
symmetryS S

Article

Existence of Small-Energy Solutions to Nonlocal
Schrödinger-Type Equations for Integrodifferential
Operators in RN

Jun Ik Lee 1, Yun-Ho Kim 1,* and Jongrak Lee 2

1 Department of Mathematics Education, Sangmyung University, Seoul 03016, Korea; jilee@smu.ac.kr
2 Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, Korea; jrlee0124@ewha.ac.kr
* Correspondence: kyh1213@smu.ac.kr; Tel.: +82-2-781-7504; Fax: +82-222870069

Received: 2 December 2019; Accepted: 15 December 2019; Published: 18 December 2019 ����������
�������

Abstract: We are concerned with the following elliptic equations: (−∆)s
p,Ku + V(x)|u|p−2u =

λ f (x, u) in RN , where (−∆)s
p,K is the nonlocal integrodifferential equation with 0 < s < 1 < p <

+∞, sp < N the potential function V : RN → (0, ∞) is continuous, and f : RN ×R → R satisfies a
Carathéodory condition. The present paper is devoted to the study of the L∞-bound of solutions to the
above problem by employing De Giorgi’s iteration method and the localization method. Using this,
we provide a sequence of infinitely many small-energy solutions whose L∞-norms converge to zero.
The main tools were the modified functional method and the dual version of the fountain theorem,
which is a generalization of the symmetric mountain-pass theorem.

Keywords: non-local integrodifferential operators; De Giorgi iteration; modified functional methods;
dual fountain theorem
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1. Introduction

In recent years, the study of fractional and nonlocal problems of the elliptic type has received
enormous attention because the interest in such operators has sustainedly increased within the
framework of mathematical theory to confirm some phenomena such as fractional quantum
mechanics, material sciences, continuum mechanics, phase-transition phenomena, image processes,
the thin-obstacle problem, game theory, and Lévy processes (see [1–7] and the references therein).
The fractional Schrödinger equation, which was introduced by Laskin [5], has especially received
considerable attention in recent years (see, e.g., [8–10]).

Stimulated by the large interest in the current literature and taking advantage of variational
methods, we investigate the existence of weak solutions for nonlocal equations involving the fractional
p-Laplacian. We establish the existence, multiplicity, and uniform estimates of infinitely many
nontrivial weak solutions for the following nonlocal integrodifferential equations:

(−∆)s
p,Ku + V(x)|u|p−2u = λ f (x, u) in RN , (1)

where λ is real parameter 0 < s < 1 < p < +∞, sp < N, the potential function V : RN → (0, ∞)

is continuous, f : RN × R → R satisfies a Carathéodory condition, and (−∆)s
p,K is the fractional

p-Laplacian operator defined as

(−∆)s
p,Ku(x) = 2 lim

ε↘0

∫
RN\BN

ε (x)
|u(x)− u(y)|p−2(u(x)− u(y))K(x− y) dy
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for x ∈ RN , where K is a kernel function, and BN
ε (x) := {y ∈ RN : |y − x| ≤ ε}. Many

authors have researched fractional p-Laplacian type problems in various respects (see [2,3,10–19]
and references therein).

The first goal of the present paper is to provide a sufficient condition ensuring global uniform
boundedness for weak solutions of the problem in Equation (1). The main tools for obtaining this
result are De Giorgi’s iteration method and a truncated energy technique (by also considering some
novel optimization techniques proposed in [20,21]). This approach originally comes from Vergara
[22]. Inspired by Vergara [22], the boundedness of weak solutions for elliptic equations with variable
exponents and a nonlinear conormal derivative boundary condition was investigated by Winkert [23]
(see also [24]). The second goal is to obtain the existence of a sequence of infinitely many small-energy
solutions that converge to zero in L∞ space. The strategy of the proof for this assertion is based
on applications of the dual-fountain theorem that were primarily introduced by Bartsch [25] with
consideration for the variational nature of the problem. The dual-fountain theorem, as a key tool, is a
dual version of fountain theorem in [26], which is a generalization of the symmetric mountain-pass
theorem in [27] and a powerful technique for ensuring the existence of multiple solutions to elliptic
equations of the variational type. Subsequently, many researchers applied this theorem to the various
problems involving p- or p(x)-Laplacian (see [8,9,28–36] and the references therein). Such a multiplicity
result that utilizes the dual-fountain theorem to derive the existence of infinitely many small-energy
solutions for nonlinear elliptic equations of the variational type can be found in [9,29] (and the
references therein). In [8], the author studied the existence of infinitely many solutions of the fractional
Laplacian via the variant fountain theorems established in [37]. However, these consequences do not
ensure the boundedness of solutions. We therefore show that nonlinear problems associated with an
integrodifferential operator admits a sequence of infinitely many solutions whose L∞ norms converge
to zero. The condition on nonlinear term f (·, t) at infinity and the oddness of f globally are increasingly
essential in obtaining previous multiplicity results, as in [8,9,29]. However, we infer our conclusion
when conditions on f (·, t) are carried out near zero; f (·, t) is especially odd in t for a small t, and no
conditions on f (·, t) exist at infinity. The initial idea for this approach came from the work of Z.-Q.
Wang [38], who made use of the modified functional method and global variational formulation as
the main tools in [39]. Very recently, the authors of [31] investigated the L∞ bound of small-energy
solutions to Kirchhoff–Schrödinger-type equations involving the fractional p-Laplacian by applying
the modified functional method and a regularity-type result inspired by the work of P. Drábek, A.
Kufner, and F. Nicolosi [40] (for related works, see [24,38,41–44]). We design our consequence under a
somewhat different approach than previous works. In contrast to the authors of [24,38,41–44], who
established the existence of such a sequence of solutions belonging to the L∞ space, we take into
account the dual-fountain theorem in place of the global variational formulation in [39]. To the best of
our knowledge, there have been no results on this approach, even in classical p-Laplacian problems,
although we derive our main result from a well-known technique.

This paper is organized as follows. We first briefly review definitions and collect some preliminary
results for the Lebesgue–Sobolev space of the fractional type. Next, we present the L∞ bound of
solutions to the problem in Equation (1) by applying De Giorgi’s iteration method and the localization
method. Finally, we provide a sequence of infinitely many small-energy solutions whose L∞-norms
converge to zero.

2. Preliminaries

In this section, we briefly recall definitions and some elementary properties of fractional Sobolev
spaces (refer to [4,45,46] for further reference). For simplicity, C is used to represent a generic constant
that may change from line to line.
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Let s ∈ (0, 1), p ∈ (1,+∞), and p∗s is the fractional critical Sobolev exponent, that is

p∗s :=

{ Np
N−sp if sp < N,

+∞ if sp ≥ N.

We define fractional Sobolev space Ws,p
K (RN) as follows:

Ws,p
K (RN) :=

{
u ∈ Lp(RN) :

∫
RN

∫
RN
|u(x)− u(y)|pK(x− y) dxdy < +∞

}
,

where K : RN \ {0} → (0,+∞) is a kernel function satisfying the following properties:

(K1) mK ∈ L1(RN), where m(x) = min{|x|p, 1};
(K2) there exist d1, d2 > 0 such that d1|x|−(N+ps) ≤ K(x) ≤ d2|x|−(N+ps) for all x ∈ RN \ {0};
(K3) K(x) = K(−x) for all x ∈ RN \ {0}.

By Condition (K1), function

(x, y) 7→ (u(x)− u(y))K
1
p (x− y) ∈ Lp(R2N)

for all u ∈ C∞
0 (RN). Let us denote by Ws,p

K (RN) as the completion of C∞
0 (RN) with respect to norm

||u||Ws,p
K (RN) :=

(
||u||pLp(RN)

+ |u|p
Ws,p
K (RN)

) 1
p

,

where
|u|p

Ws,p
K (RN)

:=
∫
RN

∫
RN
|u(x)− u(y)|pK(x− y) dxdy.

Lemma 1. [47] Let K : RN \ {0} → (0, ∞) be a kernel function satisfying Conditions (K1)–(K3).
If v ∈Ws,p

K (RN), then v ∈Ws,p(RN). Moreover,

||v||Ws,p(RN) ≤ max{1, d
− 1

p
1 }||v||Ws,p

K (RN);

Then, Ws,p(RN) is a separable and reflexive Banach space. Space C∞
0 (RN) is also dense in

Ws,p(RN), which is Ws,p
0 (RN) = Ws,p(RN) (see, e.g., [45,46]).

Lemma 2. [48] Let Ω ⊂ RN be a bounded open set with Lipschitz boundary s ∈ (0, 1) and p ∈ (1,+∞).
Then, we have the following continuous embeddings:

Ws,p(Ω) ↪→ Lq(Ω) for all q ∈ [1, p∗s ], if sp < N;

Ws,p(Ω) ↪→ Lq(Ω) for every q ∈ [1, ∞), if sp = N;

Ws,p(Ω) ↪→ C0,λ
b (Ω) for all λ < s− N/p, if sp > N.

In particular, space Ws,p(Ω) is compactly embedded in Lq(Ω) for any q ∈ [p, p∗s ).

Lemma 3. [46,49] Let 0 < s < 1 < p < +∞ with ps < N. Then, there exists positive constant
C = C(N, p, s), such that, for all u ∈Ws,p(RN),

||u||Lp∗s (RN)
≤ C |u|Ws,p(RN).

Consequently, space Ws,p(RN) is continuously embedded in Lq(RN) for any q ∈ [p, p∗s ].
Moreover, embedding

Ws,p(RN) ↪→ Lq
loc(R

N)
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is compact for q ∈ [p, p∗s ). In particular, we denote the best constant Ss,p in the fractional Sobolev inequality by

Ss,p = inf
u∈Lp∗s (RN)\{0},|u|Ws,p(RN )

<∞

|u|pWs,p(RN)

||u||p
Lp∗s (RN)

.

From Lemmas 1–3, we can immediately obtain the following assertion.

Lemma 4. [47] Let K : RN \ {0} → (0, ∞) satisfy Conditions (K1)–(K3). Then, there exists positive constant
C0 = C0(N, p, s), such that, for any v ∈Ws,p

K (RN) and p ≤ q ≤ p∗s ,

||v||pLq(RN)
≤ C0

∫
RN

∫
RN

|v(x)− v(y)|p
|x− y|N+ps dxdy

≤ C0

d1

∫
RN

∫
RN
|v(x)− v(y)|pK(x− y) dxdy.

Consequently, space Ws,p
K (RN) is continuously embedded in Lq(RN) for any q ∈ [p, p∗s ]. Moreover,

embedding
Ws,p
K (RN) ↪→ Lq

loc(R
N)

is compact for q ∈ [p, p∗s ).

For potential term V, we assume that

(V) V ∈ C(RN), V− := infx∈RN V(x) > 0, meas
{

x ∈ RN : V(x) ≤ v0
}
< +∞ for all v0 ∈ R.

On linear subspace

E :=
{

u ∈Ws,p(RN) :
∫
RN

∫
RN

|u(x)− u(y)|p
|x− y|N+sp dxdy +

∫
RN

V(x)|u(x)|p dx < +∞
}

,

we equip norm

||u||E := inf
{

λ > 0 :
∫
RN

∫
RN

|u(x)− u(y)|p
λp|x− y|N+sp dxdy +

∫
RN

V(x)
∣∣∣u(x)

λ

∣∣∣p dx < 1
}

.

Then, (E, || · ||E) is continuously embedded into Ws,p(RN) as a closed subspace. Therefore, (E, || ·
||E) is also separable reflexive Banach space.

We can then verify that Ws,p
K,V(R

N) is a separable and reflexive Banach space with the following
norm:

||u||Ws,p
K,V(RN) :=

(
||u||p

Lp
V(RN)

+ |u|p
Ws,p
K (RN)

) 1
p

,

where
||u||p

Lp
V(RN)

:=
∫
RN

V(x)|u|p dx.

Throughout this paper, we denote X(RN) := Ws,p
K,V(R

N), and function K : RN \ {0} → (0, ∞)

satisfies Conditions (K1)–(K3).
In view of Lemmas 2 and 4, the following result is carried out by the same scheme as that in [50].

Lemma 5. Let 0 < s < 1 < p < +∞ with ps < N, and suppose that Assumption (V) holds. Then, there is
compact embedding X(RN) ↪→ Lq(RN) for q ∈ [p, p∗s ).
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Definition 1. We indicate that u ∈ X(RN) is a weak solution to the problem in Equation (1) if∫
RN

∫
RN
|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

+
∫
RN

V(x) |u(x)|p−2 uv dx = λ
∫
RN

f (x, u)v dx

for any v ∈ X(RN).

Let us define functional Φs,p : X(RN)→ R by

Φs,p(u) =
1
p

∫
RN

∫
RN
|u(x)− u(y)|pK(x− y) dxdy +

1
p

∫
RN

V(x) |u(x)|p dx. (2)

Then, from the modification of Lemma 3.2 of [50], functional Φs,p is well-defined on X(RN),
Φs,p ∈ C1(X(RN),R) and, for any v ∈ X(RN), its Fréchet derivative is given by

〈Φ′s,p(u), v〉 =
∫
RN

∫
RN
|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

+
∫
RN

V(x) |u(x)|p−2 uv dx.

For p < q < p∗s , we assume that

(F1) f : RN ×R→ R satisfies the Carathéodory condition.

(F2) There exist non-negative functions ρ ∈ Lp′(RN) ∩ L∞(RN) and σ ∈ L
p∗s

p∗s−q (RN) ∩ L∞(RN) such
that

| f (x, t)| ≤ ρ(x) + σ(x) |t|q−1

for all (x, t) ∈ RN ×R.

Under Assumptions (F1) and (F2), we define functional Ψ : X(RN)→ R by

Ψ(u) =
∫
RN

F(x, u) dx.

Then, it follows from the same arguments as those of Proposition 1.12 in [51] that
Ψ ∈ C1(X(RN),R), and, for any u, v ∈ X(RN), its Fréchet derivative is

〈
Ψ′(u), v

〉
=
∫
RN

f (x, u)v dx.

Next, functional Iλ : X(RN)→ R is defined by

Iλ(u) = Φs,p(u)− λΨ(u).

Then, we know that Iλ ∈ C1(X(RN),R), and the Fréchet derivative of Iλ is

〈I′λ(u), v〉 =
∫
RN

∫
RN
|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

+
∫
RN

V(x) |u(x)|p−2 uv dx− λ
∫
RN

f (x, u)v dx

for any u, v ∈ X(RN).
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3. Main Result

In this section, we present the L∞ bound of solutions to the problem in Equation (1) and then
establish the existence of a sequence of infinitely many small-energy solutions whose L∞ norms
converge to zero by employing the modified functional method and the dual-fountain theorem.

To utilize the De Giorgi technique, we needed the following vital lemma. The proof is in ([22],
Lemma 2.2).

Lemma 6. Let {Zn}∞
n=1 be a sequence of positive numbers satisfying recursion inequality

Zn+1 ≤ cbnZ1+δ
n , n = 0, 1, 2, · · ·

for some b > 1, c > 0 and δ > 0. If Z0 ≤ min{1, c(−1)/δb(−1)/δ2}, then Zn ≤ 1 for some n ∈ N ∪ {0}.
Moreover,

Zn ≤ min
{

1, c(−1)/δb(−1)/δ2
b(−n)/δ

}
for any n ≥ n0, where n0 is the smallest n ∈ N∪ {0} satisfying Zn ≤ 1. In particular, Zn → 0 as n→ ∞.

For convenience, we define the fractional (s, p) gradient of function v ∈ X(RN) as

|Dsv(x)|p =
∫
RN
|v(x + h)− v(x)|pK(h) dh.

This (s, p) gradient is well-defined in RN and |Dsv| ∈ Lp(RN) (see [52]).
Next, we show the following assertion, which is a regularity-type result via the De Giorgi

technique and the localization method.

Proposition 1. Assume that Assumptions (V) and (F1)–(F2) hold. If u is a weak solution of Problem (Pλ),
then u ∈ L∞(RN), and there exists positive constant τ that is independent of u, such that

||u||L∞(RN) ≤ C||u||τLq(RN).

Proof. Let Ak = {x ∈ RN : u(x) > k}, Ãk = {x ∈ RN : −u(x) > k} for k > 0. |Ak| and |Ãk| are
finite for any k ∈ N. Taking test function v = (u− k)+ ∈ X(RN) in the problem in Equation (1) and
integrating it over RN , we have∫

RN

∫
RN
|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

+
∫
RN

V(x) |u(x)|p−2 uv dx = λ
∫
RN

f (x, u)v dx.

Equivalently,∫
Ak

∫
Ak

|u(x)− u(y)|pK(x− y) dxdy +
∫

Ak

V(x) |u(x)|p−2 u(u− k) dx ≤ λ
∫

Ak

f (x, u)(u− k) dx.

Hence, since u ≥ u− k > 0 on Ak, by Assumption (F2),∫
Ak

|Dsu|p dx ≤ −
∫

Ak

V(x)|u|p−2u(u− k) dx + λ
∫

Ak

(ρ(x) + σ(x)|u|q−1)(u− k) dx

≤ λ
∫

Ak

(ρ(x) + σ(x)|u|q−1)u dx

≤ λ||ρ||L∞(RN)

∫
Ak

u dx + λ||σ||L∞(RN)

∫
Ak

uq dx
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≤ λ(1 + k1−q
∗ )(||ρ||L∞(RN) + ||σ||L∞(RN))

∫
Ak

uq dx (3)

where k∗ > 0, specified below. Put kn := k∗(2− 1/2n), n = 0, 1, 2, · · · and

Zn :=
∫

Akn

(u− kn)
q dx.

Since k∗ ≤ kn ≤ kn+1 ≤ 2k∗ for all n ∈ N, we have

∫
Akn

(u− kn)
q dx ≥

∫
Akn+1

uq
(

1− kn

kn+1

)q
dx ≥

∫
Akn+1

uq

2q(n+2)
dx

and
Zn ≥

∫
Akn+1

uq

2q(n+2)
dx.

Thus, ∫
Akn+1

uq dx ≤ en+2
1 Zn, (4)

where e1 = 2q > 1. It follows from the relationships in Equations (3) and (4) that∫
Akn+1

|Ds(u− kn+1)|p dx ≤ λ(1 + k1−q
∗ )(||ρ||L∞(RN) + ||σ||L∞(RN))e

n+2
1 Zn. (5)

For the Lebesgue measure of Akn+1 , we deduced that

∣∣∣Akn+1

∣∣∣ ≤ ∫
Akn+1

(
u− kn

kn+1 − kn

)q
dx =

∫
Akn+1

(
2n+1

k∗

)q

(u− kn)
q dx.

Thus,

|Akn+1 | ≤
en+1

1

kq
∗

Zn. (6)

Then, ∫
Akn+1

|Ds(u− kn+1)|p dx ≥
∫

Akn+1

|Ds(u− kn+1)|p dx− |Akn+1 |.

Therefore, it follows from the above inequality and the relations in Equations (5) and (6) that∫
Akn+1

|Ds(u− kn+1)|p dx ≤ λ(1 + k1−q
∗ )(||ρ||L∞(RN) + ||σ||L∞(RN))e

n+2
1 Zn + |Akn+1 |

≤ λ(1 + k1−q
∗ )(||ρ||L∞(RN) + ||σ||L∞(RN))e

n+2
1 Zn +

en+1
1

kq
∗

Zn

= e2en
1 Zn, (7)

where e2 := λ(1 + k1−q
∗ )(||ρ||L∞(RN) + ||σ||L∞(RN))e

2
1 +

e1
kq
∗
. Define

q̃ :=

{ q+p∗s
2 if p∗s < ∞,

q + 1 if p∗s = ∞.

Using the Hölder inequality and Lemma 3, we get
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∫
Akn+1

(u− kn+1)
q
+ dx

≤
( ∫

RN
(u− kn+1)

q̃
+ dx

)q/q̃ ∣∣∣Akn+1

∣∣∣1−q/q̃

≤
∣∣∣∣∣∣(u− kn+1)+

∣∣∣∣∣∣q
Lq̃(RN)

∣∣∣Akn+1

∣∣∣1−q/q̃

≤ Cq
(
||(u− kn+1)+||

p
Lp(RN)

+ |(u− kn+1)+|
p
Ws,p
K (RN)

)q/p ∣∣∣Akn+1

∣∣∣1−q/q̃
. (8)

Meanwhile, we have ∫
RN
|(u− kn+1)+|p dx ≤

∫
Akn+1

uq dx ≤ en+2
1 Zn;

from Equation (7), we estimate∫
RN
|Ds(u− kn+1)+|p dx ≤

∫
Akn+1

|Ds(u− kn+1)|p dx ≤ e2en
1 Zn. (9)

We deduce from Equations (6), (8), and (9) that

Zn+1 =
∫

Akn+1

(u− kn+1)
q dx

≤ Cq(en+2
1 Zn + e2en

1 Zn)
q/p

(
en+1

1

kq
∗

)1−q/q̃

Z1−q/q̃
n

= Cq(e2
1 + e2)

q/p
(

e1

kq
∗

)1−q/q̃
e(1−q/q̃+q/p)n

1 Z1−q/q̃+q/p
n .

In other words,
Zn+1 ≤

e3

kq(1−q/q̃)
∗

e(1+δ)n
1 Z1+δ

n , (10)

where e3 = Cq(e2
1 + e2)

q/p (e1)
1−q/q̃ and δ = q/p− q/q̃. Applying Lemma 6 with Equation (10), we

obtain that
Zn =

∫
RN

(u− kn)
q
+ dx → 0 as n→ ∞, (11)

provided that

Z0 ≤ min
{

1,

 e3

k
q(1− q

q̃ )
∗

− 1
δ

e
− 1+δ

δ2
1

}
.

Observe that
Z0 =

∫
Ak∗

(u− k∗)q dx ≤
∫
RN

uq
+ dx.

Set

k∗ = (e3)
q̃

q(q̃−q) e

(
q̃

q(q̃−q)

)
(1+ 1

δ )
1

(∫
RN

uq
+ dx

) δq̃
q(q̃−q)

.
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Thus, we have inequality Z0 ≤ 1 if
∫
RN uq

+ dx ≤ 1 or inequality Z0 ≤
(

e3

k
q(1− q

q̃ )
∗

)− 1
δ

e
− 1+δ

δ2
1 if∫

RN uq
+ dx > 1. Since kn ↑ 2k∗, the relation in Equation (11) implies that∫

RN
(u− 2k∗)

q
+ dx = 0.

Therefore, (u− 2k∗)+ = 0 almost everywhere in RN ; hence, ess supRN u ≤ 2k∗. By replacing
u with −u and Ak with Ãk, we analogously conclude that u is bounded from below. Therefore, we
conclude that

||u||L∞(RN) ≤ C
(∫

RN
|u|q dx

) δq̃
q(q̃−q)

.

This completes the proof.

We are ready to obtain our main result for the existence of a sequence of infinitely many
small-energy solutions whose L∞ norms converge to zero. As mentioned above, the main tools
are the modified functional method and the dual-fountain theorem. To do this, we assume that, for
p < q < p∗s ,

(F3) For any x ∈ RN , there exists constant s0 > 0, such that pF(x, t)− f (x, t)t > 0 for 0 < |t| < s0,
where F(x, t) =

∫ t
0 f (x, s) ds.

(F4) lim|t|→0
f (x,t)
|t|p−2t

= +∞ uniformly for all x ∈ RN .

Remark 1. Define cut-off function κ ∈ C1(R,R) satisfying κ(t) = 1 for |t| ≤ t0, κ(t) = 0 for |t| ≥ 2t0,
|κ′(t)| ≤ 2/t0, and κ′(t)t ≤ 0. Thus, we set

F̃(x, t) = κ(t)F(x, t) + (1− κ(t))ξ|t|p and f̃ (x, t) =
∂

∂t
F̃(x, t),

where ξ is a positive constant. Then, the following Lemma holds.

On the basis of the work in [24,38], we obtain the two following lemmas.

Lemma 7. Let Assumptions (V), (F1)–(F3) hold. Then,

I(u) = 0 =
〈

I′(u), u
〉

if and only if u = 0.

Lemma 8. Assume that Assumptions (F1)–(F4) hold. Then, there exist t0 > 0 with t0 < min{s0, 1}/2 and
f̃ ∈ C1(RN ×R,R), such that f̃ (x, t) is odd for t, F̃ (x, t) ≥ 0, and

F̃ (x, t) = 0 iff t ≡ 0 or |t| ≥ 2t0,

where F̃ (x, t) := pF̃(x, t)− f̃ (x, t)t and ∂
∂t F̃(x, t) = f̃ (x, t).

The following definition can be found in [51].

Definition 2. Let X be a reflexive Banach space. Θ satisfies the (PS)∗c -condition (with respect to Yn)
for every c ∈ R if any sequence {vn}n∈N ⊂ X for which vn ∈ Yn, for any n ∈ N,

Θ(vn)→ c and ||(Θ|Yn)
′(vn)||X ∗ → 0 as n→ ∞,

contains a subsequence converging to a critical point of X .
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Proposition 2. (Dual-Fountain Theorem ([51], Theorem 3.18)) Assume that X is a reflexive Banach space,
I ∈ C1(X ,R) is an even functional. If there exists k0 > 0 such that, for each k ≥ k0, there is ρk > δk > 0,
such that

(D1) inf{I(v) : v ∈ Zk, ||v||X = ρk} ≥ 0.
(D2) bk := max{I(v) : v ∈ Yk, ||v||X = δk} < 0.
(D3) dk := inf{I(v) : v ∈ Zk, ||v||X ≤ ρk} → 0 as k→ ∞.
(D4) I satisfies the (PS)∗c -condition for every c ∈ [dk0 , 0),

then I has a sequence of negative critical values converging to 0.

Theorem 1. Suppose that Assumptions (F1)–(F4) hold. If f (x, t) is odd in t for a small t, then the problem in
Equation (1) admits a sequence of weak solutions {un} satisfying ||un||L∞(RN) → 0 as n→ ∞ for every

λ ∈ Γ :=

0, min

 q
p(ξqC + 1)

,
1

p
(

2C||ρ||Lp′ (RN)
+
||ρ||L∞(RN )

q + ξ

)

 .

Remark 2. As mentioned in the Introduction, even if the dual-fountain theorem plays a decisive role in obtaining
the existence of multiple small-energy solutions to elliptic equations of the variational type, the boundedness
of these solutions is not ensured by this theorem. The condition on nonlinear term f (·, t) at infinity, and the
oddness of f globally is essential in applying this theorem. However, by employing the dual-fountain theorem, we
design our main theorem when f (·, t) is carried out near zero, and f (·, t) is odd in t for a small t. Therefore, our
approach for obtaining this consequence is somewhat different from former related works [8,9,24,29,38,41–44].

Proof. Consider modified energy functional Ĩλ : X(RN)→ R given by

Ĩλ(v) := Φs,p(v)− λΨ̃(v),

where Φs,p is given in Equation (2) and

Ψ̃(v) =
∫

Ω
F̃(x, v) dx, v ∈ X(RN).

Then, it is clear by Lemma 8 that Ĩλ ∈ C1(X(RN),R) is an even functional. Now, we show that
Conditions (D1)–(D4) of Proposition 2 are satisfied.

(D1) From Assumption (F2), we have

|F(x, t)| ≤ ρ(x)|t|+ 1
q

σ(x)|t|q, (x, t) ∈ RN ×R.
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For convenience, we denote θk = sup||u||X(RN )
=1,u∈Zk

||v||Lq(RN). It follows from the definition of κ

that we have

Ĩλ(u) :=
1
p

∫
RN

∫
RN
|u(x)− u(y)|pK(x− y) dxdy +

1
p

∫
RN

V(x) |u(x)|p dx

− λ
∫
RN

κ(u)F(x, u) + (1− κ(u))ξ|u|p dx

≥ 1
p
||u||pX(RN)

− λ
∫
RN

ρ(x)|u|+ 1
q

σ(x)|u|q + ξ|u|p dx

≥ 1
p
||u||pX(RN)

− λ||ρ||Lq′ (RN)
||u||Lq(RN) −

λ

q
||σ||L∞(RN)||u||

q
Lq(RN)

− λξ||u||pLp(RN)

≥ 1
p
||u||pX(RN)

− λC||u||X(RN) −
λ

q
C||u||qLq(RN)

− λξ||u||pLp(RN)

≥
( 1

p
− λξC

)
||u||pX(RN)

− λC||u||X(RN) −
λ

q
Cθ

q
k ||u||

q
X(RN)

.

Choose ρk =
(
Cθ

q
k
)1/(p−q). Let u ∈ Zk with ||u||X(RN) = ρk > 1 for a sufficiently large k. Then,

there exists k0 ∈ N, such that

Ĩλ(u) ≥
( 1

p
− λξC − λ

q

)
ρ

p
k − λCρk ≥ 0

for all k ∈ N with k ≥ k0, because

lim
k→∞

( 1
p
− λξC − λ

q

)
ρ

p
k = ∞.

Therefore,
inf{ Ĩλ(u) : u ∈ Zk, ||u||X(RN) = ρk} ≥ 0.

(D2) || · ||L∞(RN), || · ||Lp(RN) and || · ||X(RN) are equivalent on Yk. Then, there are positive constants
κ1 and κ2 such that

κ1|| · ||L∞(RN) ≤ || · ||X(RN) ≤ κ2|| · ||Lp(RN) (12)

for any v ∈ Yk. From Assumptions (F3) and (F4), for any M > 0, there exist s1 ∈ (0, s0) such that

F(x, t) ≥
Mκ

p
2

p
|t|p

for almost all x ∈ RN and all |t| ≤ s1. Choose δk := min{ 1
2 , s1κ1} for all k ∈ N. Then, we know that

||u||L∞(RN) ≤ s1 for u ∈ Yk with ||u||X(RN) = δk, and thus F̃(x, u) = F(x, u) for ||u||L∞(RN) ≤ s1. Hence,
we derive by Equation (12) that

Ĩλ(u) ≤
1
p
||u||pX(RN)

−
λMκ

p
2

p
||u||pLp(RN)

≤ −λM− 1
p
||u||pX(RN)

= −
(λM− 1)δp

k
p

< 0

for sufficiently large M and for all u ∈ Yk with ||u||X(RN) = δk. We therefore obtain that

bk = max{ Ĩλ(u) : u ∈ Yk, ||u||X(RN) = δk} < 0

for all k ∈ N, as claimed.
(D3) Because Yk ∩ Zk 6= φ and 0 < δk < ρk, we have dk ≤ bk < 0 for all k ≥ k0. Let us denote

θ̃k = sup
{∫

RN
ρ(x)|u(x)| dx : u ∈ Zk, ||u||X(RN) ≤ 1

}
.
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Then, it is easy to verify that θ̃k → 0 as k → ∞(see [36]). For any u ∈ Zk with ||u||X(RN) = 1 and
0 < t < ρk, we have

Ĩλ(tu) =
1
p
||tu||pX(RN)

− λ
∫
RN

κ(tu)F(x, tu) + (1− κ(tu)ξ|tu|p dx

≥
( 1

p
− λξC

)
||tu||pX(RN)

− λ
∫
RN

(
ρ(x)|tu|+ σ(x)

q
|tu|q

)
dx

≥ −λρ
q
k

||σ||L∞(RN)

q

∫
RN
|u|q dx− λρk

∫
RN

ρ(x)|u| dx

≥ −λρ
q
k

||σ||L∞(RN)

q
θk − λρk θ̃k.

Hence, we achieve

dk ≥ −λρ
q
k

||σ||L∞(RN)

q
θk − λρk θ̃k.

Because θk → 0 and θ̃k → 0 as k→ ∞, we conclude that limk→∞ dk = 0.
(D4) Let u ∈ X(RN) and ||u||X(RN) ≥ 1. We set Ω1 :=

{
x ∈ RN : |u(x)| ≤ t0

}
,

Ω2 :=
{

x ∈ RN : t0 ≤ |u(x)| ≤ 2t0
}

, and Ω3 :=
{

x ∈ RN : 2t0 ≤ |u(x)|
}

, where t0 is given in
Lemma 8. From the relation in Equation (1) and the conditions of κ, we have

Ĩλ(u) :=
1
p
||u||pX(RN)

− λ
∫
RN

F̃(x, u) dx

≥ 1
p
||u||pX(RN)

− λ
∫

Ω1

F(x, u) dx− λ
∫

Ω2

{κ(u)F(x, u) + (1− κ(u))ξ|u|p} dx− λ
∫

Ω3

ξ|u|p dx

≥ 1
p
||u||pX(RN)

− λ
∫

Ω1∪Ω2

F(x, u) dx− λ
∫

Ω2∪Ω3

ξ|u|p dx

≥ 1
p
||u||pX(RN)

− λ
∫

Ω1∪Ω2

ρ(x)|u| dx− λ
∫

Ω1∪Ω2

σ(x)
q
|u|q dx− λ

∫
Ω2∪Ω3

ξ|u|p dx

≥ 1
p
||u||pX(RN)

− 2λ||ρ||Lp′ (RN)
||u||Lp(RN) − λ

(
||σ||L∞(RN)

q
+ ξ

) ∫
RN
|u|p dx

≥ 1
p
||u||pX(RN)

− λ

(
2C||ρ||Lp′ (RN)

+
||σ||L∞(RN)

q
+ ξ

)
||u||pX(RN)

.

Therefore, we deduce that, for any

λ ∈

0,
1

p
(

2C||ρ||Lp′ (RN)
+
||σ||L∞(RN )

q + ξ

)
 ,

Ĩλ is coercive, that is, Ĩλ(u)→ ∞ as ||u||X(RN) → ∞; thus, it is bounded from below on X(RN).
By Lemma 5 and similar arguments as those of Theorem 3 in [31], we claim that functional

Ψ̃′ : X(RN)→ X∗(RN), defined by〈
Ψ̃′(u), ϕ

〉
=
∫
RN

f̃ (x, u)ϕ dx for any ϕ ∈ X(RN),

is compact in X(RN). It also follows from Lemmas 2.2 and 2.3 in [50] that Φ′s,p is strictly monotone,
coercive, and mapping of type (S+). By the Browder–Minty theorem, the inverse operator of Φ′s,p
exists (see Theorem 26.A in [53]). Since Φ′s,p is of type (S+), it is obvious that it has a continuous
inverse. From the compactness of the derivative of Ψ̃ and the coercivity of Ĩλ, it follows that functional
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Ĩλ satisfies Condition (PS). Because X(RN) is a reflexive Banach space, the proof is carried out by the
same scheme as that in ([36], Lemma 3.12).

Consequently, all conditions of Proposition 2 are satisfied; hence, for λ ∈ Γ, we have sequence
cn < 0 for Ĩλ satisfying cn → 0 when n goes to ∞. Then, for any un ∈ X(RN) satisfying Ĩλ(un) = cn and
Ĩ′λ(un) = 0, the sequence {un} is a (PS) sequence of Ĩλ(u), and {un} has a convergent subsequence.
Thus, up to a subsequence, still denoted by {un}, one has un → u in X(RN) as n → ∞. Lemmas 7
and 8 imply that 0 is the only critical point with 0 energy, and subsequence {un} has to converge
to 0 in X(RN); thus, ||un||Lr(RN) → 0 as n → ∞ for any r with p < r < p∗s . Owing to Proposition 1,
any weak solution u of our problem belongs to space L∞(RN), and there exist positive constants C, τ

independent of u, such that
||u||L∞(RN) ≤ C||u||τLq(RN).

From this fact, we know ||un||L∞(RN) → 0; thus, by Lemma 8 again, we have ||un||L∞(RN) ≤ s2

for a large n. Thus, {un} with a large enough n is a sequence of weak solutions of the problem in
Equation (1). The proof is complete.

4. Conclusions

This paper is devoted to the study of the existence, multiplicity, and uniform estimates of
infinitely many nontrivial weak solutions for nonlocal integrodifferential equations. The fountain and
dual-fountain theorems as key tools are powerful techniques for ensuring the existence of multiple
solutions to elliptic equations of the variational type. Subsequently, these theorems have been widely
applied by many researchers to obtain the existence of multiple solutions for various problems
of the elliptic type. The dual-fountain theorem is essential in deriving the existence of infinitely
many small-energy solutions for nonlinear elliptic equations of the variational type. However, the
boundedness of solutions cannot be obtained from this variational method. This theorem is also not
applicable if we drop the condition on nonlinear term f (·, t) at infinity and the oddness of f globally.
To overcome this difficulty, the authors of [24,38,41–44] employed the modified functional method and
global variational formulation. In this regard, our attempt is new because we utilize the dual-fountain
theorem in place of global variational formulation to obtain our main result.
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