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Abstract: We investigated an integrable five-point differential-difference equation called the discrete
Sawada–Kotera equation. On the basis of the geometric series method, a new exact soliton-like
solution of the equation is obtained that propagates with positive or negative phase velocity. In terms
of the Jacobi elliptic function, a class of new exact periodic solutions is constructed, in particular
stationary ones. Using an exponential generating function for Catalan numbers, Cauchy’s problem
with the initial condition in the form of a step is solved. As a result of numerical simulation,
the elasticity of the interaction of exact localized solutions is established.

Keywords: discrete Sawada–Kotera equation; exact solution; Jacobi elliptic functions; Catalan numbers;
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1. Introduction

The theory of integrable differential-difference equations (DDE), based on the study of symmetries,
conservation laws and recursion operators, is actively developing at present. As in the continuous
case, the integrability of an equation is understood in the sense of the existence of Lax pairs or the
infinite hierarchy of symmetries [1]. The theoretical results obtained in this direction are of great
practical importance, since “models of a wide range of physical processes are inherently discrete” [2,3].
Most often, nonlinear models of physical processes allow analytical research only on the basis of the
continuum limit of the initial discrete equation [4]. This is due to the fact that the construction of exact
solutions of nonlinear DDEs other than the Toda, Volterra and Ablowitz–Ladik lattices is difficult [5].

Most integrable lattices have the Korteweg–de Vries and nonlinear Schrodinger equations as
a continuum limit [6,7]. Recently, as a result of the classification of five-point DDEs [8], integrable
discretizations of the Sawada–Kotera and Kaup–Kupershmidt equations have been identified.

The aim of this work is to conduct a qualitative study and numerical simulation of the integrable
five-point discrete Sawada–Kotera equation

d
dt

un (t) = [un (t)]
2 [un+2 (t) un+1 (t)− un−1 (t) un−2 (t)]− un (t) [un+1 (t)− un−1 (t)] . (1)

The considered DDE (1) is a linear combination of two famous integrable equations, the Volterra
chain and the Ito–Narita–Bogoyavlensky chain [9–11], each of which has the Korteweg–de Vries
equation as a continuous limit. It is known [12] that as these chains belong to different hierarchies,
the flows corresponding to them do not commute, so the integrability of their linear combination is
a nontrivial fact, which is established by constructing the corresponding Lax pair. It was shown in [12]
that the introduction of new variables,

un = u(n, t) =
1
3
+

ε2

9
U(εn− 4

9
εt, τ +

2ε5

135
t),
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allows one to obtain the integrable Sawada–Kotera equation [13]

Uτ = Uxxxxx + 5UUxxx + 5UxUxx + 5U2Ux

from Equation (1) in the continuous limit for ε → 0. Therefore, Equation (1) is called the discrete
Sawada–Kotera equation [14,15].

In [14], the general structure of the N-soliton solution of Equation (1) is given in terms of the
Pfaffians. However, in specific cases of modeling processes of a discrete nature, information on the
explicit form of physically realizable exact solutions is especially important for a researcher. Therefore,
to achieve this goal, we solve several independent problems: The construction of exact solitary-wave
and periodic solutions, the initial problem, and a numerical simulation of the obtained solutions.

The rest of the article is structured as follows. In the next two sections, an exact solitary-wave
solution and a periodic solution will be constructed. In the fourth section, some combinatorial
dependencies will be established when solving an initial value problem for Equation (1). In the fifth section,
exact stationary solutions are discussed, and in the last section, numerical simulations are performed that
demonstrate the stability of exact localized solutions and the elasticity of their interaction.

2. Solitary Wave Solution

Let us find an exact solitary-wave solution to the Equation (1). In [16,17], algorithms were
developed for computer mathematics systems and exact kink-like solutions were obtained for Toda,
Volterra, and Ablowitz–Ladik lattices and their generalizations. To construct an exact localized solution,
we will use a modification of the geometric series method [18]. In the continuous case, this approach
allows one to obtain exact soliton-like solutions of integrable and non-integrable equations with
a polynomial dispersion relation as the sum of the geometric series of the perturbation method in
powers of exponential function.

The transition to the traveling wave variable z = dn + ωt allows us to write Equation (1) as follows

−ω
d
dz

u(z) + [u(z)]2[u(z + 2d)u(z + d)− u(z− d)u(z− 2d)]− u(z)[u(z + d)− u(z− d)] = 0. (2)

After substituting in Equation (2) a functional series with unknown coefficients Ck

u(z) =
∞

∑
k=0

Ckekz, (3)

u(z + md) =
∞

∑
k=0

Ckek(z+md) =
∞

∑
k=0

Ckδkmekz, (4)

where m = ±1,±2, δ = ed, we group the terms in powers of the exponential function. In the lower
order, at ez, we obtain a “linear dispersion relation” for determining the frequency ω:

ω = C0

(
1− δ−2

) [
C2

0

(
δ2 + 1

)
+
(

C2
0 − 1

)
δ
]

. (5)

Successively equating to zero the coefficients at e2z, e3z, ..., we calculate C2, C3, ...:

C2 = −
δC2

1

C0 (δ− 1)2 , C3 =
C3

1δ2 (δ2 + δ + 1
)

C2
0 (δ− 1)4 (δ + 1)2 ,

C4 = −
C4

1δ3 (δ2 + 1
)

C3
0 (δ− 1)6 (δ + 1)2 , C5 =

C5
1δ4 (δ4 + δ3 + δ2 + δ + 1

)
C4

0 (δ− 1)8 (δ + 1)4 ,

C6 = −
C6

1δ5 (δ4 + δ2 + 1
)

C5
0 (δ− 1)10 (δ + 1)4 , C7 =

C7
1δ6 (δ6 + δ5 + δ4 + δ3 + δ2 + δ + 1

)
C6

0 (δ− 1)12 (δ + 1)6 , ...

(6)
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All coefficients, starting from C2, are expressed through three arbitrary parameters C0, C1 and δ.
Looking at Equations (6), it is easy to write the general formula for the coefficient Cn; however, this is
not necessary. The series (3) with coefficients (6) is a geometric series and its sum gives an exact solution
to Equation (2). To verify this, we use the remarkable property of Padé approximants: Successive
diagonal approximants [1/1], [2/2], [3/3],. . . , calculated for an arbitrary geometric power series,
coincide, starting from some order [N/N].

Let us prove the presence of this property. As is known, the Padé approximant of order [M/N]

for power series S(x) = ∑
k

akxk is the ratio of polynomials

[M/N] =
PM(x)
QN(x)

=
p0 + p1x + ... + pMxM

q0 + q1x + ... + qN xN , (7)

whose Maclaurin series expansion TM,N(x) coincides with S(x) as long as possible [19,20]. To calculate
the coefficients pk, qk of the ratio (7) we use the first M + N + 2 terms of the series S(x).
Formal representation,

PM(x)
QN(x)

=
PM(x)

1− (1−QN(x))
, (8)

means that the Maclaurin series TM,N(x) for Equation (7) is a geometric series with the first term PM
and the denominator (1−QN), and the approximant (7) itself is the exact sum of its Maclaurin series.
Suppose that for geometric series TM,N(x) we calculated a higher order approximant, for example,
[M + 1/N + 1]. Obviously, its own Maclaurin series TM+1,N+1(x) is also geometric and its first
M + N + 4 terms coincide with the terms of TM,N(x). The geometric series can be continued in
its first terms uniquely, therefore, the series TM,N(x) and TM+1,N+1(x) coincide and after them the
approximants [M/N] and [M + 1/N + 1] coincide identically, as required.

Replacing ez = Z in Equation (3), we begin to sequentially calculate for Equation (3) the diagonal Padé
approximants, starting with [1/1]. It turns out that the second and third order approximants coincide:

[2/2] = [3/3] = C0 +
C1Z(

1 +
δC1Z

(δ + 1) (δ− 1)2C0

)(
1 +

δ2C1Z

(δ + 1) (δ− 1)2C0

) . (9)

Without calculating an approximant of higher order, we check whether Equation (9) gives an exact
solution to the problem. Returning to variables z, d in Equations (9) and (5) we obtain

u(z) = C0

(
1 +

ez+z0

(1 + Aez+z0)
(
1 + Aez+z0+d

)) , (10)

ω = C0

(
1− e−2d

) [
C2

0

(
e2d + 1

)
+
(

C2
0 − 1

)
ed
]

, (11)

where A = ed
(

ed + 1
)−1(

ed − 1
)−2

, z0 = ln (C1/C0). Substitution of Equations (10) and (11) into
Equation (2) turns the latter into identity, therefore, Equation (10) is an exact solution of Equation (2)
under condition (11). After substitution z = dn + ωt expression (10) becomes a solitary-wave solution
of the original Equation (1). The shape of this solution depends on the relationship between the
parameters A and d and varies from a flat-peak pulse to a pulse with a sharp peak on the pedestal
C0 (Figure 1).
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Figure 1. (a) pulse with a sharp peak at C0 = 0.64, A = 0.25, z0 = 0.92. (b) pulse with a flat peak at
C0 = 6.2 · 10−6, A = 3.8 · 10−11, z0 = 18.1.

The number of lattice nodes per pulse width depends on the parameter d, playing the role of the
wave number. The solution in Figure 1a corresponds to d = 1 and visually about 15 nodes are located
along the pulse width; for the solution in Figure 1b we have d = 12 and only 2–3 nodes across the
pulse width.

3. Periodic Solution

The leading terms balance gives a simple pole for solution of Equation (2). In accordance with the
truncated expansion method [21], we will use the ansatz with the Jacobi elliptic function:

u(z) = A + B sn(z, m). (12)

Using the addition theorem for Jacobi elliptic functions, we have:

u(z± d) = A− B CD sn(z,m)±S cn(z,m)dn(z,m)
m2S2sn2(z,m)−1 ,

u(z± 2d) = A− B C2D2sn(z,m)±S2cn(z,m)dn(z,m)

m2S2
2sn2(z,m)−1

,
(13)

where
S = sn(d, m), C = cn(d, m), D = dn(d, m),
S2 = sn(2d, m), C2 = cn(2d, m), D2 = dn(2d, m).

(14)

The constants S2, C2, D2 are expressed through S, C, D by means of double argument formulas:

S2 = − 2SCD
S4m2 − 1

, C2 =
D2S2 − C2

S4m2 − 1
, D2 =

C2S2m2 − D2

S4m2 − 1
. (15)

Taking into account Equation (14), we substitute Equations (12) and (13) into Equation (2).
After dividing by a common factor 4B cn (z, m)dn (z, m), the left-hand side of Equation (2) reduces to
a fourth-order polynomial with respect to sn (z, m):

4

∑
n=0

Ansnn (z, m) = 0, (16)
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where
A0 =

[(
2SA3 − 2SA−ω

) (
S4m2 − 1

)
− 4SCDA3] (S4m2 − 1

)
,

A1 = 2SB
[(

2S8m4 − S4m2(CD + 2)2 − S2 (C4m2 + D4)+
CD (3CD + 4) + 2) A2 − S4m2 (S4m2 − 2

)
− 1
]

,
A2 = S

[
S5m4ω

(
S4m2 − 2

)
+ 2AB2S8m4 + 4A3 m4S6CD−

4AB2S4m2 (C2D2 + CD + 1
)
− 4AS2 (A2CDm2 (2CD + 1) +

C2m2 (B2C2 − 2D2)+ B2D4)+ Sm2ω
(
4C2D2 + 1

)
+

2AB2 (6C2D2 + 2CD + 1
)]

,
A3 = 2BS

[
4A2m4CDS6 − B2C2D2 (S4m2 − 3

)
−

S2 (m2B2C4 + 4C2D2m2 (2A2 − 1
)
+ 4A2m2CD + B2D4)] ,

A4 = 4Dm2CS3 [AB2 (S4m2 − 1
)
− CD

(
Sm2ω + 2AB2)] .

(17)

The system of nonlinear equations {An = 0} , n = 0...4 , supplemented by the relations between
Jacobi elliptic functions cn, sn and dn :

C2 + S2 = 1, D2 + m2S2 = 1, (18)

can be solved by any of the modern computer mathematics software systems, for example, Maple.
The solution contains several branches corresponding to stationary waves (ω = 0) and traveling waves
(ω 6= 0). Two combinations of parameters correspond to traveling waves. The first of them has the form

A = ± 1
2 , B = ± 1

2

√
1− D2, C = D

1−D , S = ±
√

1−2D
1−D ,

m = ± (1− D)
√

1−D2

1−2D , ω = ±
√

1−2D
2(1−D)

,
(19)

where all signs can be selected arbitrarily. The second combination is obtained from the first one by
substitution D → −D. Note that the solution Equation (12) at each moment of time is determined only
on a uniform grid nd + z0, n ∈ Z. If the ratio of the grid step d to the period T of function sn(z, m) is
not a rational number, then the period of the grid function un = A + B sn(nd + z0, m) tends to infinity
and we obtain a non-periodic solution. It can be shown that function (12) under conditions (19) gives
an exact periodic solution of Equation (1). This solution is real for 0 < D < 1

2 and its period T has six
nodes of the lattice for any admissible value of D. With an increase in parameter D frequency ω and
amplitude B decrease monotonously (Figure 2).

Figure 2. Dependencies ω(D) (solid line) and B(D) (dashed line).

If we take into account that the intrinsic amplitude of function sn(z, m) when |m| > 1 is Asn = 1
m ,

then the total oscillation amplitude AsnB of solution (12) turns out to be numerically the same as the
frequency ω. Examples of a traveling waveform are shown in Figure 3.
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Figure 3. Profiles of a traveling periodic wave (12): (a) D = 0.01, (b) D = 0.49.

4. Exact Solution and Catalan Numbers

An interesting property of the modified Volterra lattice,

d
dt

un(t) = [un(t)]
2 [un+1(t)− un−1(t)] , (20)

is revealed in articles [22,23]. It turns out that for a special initial condition,

u0(0) = 0, u1(0) = u2(0) = ... = 1, (21)

we can write the exact solution of Equation (20) in closed form, and this solution is neither of
periodic type, nor of traveling-wave type.

We apply the methodology [22,23] to the lattice Equation (1) with the same initial condition (21).
First, note that u0(t) ≡ 0. Due to this equality, Equation (1) with any positive number n are independent
of the values of the grid function at nodes with negative numbers u−1, u−2, .... We will solve the initial
problem Equations (1), (21) for positive nodes u1, u2, ...

By sequentially differentiating both sides of Equation (1) with respect to t and replacing the first
derivatives in the right-hand sides with the help of Equation (1), we can express any higher derivative
u(k)

n (t) in terms of up(t), for example,

du1

dt
= u1u2 (u1u3 − 1) ,

d2u1

dt2 = u1u2
[
u2

1u3 (u2u3 + 1) − u2u3u4 + u2 + u3 − u1+

u1u3 (u3 (u2u4 + u4u5 − 1)− 2u2 − u4)] , ...

. (22)

Substituting to Equation (22) the initial conditions (21), we obtain the sequence u(0)
n (0), u(1)

n (0),
u(2)

n (0),... of initial values for the k-th derivatives for the n-th node of the lattice:

n = 1 : 1, 0, 0, 0, 0, 0, 0, 0, ...
n = 2 : 1, 1, 2, 5, 14, 42, 132, 429, ...
n = 3 : 1, 0, 0, 0, 0, 0, 0, 0, ...
n = 4 : 1, 0,−1,−2, 2, 28, 65,−338, ...
n = 5 : 1, 0, 0, 0, 0, 0, 0, 0, ...
n = 6 : 1, 0, 0, 1, 2,−3,−10, 79, ...

. (23)
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For odd nodes (n = 2p + 1) we observe that for k > 0 the initial values of the derivatives u(k)
2p+1(0)

are zero, at least for the first eight calculated values. It can be assumed that during the evolution of the
system, the values at these nodes do not change:

u2p+1(t) = u2p+1(0) = 1. (24)

In fact, substituting Equation (24) into Equation (1) for an odd knot, we have

d
dt u2p+1(t) = [u2p+1(t)]2 [u2p+3(t) u2n+2(t)− u2p(t) u2p−1(t)]−

u2p+1(t) [u2p+2(t)− u2p(t)] = u2n+2(t)− u2p(t)− [u2n+2(t)− u2p(t)] ≡ 0.
(25)

For even nodes the situation is more complicated. For n = 2 we have a sequence of Catalan
numbers cn = (2n)!

n!(n+1)! , for n = 4 we get a sequence whose generating function is inverse to the
generating function for Catalan numbers, and the sequence for n = 6 is no longer recognized by
Sloane’s online sequence encyclopedia [24]. We explicitly write Equation (1) for even nodes taking into
account (24):

d
dt u2p(t) = [u2p(t)]2 [u2p+2(t) u2p+1(t)− u2p−1(t) u2p−2(t)]−

u2p(t) [u2p+1(t)− u2p−1(t)] = [u2p(t)]2 [u2p+2(t)− u2p−2(t)].
(26)

Obviously, Equations (26) coincide with (20) up to renumbering. In [22] it is shown that the exact
solution of Equation (20) with the initial condition (21) is

un =
wn−3wn−1

w2
n−2

, n = 1, 2, ..., (27)

where w−2 = w−1 = 1 and, for k ≥ 0,

w2k =

∣∣∣∣∣∣∣∣∣
f f ′ ... f (k)

f ′ f ′′ ... f (k+1)

... ... ... ...
f (k) f (k+1) ... f (2k)

∣∣∣∣∣∣∣∣∣ , w2k+1 =

∣∣∣∣∣∣∣∣∣
f ′ f ′′ ... f (k+1)

f ′′ f ′′′ ... f (k+2)

... ... ... ...
f (k+1) f (k+2) ... f (2k+1)

∣∣∣∣∣∣∣∣∣ . (28)

In Equations (28) the notation u1 = f (t) is taken. Thus, all unknown functions u2(t), u3(t), ...
are expressed in closed form through function u1(t) and its derivatives u1

′(t), u1
′′(t), .... You can

find function u1(t) itself through the exponential generating function for the Catalan numbers cn,
which serve as the coefficients of the expansion of u1(t) in the Maclaurin series:

f (t) =
∞

∑
n=0

cn

n!
tn = e2t [I0(2t)− I0

′(2t)
]

, (29)

where I0(z) is the modified Bessel function, which is a solution to the Cauchy problem

zI0
′′(z) + I0

′(z)− zI0 (z) = 0, I0(0) = 1, I0
′(0) = 0. (30)

Unfortunately, the solutions of both the modified Volterra lattice Equation (20) and Equation (1)
demonstrate an exponential increase in time and, therefore, are limited in physical applications
(Figure 4). The behavior of the solution depends on the node number n: We have un = 1 for n =

1, 3, 5, ...; lim
t→∞

un (t) = +∞ for n = 2, 6, 10, ...; lim
t→∞

un (t) = 0 for n = 4, 8, 12, ... .
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Figure 4. Dependence ln(un), n = 1...30, calculated according to (27) for t = 5.

5. Stationary Solutions

The simplest stationary (time-independent) solutions of Equation (1)—constant solution
un = const and sawtooth solution u2n = a, u2n+1 = b—can be obtained by direct selection.
Periodic stationary solutions un+kN = an, n = 1...N, k ∈ Z, represented by a repeating set of
N constants {a1, a2, ..., aN}, are determined from the solution of the system,

a2
n+2 (an+4an+3 − an+1an)− an+2 (an+3 − an+1) = 0, an+N = an, n = 1...N. (31)

As N increases, the set of stationary solutions expands. For example, if for N = 3 we have
a unique solution of the form {0, 0, a}, then for N = 4 we find four solutions {0, a, 0, b}, {1, a, 1, b},
{−1, a,−1, b} and

{
a, b, 1

a , 1
b

}
. Note that the first three options for N = 4 make it possible to construct

non-periodic solutions, since the quantities a and b can be specified arbitrarily in each set of four
numbers. The graph of the 4th option for N = 4 at a = 2, b = −3 is shown in Figure 5.

Figure 5. Variant of a periodic stationary solution.

Another variant of the non-periodic stationary solution follows from Equation (10), where the
constants C0 and d should be selected from the condition that the frequency ω defined by
Equation (11) vanishes.
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6. Numerical Simulation

The value of exact solutions decreases if they are unstable to small deviations. Naturally,
these deviations are introduced, for example, by the finite-difference approximation of the time
derivative used in the numerical construction of solutions. The invariance of the shape of the
traveling-wave solution for a sufficient period of time indicates both the convergence of the applied
difference scheme and the correctness of the analytical solution of the problem. Figure 6 shows the
evolution of the solution of Equation (1) with the initial condition, the graph of which is shown in
Figure 1a (impulse with a sharp peak); Figure 7 corresponds to the initial condition from Figure 1b.
The symbol T denotes the period of oscillation T = d

ω . To calculate the solution, the continuous 7–8
orders Runge–Kutta method, built into the Maple software package, was used.

(a) (b)

Figure 6. The solution of Equation (1) with the initial condition from Figure 1a. (a) the wave profile at
different points in time; (b) the dependences un (t) for some nodes.

(a) (b)

Figure 7. The solution of Equation (1) with the initial condition from Figure 1b. (a) the wave profile at
different points in time; (b) the dependences un (t) for some nodes.
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As we see in Figures 6b and 7b, dependences un(t) for all nodes are identical and coincide in
form with the solution (1.10), the graphs of which are shown for some combinations of parameters
in Figure 1. It can be seen from Figure 7a that over the time T the graph is completely restored to its
shape, as it should be for a traveling wave solution.

Figure 8 shows the interaction of two solitary waves of different amplitudes. The collision of
waves occurs according to the elastic scenario, with a complete restoring of the shape and amplitude
of each wave and a certain phase shift—the catching-up wave shifts forward in the direction of travel,
and the catch-up wave shifts backward. The process is completely identical to that observed for solitons
of the KdV equation.

Figure 8. Collision of two solitary waves (10) with parameters C0 = 6.2 · 10−6, A = 3.8 · 10−11, z0 = 78
(catching wave of greater amplitude) and C0 = 2 · 10−6, A = 3.8 · 10−11, z0 = 30 (wave of smaller
amplitude). The dashed line shows the line of the constant phase of the larger wave; the time scale is
indicated in the periods T of recovery of the larger wave.

Numerical modeling of the periodic solution (1.12), (1.19) for two values D = 0.01 and D = 0.49,
for which Figure 3 was constructed, showed that the solution form does not visually change over more
than 100 oscillation periods.

7. Discussion

The geometric series method is designed to search for exact DDE solutions, and the solutions
found are expressed in terms of the ratio of two polynomials in powers of the exponential function.
As repeatedly noted by leading experts [25], there is no universal approach to finding the exact
solutions of nonlinear equations. The closest to the geometric series method should be considered
the method of exponential functions (exp-function method) [25–28] and the method of hyperbolic
tangent (tanh-method) [16,17,29]. The exp-function method uses an ansatz in the form of a ratio of
two polynomials in powers of an exponential function with arbitrary coefficients. After substituting
the ansatz in the equation, it is required that in the numerator of the obtained expression the factors
at each degree of the exponential function vanish. This requirement leads to the need to solve
a system of nonlinear algebraic equations for the coefficients. Unfortunately, the nonlinear system
of the exp-function method is successfully solved by modern computer mathematics systems only
in the simplest cases [5]. In particular, in the case of the discrete Sawada–Kottera equation under
consideration, a calculation in Maple 2016.2 for one hour on a 6-core AMD Ryzen 5 4.2 GHz workstation
with 16 Gb of RAM, did not lead to any results. Unlike the exp-function method, the geometric series
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method is based on the sequential solution of a system of linear equations and the exact solution (10)
of the discrete Sawada–Kotera equation is successfully detected within a few seconds.

The tanh-method uses an ansatz in the form of a polynomial in powers of the hyperbolic tangent,
the highest degree of which is consistent with the pole order of the desired solution. If tanh(z) is
expressed in terms of exp(z), then the tanh-method ansatz is represented by the ratio of two polynomials
in powers of exp(z), as in the geometric series method. However, it is easy to verify that solution (10)
cannot be represented by any finite polynomial in powers of tanh(z) and, therefore, cannot be obtained
in principle by the tanh-method.

Sometimes an explicit form of exact DDE solutions can be obtained using Darboux transforms of
the corresponding Lax pairs [30], however, this is a much more time-consuming procedure compared
to the proposed direct method.

A review of available publications on the problem could not reveal solutions of the discrete
Sawada–Kotera equation, the structure of which coincides with Equation (10). It can be argued that
Equation (10) is a new solution. As far as we know, the exact periodic solution (12), (19) and the initial
problem solution (27) were also obtained for the first time.

8. Conclusions

In this article, a number of problems are solved for an integrable discrete Sawada–Kotera equation.
For the first time using the geometric series method, its exact solitary-wave solution in explicit form was
constructed and numerical modeling was carried out, revealing its soliton properties. Exact periodic
solutions are obtained in terms of the Jacobi elliptic function. When solving the problem with special
initial conditions, new combinatorial dependencies were identified that connect the desired solution
with the generating function for Catalan numbers. So far, questions remain about the possibility of
constructing rational solutions, as well as exact solutions of DDE systems by the geometric series
method. In the future, it may be able to study the problems of classifying exact solutions of integrable
DDEs and constructing quasi-exact and approximate solutions of some non-integrable equations.
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