Chemometric Evaluation of the Link between Acute Toxicity, Health Issues and Physicochemical Properties of Silver Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Chemometric Methods
2.2. Subsection
3. Results
4. Relationship between Size Parameters and Toxicity
5. Multiple Regression Results
6. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.A.; He, B.; Liu, L.; Qu, G.; Shi, J.; Hu, L.; Jiang, G. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics 2018, 10, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Ivask, A.; Kurvet, I.; Kasemets, K.; Blinova, I.; Aruoja, V.; Suppi, S.; Vija, H.; Käkinen, A.; Titma, T.; Heinlaan, M.; et al. Size-Dependent Toxicity of Silver Nanoparticles to Bacteria, Yeast, Algae, Crustaceans and Mammalian Cells In Vitro. PLoS ONE 2014, 9, e102108. [Google Scholar] [CrossRef] [PubMed]
- Massart, D.L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis; Wiley: New York, NY, USA, 1989; ISBN 978-089-464-358-3. [Google Scholar]
- Massart, D.L.; Vandeginste, B.G. Handbook of Chemometrics and Qualimetrics: Part. B; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 978-044-482-853-8. [Google Scholar]
- Li, T.; Albee, B.; Alemayehu, M.; Diaz, R.; Ingham, L.; Kamal, S.; Rodriguez, M.; Whaley Bishnoi, S. Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 2010, 398, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.J.; Impellitteri, C.A.; Macke, D.A.; Heckman, J.L.; Poynton, H.C.; Lazorchak, J.M.; Govindaswamy, S.; Roose, D.L.; Nadagouda, M.N. Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ. Toxicol. Chem. 2010, 29, 2742–2750. [Google Scholar] [CrossRef] [Green Version]
- Blinova, I.; Niskanen, J.; Kajankari, P.; Kanarbik, L.; Käkinen, A.; Tenhu, H.; Penttinen, O.-P.; Kahru, A. Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res. 2013, 20, 3456–3463. [Google Scholar] [CrossRef]
- Silva, T.; Pokhrel, L.R.; Dubey, B.; Tolaymat, T.M.; Maier, K.J.; Liu, X. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Sci. Total Environ. 2014, 468–469, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Gou, N.; Gu, A.Z. A New Transcriptional Effect Level Index (TELI) for Toxicogenomics-based Toxicity Assessment. Environ. Sci. Technol. 2011, 45, 5410–5417. [Google Scholar] [CrossRef] [PubMed]
- Völker, C.; Boedicker, C.; Daubenthaler, J.; Oetken, M.; Oehlmann, J. Comparative Toxicity Assessment of Nanosilver on Three Daphnia Species in Acute, Chronic and Multi-Generation Experiments. PLoS ONE 2013, 8, e75026. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-M.; Wang, W.-X. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 2012, 6, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.; Ivask, A.; Käkinen, A.; Kurvet, I.; Kahru, A. Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles. PLoS ONE 2013, 8, e64060. [Google Scholar] [CrossRef] [PubMed]
- Korani, M.; Ghazizadeh, E.; Korani, S.; Hami, Z.; Mohammadi-Bardbori, A. Effects of silver nanoparticles on human health. Eur. J. Nanomed. 2015, 7, 51–62. [Google Scholar] [CrossRef]
- De Leersnyder, I.; De Gelder, L.; Van Driessche, I.; Vermeir, P. Influence of growth media components on the antibacterial effect of silver ions on Bacillus subtilis in a liquid growth medium. Sci. Rep. 2018, 8, 9325. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Hu, Z. Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environ. Sci. Technol. 2008, 42, 4583–4588. [Google Scholar] [CrossRef] [PubMed]
- Greulich, C.; Braun, D.; Peetsch, A.; Diendorf, J.; Siebers, B.; Epple, M.; Köller, M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2012, 2, 6981–6987. [Google Scholar] [CrossRef]
- Ivask, A.; ElBadawy, A.; Kaweeteerawat, C.; Boren, D.; Fischer, H.; Ji, Z.; Chang, C.H.; Liu, R.; Tolaymat, T.; Telesca, D.; et al. Toxicity Mechanisms in Escherichia coli Vary for Silver Nanoparticles and Differ from Ionic Silver. ACS Nano 2014, 8, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
Object No. | Test Organism | Test Media | Surface Coating | Ref. |
---|---|---|---|---|
1–6 | D. magna | Synthetic fresh water | Citrate | [6] |
7–13 | D. magna | Moderately hard reconstituted water | Uncoated Citrate Coffee Sigma Organic | [7] |
14–33 | D. magna, T. platyurus | Artificial fresh water | Protein PVP | [8] |
34–63 | D. magna, E. coli, P. fluorescens, S. cerevisiae, P. subcapitata, Murine fibroblasts | Artificial fresh water | Citrate | [3] |
64–69 | D. magna, E. coli | Moderate hard water | BPEI PVP Citrate | [9] |
70 | E. coli | M9 medium protocol | Bovine Serum Albumin | [10] |
71–73 | D. magna, D. pulex, D. galatea | M4 medium without EDTA | PVP | [11] |
74–76 | D. magna | SM7 MEDIUM | Lactate, PVP Sodium dodecylbenzene sulfonate | [12] |
77–94 | E. coli, P. fluorescens, P. putida, P. aureginosa, B. subtilis, S. aureus | Distilled water | Uncoated PVP Casein | [13] |
Variable | PC1 | PC2 |
---|---|---|
Primary size (PS) | 0.89 | 0.03 |
Primary hydrodynamic diameter (PHD) | 0.86 | 0.21 |
DLS Hydrodynamic diameter in the test media (DLS) | 0.68 | −0.37 |
Zeta potential of nanomaterial in the test (ZP) | −0.19 | −0.63 |
Acute Toxicity measure (AT) | 0.19 | −0.78 |
Explained Variance % | 41.50 | 23.70 |
Variable | K1 | K2 | K3 | K4 |
---|---|---|---|---|
Primary size (PS) | 142 | 42 | 64 | 12.17 |
Primary hydrodynamic diameter (PHD) | 296 | 90.2 | 204.7 | 63.37 |
Hydrodynamic diameter in the test media (DLS) | 780.12 | 123.15 | 84 | 89.11 |
Zeta potential of nanomaterial in the test (ZP) | −15.95 | −18.25 | −17.7 | −15.83 |
Acute Toxicity measure, EC50/LC50 (AT) | 16.80 | 5.94 | 7.71 | 0.23 |
Ridge Regression Summary for Dependent Variable: AT | ||||
---|---|---|---|---|
L = 0.10000 R = 0 0.86048962 R2 = 0.74044239 Adjusted R2 = 0.71291355 | ||||
Beta | Std. Err. | t(66) | p-level | |
Intercept | 1.13 | 0.26 | ||
PS | −0.20 | 0.15 | −1.21 | 0.23 |
PHD | 0.10 | 0.16 | 0.64 | 0.52 |
DLS | 0.35 | 0.11 | 3.02 | 0.03 |
ZP | 0.01 | 0.10 | −0.09 | 0.9 |
ANOVA Results | |||||
---|---|---|---|---|---|
Analysis of Variance | |||||
Ridge Regression, Lambda = 0.1000000 | |||||
Sums of | df | Mean | F | p-level | |
Regress. | 54.05 | 7 | 7.722 | 26.90 | 0.000 |
Residual | 18.95 | 66 | 0.287 | ||
Total | 73.00 |
Pattern | PS Interval | PHD Interval | DLS Interval | Expected AT |
---|---|---|---|---|
Coarse particles | Over 100 nm | Over 300 nm | Over 750 nm | Up to 20 |
Fine particles | Less than 50 nm | Between 50 and 100 nm | Up to 150 nm | Between 1 and 5 |
Medium particles | Between 50 and 100 nm | Between 100 and 300 nm | Between 50 and 100 nm | Between 5 and 10 |
Superfine particles | Under 10 nm | Under 50 nm | Under 100 nm | Under 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedyalkova, M.; Dimitrov, D.; Donkova, B.; Simeonov, V. Chemometric Evaluation of the Link between Acute Toxicity, Health Issues and Physicochemical Properties of Silver Nanoparticles. Symmetry 2019, 11, 1159. https://doi.org/10.3390/sym11091159
Nedyalkova M, Dimitrov D, Donkova B, Simeonov V. Chemometric Evaluation of the Link between Acute Toxicity, Health Issues and Physicochemical Properties of Silver Nanoparticles. Symmetry. 2019; 11(9):1159. https://doi.org/10.3390/sym11091159
Chicago/Turabian StyleNedyalkova, Miroslava, Dimitar Dimitrov, Borjana Donkova, and Vasil Simeonov. 2019. "Chemometric Evaluation of the Link between Acute Toxicity, Health Issues and Physicochemical Properties of Silver Nanoparticles" Symmetry 11, no. 9: 1159. https://doi.org/10.3390/sym11091159
APA StyleNedyalkova, M., Dimitrov, D., Donkova, B., & Simeonov, V. (2019). Chemometric Evaluation of the Link between Acute Toxicity, Health Issues and Physicochemical Properties of Silver Nanoparticles. Symmetry, 11(9), 1159. https://doi.org/10.3390/sym11091159