russian Academy of
Sciences (Project of Basic Research No. IX.138.2.5).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singal, S.P. Acoustic Remote-Sensing Applications; Springer-Verlag: Berlin, Germany, 1997; p. 585.
2. Kallistratova, M.A.; Kon, A.I. Radioacoustic Sounding of the Atmosphere; Nauka: Moscow, Russia, 1985; p. 197.

(In Russian)
3. Krasnenko, N.P. Acoustic Sounding of the Atmosphere; Nauka: Novosibirsk, Russia, 1986; p. 168. (In Russian)
4. Krasnenko, N.P. Acoustic Sounding of the Atmospheric Boundary Layer; Vodolei: Tomsk, Russia, 2001; p. 279.

(In Russian)
5. Bradley, S. Atmospheric Acoustic Remote Sensing: Principles and Applications; CRC Press Taylor & Francis Group:

Boca Raton, FL, USA, 2007; p. 296.
6. Simakhin, V.A.; Cherepanov, O.S.; Shamanaeva, L.G. Spatiotemporal dynamics of the wind velocity from

minisodar measurement data. Russ. Phys. J. 2015, 58, 176–181. [CrossRef]
7. Hampel, F.; Ronchetti, E.; Rausseu, P.; Shtael, V. Robustness in Statistics. Approach Based on Influence Functions;

MIR: Moscow, Russia, 1989; p. 512, (Russian translation).
8. Shulenin, V.P. Methods of Mathematical Statistics; Publishing House of Scientific and Technology Literature:

Tomsk, Russia, 2016; p. 260. (In Russian)
9. Muthukrishnan, R.; Poonkuzhali, G. A comprehensive survey on outlier detection methods. Am. -Eurasian J.

Sci. Res. 2017, 12, 161–171.

http://dx.doi.org/10.1007/s11182-016-0728-5


Symmetry 2019, 11, 961 12 of 12

10. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–83.
[CrossRef]

11. Hodge, V.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126.
[CrossRef]

12. Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Math. Stat. 1950, 21, 27–58. [CrossRef]
13. Tietjen, G.L.; Moore, R.H. Some Grubbs-type statistics for the detection of several outliers. Technometrics

1972, 14, 583–597. [CrossRef]
14. Rosner, B. On the detection of many outliers. Technometrics 1975, 17, 221–227. [CrossRef]
15. Ferguson, T.S. On the rejection of outliers. In Proceedings of the Fourth Berkeley Symposium on Mathematical

Statistics and Probability, Berkeley, CA, USA, 20–30 July 1961; Volume 1, pp. 253–287.
16. Orlov, A.I. Instability of parametric methods of rejection of sharply allocated observations. Zavod. Lab. 1992,

7, 40–42. (In Russian)
17. Rocke, D.M.; Woodruff, D.L. Identification of outliers in multivariate data. J. Am. Stat. Assoc. 2012, 91,

1047–1061. [CrossRef]
18. Shevlyakov, G.L.; Vilchevski, N.O. Robustness in Data Analysis: Criteria and Methods; VSP: Utrecht,

The Netherlands, 2002; p. 315.
19. Fedorov, V.A. Measurements with the “Volna-3” sodar of the parameters of radial components of wind

velocity vector. Atmos. Ocean. Opt. 2003, 16, 151–155.
20. Simakhin, V.A.; Cherepanov, O.S. Detection and selection of signal outliers. In Proceedings of the XIX

International Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics”, Barnaul, Russia, 1–3
July 2013; pp. C221–C224. (In Russian).

21. Huber, P.J. Robust Statistics; Willey: New York, NY, USA, 1981; p. 308.
22. Simakhin, V.A. Robust Nonparametric Estimates; Lambert Academic Publishing: Saarbrücken, Germany, 2011;

p. 292.
23. Krasnenko, N.P.; Tarasenkov, M.V.; Shamanaeva, L.G. Spatiotemporal dynamics of the wind velocity from

data of sodar measurements. Russ. Phys. J. 2014, 57, 1539–1546. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1214/aoms/1177729885
http://dx.doi.org/10.1080/00401706.1972.10488948
http://dx.doi.org/10.2307/1268354
http://dx.doi.org/10.1080/01621459.1996.10476975
http://dx.doi.org/10.1007/s11182-015-0416-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Procedure of Outlier Detection and Selection 
	Adaptive Pendular Truncation Algorithm 
	Adaptive Pendular Truncation Algorithm 

	Simulation 
	Remote Outliers 
	Asymmetry 
	Correlation 

	Statistical Analysis of Vertical Profiles of Wind Velocity Components from Results of Minisodar Measurements using the Pendular Truncation Algorithm 
	Conclusions 
	References

