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Abstract: This paper presents a new approach to the advanced dynamics of mechanical systems. It is
known that in the movements corresponding to some mechanical systems (e.g., robots), accelerations
of higher order are developed. Higher-order accelerations are an integral part of higher-order
acceleration energies. Unlike other research papers devoted to these advanced notions, the main
purpose of the paper is to present, in a matrix form, the defining expressions for the acceleration
energies of a higher order. Following the differential principle in generalized form (a generalization of
the Lagrange–D’Alembert principle), the equations of the dynamics of fast-moving systems include,
instead of kinetic energies, the acceleration energies of higher-order. To establish the equations which
characterize both the energies of accelerations and the advanced dynamics, the following input
parameters are considered: matrix exponentials and higher-order differential matrices. An application
of a 5 d.o.f robot structure is presented in the final part of the paper. This is used to illustrate the
validity of the presented mathematical formulations.
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1. Introduction

Mechanical systems characterized by ultra-fast movements also include serial structures of robots.
According to Eager, Pendrill and Visser [1,2] and to the authors’ previous research [3,4], the fast
movements occur when the linear acceleration is according to the following condition: a ≥ 2 · g, where
g is the acceleration gravity. As a result, the fast movements of mechanical systems are characterized by
a time variation law for the acceleration, which can be plotted in the form of a higher-order parabola.
Therefore, these observations lead to the conclusion that in mechanical systems subjected to fast
movements, higher-order accelerations, also known in the scientific literature as jerk, snap, crackle,
and pop [5], are occurring. The notion of second-order and higher-order accelerations is of major
importance in the field of theoretical mechanics, but significant developments in other fields of science
were also noted: numerical analysis [6,7], control [8], differential equations [8], astronomy, astrophysics,
and space physics [9–13], medicine [14,15], meteorology [16] and many more. The main purpose of
this paper was not to conduct an exclusive kinematic study on higher-order accelerations. According
to [3,4], the higher-order accelerations become central functions in the expressions of the so-called
higher-order acceleration energies. Appell determined the expression for the first order acceleration
energy in the case of material particles, and for discrete material particle systems [17,18]. Recently,
an impressive increase in the use of robots in manufacturing processes has been recorded, with great
achievements in the field of control or of the speeds and forces developed during the work process.

Symmetry 2020, 12, 95; doi:10.3390/sym12010095 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-0018-5183
https://orcid.org/0000-0002-4017-9063
https://orcid.org/0000-0001-8679-2579
http://dx.doi.org/10.3390/sym12010095
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/1/95?type=check_update&version=2


Symmetry 2020, 12, 95 2 of 24

These developments have spurred the research in the field. In the case of robotic systems, which
are generally operating at high working speeds, their accelerations become extremely important.
For this reason, the Gibbs–Appell formalism is useful in solving a large variety of problems. In the
scientific literature, there is a large number of papers that consider this formalism in the study of the
dynamical system. In the following, we will mention some important achievements in this area of
study. For example, in [19], a formulation for determining the rigid body dynamics by considering
the quasi-velocities is proposed. So, based on the Gibbs–Appell formalism, the equations of motion
with holonomic and nonholonomic constraints, were obtained. Thus, based on this method, it is
possible to eliminate the Lagrange multipliers classically and, therefore, to reduce the number of
equations. In [20], a nonlinear dynamic analysis performed on a flexible-link manipulator is presented.
Here, to obtain the motion equations for the N-link robot, the Gibbs–Appell recursive formulation
is applied. For this purpose, the case of a two-link flexible robot is considered. By numerical
integration of the equations, the results are obtained. The experimental procedure validates the results.
Many papers study this type of mechanical system consisting of a flexible manipulator by using the
Gibbs–Appell (GA) classic formalism. The paper [21] presents an application involving a mechanical
system consisting of an N-flexible-link manipulator. The recursive (GA) formulation, applied in this
case, allows solving the equations without using the Lagrange multipliers. Therefore, the heavy
and simultaneous computations for eliminating the constraints applied to the platform and arms
are circumvented. Finally, the forward dynamics solution in the case of two flexible and single-arm
manipulator with revolute-prismatic joints is obtained. These motion equations are essential in the
control of sensitive bodies. In [22] a systematic method to study the dynamic behavior of multi-rigid
links is presented. This type of system is defined based on two different mathematical models: a
classic set of highly coupled differential equations and a set of algebraic equations for expressing the
constraints. The Lagrangian formulation implies an excessive number of derivatives in the governing
motion equations, and hence, the use of the Gibbs-Appell recursive formulation seems to be an adequate
choice. The recursive Gibbs-Appell formulation has been used in [23] to obtain the final motion
equations. The main advantage of this formulation is that there is no need to eliminate Lagrange’s
multipliers. The main purpose of the matrix formulations in the study of the dynamics of the systems
with linkages consists in the reduction of the computational effort, significant for this type of application.
Some studies presenting different formulations based on the Gibbs–Appell equation conclude that
this involves, less computational operations [24–26]. In the present paper, the equations of advanced
dynamics corresponding to the serial robot structures are determined. According to the principles
from advanced mechanics, serial robots are considered holonomic mechanical systems. As a result,
in the case of these mechanical structures, the Gibbs-Appell starting equations will have a particular
case of application. According to [27,28], the dynamic study of mechanical systems is based on the
principle of D’Alemebert and on Lagrange’s equations of the second kind, specific to conservative and
non-conservative mechanical systems. The paper proposes an alternative to the principles mentioned
above, by using the Gibbs–Appell formalism as starting equations. Thus, the main objectives consist in
determining the expressions for the acceleration energies of higher-order and in including them in
the equations of advanced dynamics. To understand the expressions corresponding to acceleration
energies and the equations of advanced dynamics, in the first part of the paper some important issues
regarding the input parameters are highlighted: homogeneous transformations, matrix exponentials,
and differential matrices corresponding to the advanced kinematics. In the second part, the defining
expressions for the acceleration energies of the first, second and third-order, in a matrix form, will be
determined. Within these expressions, the occurrence of the first, second and third-order dynamics
matrices is noted. These include the differential matrices from advanced kinematics. The advanced
dynamics equations are developed in the third part of the paper. The analysis of these expressions
highlight the existence of higher-order generalized forces, of which, the generalized inertia forces
are essential. Considering the differential principle, in a generalized form, the expressions for the
generalized inertia forces of higher orders will be presented. The latter include the acceleration energies
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of higher-order, corresponding to the fast movements, specific to robot serial structures. In the final
part of the paper, an experimental application focused on the analysis of the motion performed by a
5 d.o.f Fanuc robot is presented.

2. Matrices of the Homogenous Transformations

As stated in a previous paper [4], to perform the dynamic analysis of mechanical systems, some
basic mechanical models are used: the material point and rigid body respectively. They are both
characterized by three and six degrees of freedom. To describe the position of a point or a rigid
body, either three or six independent coordinates must be defined. Usually, the position is given in a
Cartesian reference system, which makes it convenient to express it as a vector, also known as radius
vector. For defining the position and the orientation of a rigid body, an additional frame is attached,
which will move along with the body. This frame will define the position of the body, by considering
the position vector of an arbitrary point of the body (identical with the origin of the frame attached to
the body) and additionally a 3 × 3 matrix, called the orientation matrix. In Newtonian mechanics, the
displacement of a rigid body from an initial position to a final one results by the superposition of two
motions: a resultant translation and a resultant rotation. So, if the position vector of a point relative to
the moving frame (attached to the body) is known, and the position vector of this point relative to
the fixed frame is to be determined, two mathematical operations are applied: the multiplication of
orientation matrices and the addition of vectors. In case the homogeneous transformations are applied,
the calculus is noticeably simplified.

Homogeneous transformations are defined using (4 × 4) matrices, which include the translation
(position) of a frame as well as its rotation (orientation).

The advantages given by this representation makes it very popular in robotics, an interdisciplinary
branch of science and engineering, where multibody systems are commonly studied. In the classical
modeling, the positions of the links relative to a global, fixed frame are defined. To describe the motion
of a mechanical system with (n) links, it is compulsory to specify the number of (6 × n) parameters
also called the absolute coordinates (Figure 1).

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 25 

 

final part of the paper, an experimental application focused on the analysis of the motion performed by a 
5 d.o.f Fanuc robot is presented.  

2. Matrices of the Homogenous Transformations 

As stated in a previous paper [4], to perform the dynamic analysis of mechanical systems, some 
basic mechanical models are used: the material point and rigid body respectively. They are both 
characterized by three and six degrees of freedom. To describe the position of a point or a rigid body, 
either three or six independent coordinates must be defined. Usually, the position is given in a 
Cartesian reference system, which makes it convenient to express it as a vector, also known as radius 
vector. For defining the position and the orientation of a rigid body, an additional frame is attached, 
which will move along with the body. This frame will define the position of the body, by considering 
the position vector of an arbitrary point of the body (identical with the origin of the frame attached 
to the body) and additionally a 3 × 3 matrix, called the orientation matrix. In Newtonian mechanics, 
the displacement of a rigid body from an initial position to a final one results by the superposition of 
two motions: a resultant translation and a resultant rotation. So, if the position vector of a point 
relative to the moving frame (attached to the body) is known, and the position vector of this point 
relative to the fixed frame is to be determined, two mathematical operations are applied: the 
multiplication of orientation matrices and the addition of vectors. In case the homogeneous 
transformations are applied, the calculus is noticeably simplified. 
Homogeneous transformations are defined using (4 × 4) matrices, which include the translation 
(position) of a frame as well as its rotation (orientation).  

The advantages given by this representation makes it very popular in robotics, an 
interdisciplinary branch of science and engineering, where multibody systems are commonly 
studied. In the classical modeling, the positions of the links relative to a global, fixed frame are 
defined. To describe the motion of a mechanical system with ( )n  links, it is compulsory to specify 
the number of (6 × n) parameters also called the absolute coordinates (Figure 1).  

 

Figure 1. A sequence of kinetic assemblies from a mechanical structure with (n) d. o. f. 

The joint coordinates define the motion of any robot link relative to the previous link from a 
kinematic chain (Figure 1). In this way, by using fewer parameters, the positions of the system’s 
adjoining links are described. This section provides a basic introduction in defining the positions and 
orientations of a rigid body, as well as the transformations applied to the position vectors. The 
implementation of homogeneous transformations in defining the geometry of multibody systems is 
discussed. The position and orientation of a moving frame, denoted { }Oxyz S≡ , relative to another 

frame, for example, a fixed frame { }0 , can be comprised in a matrix form, according to [29,30] by 
applying the homogeneous transformations, in a classical form or by using the matrix exponentials: 

{ }i

end effector−

{ }0x

z

( )1Link i −

( )0
nk

{ }1S n≡ +
ipiAp

{ }1i −

y

iA
( )0

1ik −

{ }n

( )0
ik

p

Figure 1. A sequence of kinetic assemblies from a mechanical structure with (n) d. o. f.

The joint coordinates define the motion of any robot link relative to the previous link from a
kinematic chain (Figure 1). In this way, by using fewer parameters, the positions of the system’s
adjoining links are described. This section provides a basic introduction in defining the positions
and orientations of a rigid body, as well as the transformations applied to the position vectors. The
implementation of homogeneous transformations in defining the geometry of multibody systems is
discussed. The position and orientation of a moving frame, denoted Oxyz ≡ {S}, relative to another
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frame, for example, a fixed frame {0}, can be comprised in a matrix form, according to [29,30] by
applying the homogeneous transformations, in a classical form or by using the matrix exponentials:

0
S[T]
(4×4)

(t) =
[ 0

S[R](t) p(t)
0 0 0 1

]
=


∏

{χ={u; v; w}}
exp[χ× δχ] p(t)

0 0 0 1

, (1)

p(t) =
∑

{χ={u; v; w}}

 ∏
{χ={u; v; w}}

exp[χ× δχ]
 · bχ +  ∏

{χ={u; v; w}}
exp[χ× δχ]

 · p(0) · ∆ p,

where ∆ p =
{{

0; p = r0
}
;
{
1; p = rM

}}
,

(2)

bχ =
[
χ(0) · χ(0)T · (δχ − sδχ)+ I3 · sδχ+

(
χ(0)×

)
· (1− cδχ)

]
·

[
p(0) × χ(0) · ∆ χ + (1− ∆χ) · χ

(0)
]
. (3)

The position of the mobile system {S} relative to a fixed system {0} is defined by (2), while
expression (3) is useful to represent a vector by means of homogenous coordinates as a function of
screw parameters. The homogenous coordinates from expression (3) are written as:

χ(0) =
{
u0; v0; w0

}
where u0 =

{
i0; j0; k0

}
; v0 =

{
j0; k0; i0

}
, u0; w0 =

{
k0; i0; j0

}
, v0, (4)

and p(0) × χ(0) · ∆ χ + (1− ∆χ) · χ
(0), (5)

where χ(0) represents the unit vector of the driving axis and the symbols δχ and ∆χ included in the
expression (3) are defined according to [4], as presented below:

δχ =
{
αχ; βχ; γχ

}
; cos δχ = cδχ; sin δχ = sδχ.

According to [4], the generalized expression that characterizes the three simple rotation matrices,
components of the 0

s [R] generalized rotation matrix included in (1), is written as:

R(χ; δχ) =
{
R(x; αx); R

(
y; βy

)
; R(z; γz)

}
=


c
(
δχ · ∆ yz

)
−s(δχ · ∆ z) s

(
δχ · ∆ y

)
s(δχ · ∆ z) c(δχ · ∆ zx) −s(δχ · ∆ x)

−s
(
δχ · ∆ y

)
s(δχ · ∆ x) c

(
δχ · ∆ xy

)
 (6)

∆ u
{χ=u}

=
{
∆ x; ∆ y; ∆ z

}
= 1− ∆ vw

{ χ={v; w} }
,

where χ = {u; v; w}, and u =
{
x; y; z

}
; v =

{
y; z; x

}
, u; w =

{
z; x; y

}
, v,

∆ uv
{ χ={u; v} }

=
{
∆ yz; ∆ zx; ∆ xy

}
=

 1, i f δχ =
{(
βy; γz

)
, (γz; αx),

(
αx; βy

)}
0, i f δχ =

{
αx, βy, γz

} .

(7)

The conclusions and the expressions of definition, from this section, are applied in the advanced
kinematics and dynamics of mechanical systems. In the kinematic study, the generalized coordinates
which define the motion of each driving joint from the robot’s mechanical structure becomes a function
of time. Thus, the time derivative, as well as the partial derivatives, can be applied. The column
vector of the generalized coordinates θ(t), for a certain configuration different from the initial (zero)

configuration θ
(0)

, has the following mathematical expression:

θ , θ
(0)

; θ(t) = [qi(t); i = 1→ n]T. (8)θ(t); .

θ(t);
..

θ(t); · · · ;
(m)

θ (t)

 =

 qi(t);
.
qi(t);

..
qi(t); · · · ;

(m)
qi (t)

i = 1→ n, m ≥ 1

. (9)

where qi(t) is the generalized coordinate from every driving axis, and (m) represents the time
deriving order. The generalized variables of higher order (9) can be developed, according to [4], and
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considering the current and fast motions. The main objective of the Section 3 consists in determining the
advanced kinematic parameters from each kinetic ensemble. Unlike the classical approaches [31–33],
few formulations based on time derivatives of the locating matrices is developed. For this purpose, in
Figure 1 a sequence of two kinetic ensembles (i− 1)→ (i) , from the mechanical structure of a serial
robot, subjected to kinematical study is considered. According to [4], the matrices of the homogenous
transformations are defined with the following expressions:

0
i [T](t) =

0
i [T](t) ·

i−1
i [T](t) =

[ 0
i [R](t) pi(t)
0 0 0 1

]
=

[ 0
i−1[R](t) ·

i−1
i [R] pi−1 + pii−1

0 0 0 1

]
. (10)

Expression (10) defines the position and orientation of the moving frame {i}, attached in the mass
center of every joint relative to {0} (a fixed frame attached to the robot base). The components with the
same meaning are written below:

0
i−1[T](t) =

[ 0
i−1[R](t) pi−1(t)

0 0 0 1

]
, i−1

i [T](t) =
[ i−1

i [R] i−1pii−1

0 0 0 1

]
. (11)

The matrix components from Equations (10) and (11) are defined according to:

i−1
i [R] = Rii−1 ·R

(
ki; qi(t) · ∆ i

)
, 0

i [R](t) =
0
i−1[R](t) ·

i−1
i [R], (12)

i−1pii−1 = i−1p(0)
ii−1 + (1− ∆ i) · qi(t) · i−1ki, pi(t) = pi−1(t) +

0
i−1[R] ·

i−1pii−1, ∆ i

=
{
[1, i = R]; [0, i = T]

}
.

(13)

The symbols presented in Equations (1)–(13) have the following meaning:

•
0
S[T]
(4×4)

(t) is the homogenous transformation between the system {S} and the fixed system {0};

•
0
i−1[T](t) is the homogenous transformation between the mobile system {i} and fixed system {0};

•
i−1
i [R] is the orientation matrix between the adjoining mobile systems {i− 1} and {i};

•
0
i [R] defines the orientation matrix between the mobile system {i} and fixed system {0};

•
i−1pii−1 defines the relative position between systems {i− 1} → {i} and pi(t) the absolute position
of the systems {0} → {i} .

3. Advanced Kinematics Notions

In this section, some important research regarding the matrix exponentials, Jacobian matrix,
and the equations of advanced kinematics are presented. In all studies developed by the authors,
the Jacobian matrix represents the transfer matrix of linear and angular velocities. In the scientific
literature, the Jacobian matrix is known as the matrix of partial derivatives applied to the position
and orientation functions for the last element in the kinematic chain of the mechanical system. The
expressions for the differential matrices are also developed. They have an essential role in establishing
the acceleration energies of higher-orders and the equations of advanced dynamics for any mechanical
structure subjected to fast motions.

3.1. Matrix Exponentials in Advanced Kinematics

The homogenous transformations, which were previously defined, in a classical form, are further
developed in exponential form. As a result, the homogenous transformations between the systems
{0} → {n} and {0} → {n + 1} as well, where {n + 1} ≡ {S}, are established according to [29,30]:

0
n[T] = Tn0 =

n∏
i=1

Tii−1(qi) =

 i−1∏
j=1

δ j j−1


−1

·

 i∏
j=1

T(0)
j j−1

 · exp(Ui · qi) · E j j−1, (14)
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where E j j−1 =

 i∏
j=1

T(0)
j j−1

−1

·

 i∏
j=1

T(0)
j j−1

 and δ j j−1 =
{ {

T(0)
j j−1; i ≥ 2

}
; {I4; i = 1 }

}
,

and Ui = τi ·


{
(i) i−1ki×

}
· ∆i

(i) i−1ki · (1− ∆i)

0 0 0 0

, τi = ±1,

(15)

Tx0 =
x∏

i=1

Tii−1 =

[
Rx0 p

0 0 0 1

]
=

 n∏
i=1

exp[Ai · qi]

 · T(0)
x0 , where x = {n ; n + 1 ≡ S}. (16)

The symbol Ui included in Equation (14) defines the Uicker differential operator.

• k
(0)
k(i) is the unit vector, in the initial configuration of the driving axis corresponding to the

generalized coordinate qk(i);

• ∆k(i) = 1 when qk(i) corresponds to an angular coordinate, otherwise ∆k(i) = 0.

In the expression (16), the rotation submatrix Rx0 and the position vector p, are defined as:

Rx0 =

 n∏
i=1

exp
{
k
(0)
i ×

}
qi · ∆ i

 · R(0)
x0 , (17)

p =
n∑

i=1

 i−1∏
j=0

exp
{
k
(0)
j ×

}
q j · ∆ j

 · bi +

{
n∏

i=1
exp

{
k
(0)
i ×

}
qi · ∆ i

}
· p(0) · δx,

δx = {{0; x = n}; {1; x = n + 1}}.

(18)

Also, within the matrix defined with (16), the exponent (0) characterizes the initial configuration
of the mechanical system, and the symbol Ai represents a (4× 4) matrix whose components are given

by the homogenous coordinates or screw parameters k
(0)
i and v(0)i :

Ai =


{
k
(0)
i ×

}
∆ i v(0)i

0 0 0 0

 =


{
k
(0)
i ×

}
∆ i

{
p(0)i ×

}
k
(0)
i · ∆ i + (1− ∆ i) k

(0)
i

0 0 0 0

. (19)

In the study of advanced kinematics and dynamics, the partial derivatives applied to the
homogeneous transformations expressed by the matrix exponentials play an essential role.

∂ { Tn0}

∂ qi
=


i−1∏
j=0

exp
[
A j · q j

] · Ai ·

 n∏
k=i

exp[−Ak · qk]

 · T(0)
n =

[
Ani(R) Ani(p)
0 0 0 0

]
. (20)

In establishing the exponentials of the linear transfer matrix, the last column from (20) is considered.
Also, according to [4], the first and second matrix exponential from (19) are written as:

i−1∏
j=0

exp
[
A j · q j

]
=

[
exp[R] exp[p]

0 0 0 1

]
,exp

 n∑
k=i

Ak · qk

 =

 exp[Rk] exp
[
pk

]
0 0 0 1

 , (21)

where exp[Rk] =
n∏

k=i
exp

{{
k
(0)
k ×

}
qk · ∆k

}
, exp

[
pk

]
=

n∑
k=i

{
k−1∏

m=i−1
exp

{{
k
(0)
m ×

}
qm · δm

}}
· bk,

δm = {{0; m = i− 1}; {1; m ≥ i}} and bk is de f ined according to (3).
(22)
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Considering [29], it can be noticed that the ith column of the linear transfer sub-matrix is:

V̄i = ∂
∂qi

(p̄n) =

 i−1∏
j=0

exp
{{

k̄(0)j ×

}
q j · ∆ j

} · v̄(0)i +

+

{
n∏

k=i
exp

{{
k̄(0)k ×

}
qk · ∆k

}}
· p̄(0)n + ∆i ·

 i−1∏
j=0

exp
{{

k̄(0)j ×

}
q j · ∆ j

} · {k̄(0)i ×

}
·Amk,

(23)

where Amk=

n∑
k=i

 k−1∏
m=i−1

exp
{{

k
(0)
m ×

}
qm · δm

}
· bk

. (24)

Based on the research from [29], the exponential of the linear matrix V
(
θ
)

representing one of the

two components of the Jacobian matrix 0 J
(
θ
)
, can be written in a matrix form as follows:

V
(
θ
)
= [Vi , where i = 1→ n] = ME(Vi1) ·ME(Vi2) ·ME(Vi3) ·Miv. (25)

According to [29], within the expression (25), the symbols ME(Vi1), ME(Vi2), ME(Vi3) and Miv
respectively, have the following mathematical meaning:

ME
(3x3)

(Vi1) =
i−1∏
j=0

exp
{{

k
(0)
j ×

}
q j · ∆ j

}
, ME
(3×6)

(Vi2) = I3 ∆ i ·

{
k
(0)
i ×

}
, (26)

ME(Vi3)
{ 6x[9+3·(n−i)] }

=

[
I3 [0] [0]
[0] ME(Vi322) ME(Vi323)

]
,

Miv
[9+3·(n−i)]×1

=
[

v(0)Ti

[
bk; k = i→ 3

]T
p(0)Tn

]T
.

(27)

The submatrices ME(Vi322) and ME(Vi323) from Equation (27) are defined according to:

ME(Vi322) =
k−1∏

m=i−1

exp
{{

k
(0)
m ×

}
qm · δm · ∆m

}
, where k = i→ n, (28)

and ME(Vi323) =
n∏

k=i

exp
{{

k
(0)
k ×

}
qk · ∆ k

}
. (29)

By performing some matrix transformations, the angular component Ω
(
θ
)

of the Jacobian matrix
0 J

(
θ
)

is obtained and can be written in an exponential form as follows:

Ω
(
θ
)
=

[
Ωi , i = 1→ n

]
, where Ωi =


i−1∏
j=0

exp
{{

k
(0)
j ×

}
q j · ∆ j

} · k(0)i . (30)

If the driving joint (j), is a translation joint
(
∆ j = 0

)
, it results that: exp{0} = I3, the latter defining

a (3× 3) matrix known as the unit matrix. The Jacobian matrix or the velocity transfer matrix is
determined by considering the same algorithm from [29]. Its linear components are defined using the
matrices (23)–(29), while the angular component results according to (30). Considering these aspects,
the following new matrices, written in an exponential form, are implemented:

ME
[
0 J i

]
{6×[12+3·(n−i)]}

= ME[Ji1] ·ME[Ji2] ·ME[Ji3], (31)
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The symbols contained in the right side member of (31) are functions of matrix exponentials:

ME
(6×6)

[Ji1] =

[
ME[Vi1] [0]

[0] ME[Vi1]

]
, ME
(6×9)

[Ji2] =

[
ME[Vi2] [0]

[0] I3

]
,

ME[Ji3]
{9×[12+3·(n−i)]}

=

[
ME[Vi3] [0]

[0] I3

]
,

(32)

Based on the notations above, the Jacobian matrix is determined in exponential form, as:

0 J i
[
θi(t)

]
=

[
V

T
i ΩT

i

]T
= ME

[
0 J i

]
·Mivω

= ME
{
Ji1

[
θi(t)

]}
·ME

{
Ji2

[
θi(t)

]}
·ME

{
Ji3

[
θi(t)

]}
·Mivω

[
θi(t)

]
.

(33)

0 J
[
θi(t)

]
(6×1)

=
[

0 J i
[
θi(t)

]
, i = 1→ n

]T
(34)

The column vector Mivω from Equation (33) is defined according to the following expression:

Mivω
{ [12+3·(n−i)] ×1}

=
[

v(0)Ti

[
bk ; k = i→ n

]T
p(0)Tn ∆i · k

(0)T
i

]T
. (35)

In the advanced kinematics and dynamics, the time derivative of the Jacobian matrix is essential:

(k)
0 J

[
θ(t)

]
(6×n)

≡

 (k)
0 J i

[
θi(t)

]
(6×1)

where i = 1→ n

. (36)

In Equation (36), k ≥ 1 represent the time deriving order. In the case of serial robot structures, the
study of current motions is based on the forward kinematics equations. These are a function of the
Jacobian matrix and of its time derivatives, as follows: (n)0

.

X(t)

(n)0
..

X(t)

 =


[
(n)0vT

n (t) (n)0ωT
n (t)

]T[
(n)0

.
vT

n (t) (n)0
.
ωT

n (t)
]T

 =
 [0] (n)0 J

[
θ(t)

]
(n)0 J

[
θ(t)

]
(n)0

.
J
[
θ(t)

]  ·


..

θ(t)
.

θ(t)

 (37)

where (n)0
.

X(t) and (n)0
..

X(t) represents the (6× 1) column vector of the absolute linear and angular
velocities and accelerations whose components are the absolute linear and angular velocities and
accelerations from the last joint (n) of the kinematic chain. If the mechanical systems (e.g., serial robots)
used in different applications are characterized by fast motions [3], the occurrence of the higher-order
accelerations is observed. Therefore, in the case of the mechanical structures of serial robots, the
advanced kinematics equations corresponding to forward and inverse modeling are:

(m)
0X(t) =

m∑
k=1

(m−1)!
(k−1)!(m−k)! ·

(k−1)
0 J

[
θ(t)

]
·

[m−(k−1)]
θ(t)

= 0 J
[
θ(t)

]
·

(m)

θ(t) +
m−1∑
k=1

(m−1)!
k!(m−k−1)! ·

(k)
0 J

[
θ(t)

]
·

[m−k]
θ(t)

(38)

(m)

θ(t) = 0 J
[
θ(t)

]−1
·

(m)
0X(t) − 0 J

[
θ(t)

]−1
·

m−1∑
k=1

(m− 1)!
k!(m− k− 1)!

·

(k)
0 J

[
θ(t)

]
·

(m−k)
θ(t) , (39)

In the same expressions, the notations (k) and (m) are the deriving orders with respect time if the
following conditions are met: {k ≥ 1, k = {1, 2, . . .}} and {m ≥ k + 1, m = {2, 3 . . .}}. The application of
matrix exponentials has important advantages: the unitary form, the easy geometric representation
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and the fact that it avoids the application of the reference systems. The latter is an important property,
because the use of reference systems may introduce certain geometric restrictions.

3.2. The Differential Matrices in Advanced Kinematics

Considering the expressions from the Sections 2 and 3.1, regarding the homogenous
transformations and matrix exponentials, in the Section 3.2, the differential matrices of homogeneous
transformations are developed. They have a fundamental role in the kinematics and dynamics of
mechanical systems (e.g., robot structures) in terms of computational advantages (e.g., the determining
of the Jacobian matrix (velocities’ transfer matrix)), in a classical form, and of the dynamics matrices.
The dynamics matrices are essential components of the acceleration energies in matrix form, in case of
mechanical systems characterized by fast motions. According to references [4], the dynamics matrices
include the differential matrices of a first, second and higher-order. The differential matrices can be
determined either by applying the partial derivatives directly on the homogenous transformations or
by using the exponential matrix functions.

The components of the differential matrices are represented by the submatrices corresponding
to the rotation (R) and position (p), respectively. The first-order differential matrices Ai j(k,m,p) are
determined according to the following expressions:

Ai j(k,m,p) =

[
Ai j(k,m,p)(R) Ai j(k,m,p)(p)

0 0 0 0

]
=

∂
∂q j

{
0
i [T]

}
= 0

j [T] ·U j ·
j
i [T]. (40)

By using the matrix exponentials, the two components of rotation (R), and position (p), from
Equation (40), are further defined:

Ai j(R) =
∂
∂q j

{
0
i [R]

}
=

exp


j−1∑
k=0

[
k
(0)
k ×

]
· qk · ∆k


 ·

[
k
(0)
j ×

]
· ∆ j · exp


i∑

l= j

[
k
(0)
l ×

]
· ql · ∆l

 ·R(0)
i0 , (41)

Ai j(p) =
∂pi
∂q j

=

exp

 j−1∑
k=0

(
k
(0)
k ×

)
· qk · ∆k

 · [(p(0)j ×

)
· k

(0)
j · ∆ j +

(
1− ∆ j

)
· k

(0)
j

]
+

+ exp

 i∑
l= j

(
k
(0)
l ×

)
· ql · ∆l

 · p(0)i + ∆ j · exp

 j−1∑
k=0

(
k
(0)
k ×

)
· qk · ∆k

 ·A∗i j(p),

where A∗i j(p) =
i∑

l= j

exp

 l−1∑
m= j−1

(
k
(0)
m ×

)
· qm · ∆m · δm


 · bl and δm

=
{
(0 , m = j− 1) , (1 , m ≥ i)

}
.

(42)

The differential matrix of second-order is defined with matrix exponential functions:

Ai jk =

[
Ai jk(R) Ai jk(p)

0 0 0 0

]
=

∂2

∂q j · ∂qk

{
0
i [T]

}
= 0

k [T] ·Uk ·
k
j [T] ·U j ·

j
i [T], (43)

Ai jk(R) = ∂2

∂q j·∂qk

{
0
i [R]

}
=

{
exp

{
k−1∑
l=0

(
k
(0)
l ×

)
· ql · ∆l

}}
·

(
k
(0)
k ×

)
· ∆k ·A∗i jk(R),

where A∗i jk(R) =
exp

 j−1∑
m=k

(
k
(0)
m ×

)
· qm · ∆m

 · (k(0)m ×

)
· ∆m ·

{
exp

{
i∑

p=m

(
k
(0)
p ×

)
· qp · ∆p

}}
·R(0)

i0 ,
(44)

Ai jk(p) =
∂
∂qk

[
Ai j(p)

]
=

∂2

∂qk · ∂qm

[
Ai j(p)

]
. (45)

The sub-matrices included in Equations (41) and (45) are determined according to [3–5], by using
exponential matrix functions. The following symbols are explained:
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• p(0)i and R(0)
i0 defines the position vector in the initial configuration and the orientation matrix of

the system {i} relative to {0}, respectively;
• τ j = ±1, the sign of generalized coordinate relative to the unit vector of the driving axis;
• U j(k,m) represents the derivative matrix operator (Uicker operator).

The differential matrix of third order contained in the dynamics matrices is defined:

Ai jkm =

[
Ai jkm(R) Ai jkm(p)
0 0 0 0

]
=

∂3

∂q j · ∂qk · ∂qm

{
0
i [T]

}
= 0

m[T] ·Um ·
m
k [T] ·Uk ·

k
j [T] ·U j ·

j
i [T], (46)

Ai jkm(R) =
{

exp
{

m−1∑
l=0

(
k
(0)
l ×

)
· ql · ∆ l

}}
·

(
k
(0)
m ×

)
· ∆m ·

{
exp

{
k−1∑
p=m

(
k
(0)
p ×

)
· qp · ∆p

}}
·

(
k
(0)
p ×

)
· ∆p ·A∗i jkm(R),

where A∗i jkm(R) =
exp

 j−1∑
r=p

(
k
(0)
r ×

)
· qr · ∆r

 · (k(0)r ×

)
· ∆r · exp

{
i∑

s=r

(
k
(0)
s ×

)
· qs · ∆s

}
·R(0)

i0 ,
(47)

and Ai jkm(p) =
∂
∂qk

[
Ai jk(p)

]
=

∂2

∂qk · ∂qm

[
Ai j(p)

]
. (48)

The matrix U j(k,m) from Equations (40) and (46), has an essential role in substituting the classical
partial derivative (∂/∂ qi, i = 1→ n ) applied to homogenous transformation. The differential matrix
of fourth-order, component of the dynamics matrices, is presented below:

Ai jkmp
(4×4)

=

[
Ai jkmp(R) Ai jkmp(p)

0 0 0 0

]
, (49)

Ai jkmp(R) =
∂4

∂q j · ∂qk · ∂qm · ∂qp

{
0
i [R]

}
=

exp


p−1∑
l=0

(
k
(0)
l ×

)
· ql · ∆l


 ·A∗i jkmp(R), (50)

A∗i jkmp(R) =
(
k
(0)
p ×

)
· ∆p ·

exp

m−1∑
r=p

(
k
(0)
p ×

)
· qr · ∆r


 ·A∗∗i jkmp(R), (51)

A∗∗i jkmp(R) =
(
k
(0)
r ×

)
· ∆r ·

exp

k−1∑
s=r

(
k
(0)
r ×

)
· qs · ∆s


 ·A∗∗∗i jkmp(R), (52)

A∗∗∗i jkmp(R) =
(
k
(0)
s ×

)
· ∆s ·

exp


j−1∑
u=s

(
k
(0)
u ×

)
· qu · ∆u


 ·A∗∗∗∗i jkmp(R), (53)

A∗∗∗∗i jkmp(R) =
(
k
(0)
u ×

)
· ∆u · exp

 i∑
v=u

(
k
(0)
v ×

)
· qv · ∆v

 ·R(0)
i0 , (54)

Ai jkmp(p) =
∂Ai jkm(p)

∂qp
=
∂2Ai jkm(p)

∂qm · ∂qp
=

∂3Ai j(p)

∂qk · ∂qm · ∂qp
=

∂4pi
∂q j · ∂qk · ∂qm · ∂qp

. (55)

The differential matrices of the first, second, third, and fourth-order, previously presented as
reference expressions, will prove to be essential in establishing the dynamics matrices. The latter are
components of the matrix expressions which characterize the kinetic energies as well as the acceleration
energies of higher orders.

4. The Matrix Expressions of the Acceleration Energies

As mentioned in the scientific literature [17,18,33], in 1879, Gibbs defined the differential
equations of motion, on which, later in 1899, Paul Appell, performed an elaborate study. Therefore,
the Gibbs–Appell equations were determined. These equations are applied for holonomic and
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non-holonomic systems. The study presented in this paper was carried out by considering the
holonomic mechanical systems, for which, the Gibbs–Appell equations along with their higher-order
derivatives, are customized. Furthermore, in developing these equations, we aimed to highlight
the importance of the acceleration energies of higher-order, as central functions, in the study of the
dynamics of mechanical systems, characterized by fast movements.

In this case, the kinetic energy is substituted by the acceleration energy, also known as Appell’s
function or “kinetic energy of acceleration” [34,35]. Unlike the studies mentioned above, the author
developed the expressions for the acceleration energy of first, second, and third-order, specific to a
mechanical system characterized by fast motions. The starting equations for defining the acceleration
energy are presented below:

E(p)
A

θ(t); .

θ(t); · · · ;
(p+1)

θ(t)

 = 1
2 ·

n∑
i=1

Trace

(p+1)
0
i [R] ·

[
iI∗pi + Mi ·

irCi ·
irT

Ci

]
·

(p+1)
0
i [R]

T

 + 1
2 ·

n∑
i=1

Trace

(p+1)
pi ·

(p+1)

pT
i

 ·Mi =

= 1
2 ·

n∑
i=1

Trace

(p+1)
0
i [R] ·

[∫
iri
∗
·

iri
∗T
· dm + irCi ·

irT
Ci
·

∫
dm

]
·

(p+1)
0
i [R]

T

+ 1
2 ·

n∑
i=1

Trace

(p+1)
pi ·

(p+1)

pT
i

 · ∫ dm

(56)

Equation (56) defines the acceleration energy of order “p = 1, 2, 3, . . . ” corresponding to the whole
mechanical system. The symbols from Equation (56) have the following meaning: (p) and (p + 1)
represent the order of the absolute time derivatives; iri

∗ is the position vector of the elementary mass
dm, relative to a reference frame {i∗} applied in the mass center; (i)rCi defines the position vector
of the mass center projected on the fixed {0} or moving {i} reference frame (Figure 2b); 0

i [R] is the
orientation matrix between the two reference systems. A mechanical system is characterized by “n”
degrees of freedom (d.o.f.) or generalized coordinates, which are included in the column matrix
θ(t) = (qi(t), f or i = 1→ n)T. Further, it should be noted that the expressions of acceleration energies
of the first, second, third, and fourth orders were determined in a previous paper [4], in an explicit form,
and by using mass integrals. In this section, the matrix form of acceleration energies of higher orders is
presented exclusively. An important issue that must be mentioned is that the dynamics matrices have
to be included in these expressions. The dynamics matrices comprise the differential matrices from the
advanced kinematics, written with matrix exponentials and developed in the Section 2.Symmetry 2019, 11, x FOR PEER REVIEW 13 of 25 
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= ⋅  ( ) ( ) { } { }{ }1 , ; ; ;i jj =  1  p N i n and  =  1  j   i   1  j   iσ→ ∈ ⊂ = → ∈ − ∉  

(63)
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Figure 2. (a) The frames attached to a solid body and position vectors; (b) The position of the mass
center in case of a solid body.
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4.1. The Acceleration Energy of the First Order

Using Equation (56) as the starting equation, and by applying some successive matrix
transformations, the defining expression for the acceleration energies of first order is obtained.
This expression can be written in a matrix form as follows:

E(1)
A

[
θ(t);

.

θ(t);
..

θ(t)
]
= 1

2 ·

{ ..

θ
T
(t) ·M

[
θ(t)

]
·

..

θ(t) +
..

θ
T
(t) ·V

[
θ(t);

.

θ
2
(t)

]
+

[ .

θ
T
(t) ·D

[
θ(t);

.

θ
2
(t)

]
·

.

θ(t)
]}

. (57)

Equation (57) includes the column vector of the generalized velocities and accelerations whose
components are represented by the first and second-order time derivatives of the column matrix of

generalized variables
{
θ(t),

.

θ(t),
..

θ(t)
}

(see (9)). Also in the expression (57) a set of dynamics matrices,

is noticed, and they are defined as follows:

M
[
θ(t)

]
(n×n)

=

Mi j =
n∑

k=max(i; j)

Trace
[
Aki ·

kIpsk ·AT
kj

]
, i = 1→ n, j = 1→ n

, (58)

V
[
θ(t);

.

θ
2
(t)

]
(n×1)

=

[
Vi

[
θ(t);

.

θ
2
(t)

]
, i = 1→ n

]
. (59)

Equation (58) defines a (n× n)matrix, called the mass matrix or the inertia matrix of the acceleration
energies of the first order, whose components denoted with Mi j are also defined.

The column matrix of centrifugal and Coriolis terms of the first-order is defined by Equation (60)
as an (n× 1) matrix, having the following components:

Vi

[
θ(t);

.

θ
2
(t)

]
=

.

θ
T
·

Vi jm =
n∑

k=max ( j;m)
Trace

[
Aki ·

kIpsk ·AT
kjm

]
, where j = 1→ n, m = 1→ n

 · .

θ. (60)

The pseudo inertial matrix corresponding to the acceleration energies of first order is defined as:

D
[
θ(t);

.

θ
2
(t)

]
=

.

θ
T
·

Di jlm =
n∑

k=max (i; j;l;m)
Tr

[
Aki j ·

kIpsk ·AT
klm

] · .

θ, where
{

i = 1→ n, j = 1→ n
l = 1→ n, m = 1→ n

}
. (61)

This notices that Equations (57) and (61) include the so-called differential matrices of first and
second-order denoted with Aki and Akjm, respectively. Their components are determined according to
Equations (40)–(42) in the case of the differential matrices of first-order (Aki), while as for the differential
matrices of second order, the Equations (43)–(45) are applied.

According to [4], the mass properties (Figure 2), are included in the dynamic matrices using the
pseudo-inertial tensor, denoted with kIpsk and defined as follows:

kIpsk
(4×4)

=

[ ∫
krk ·

krT
k · dm

∫
krk · dm∫

krT
k · dm

∫
dm

]
=

 kIpk Mk ·
krCk

Mk ·
krT

Ck
Mk

 (62)

where kIpk =
pk∑

j=1
σ j ·

kIpj =


kIxx

kIxy
kIxz

kIyx
kIyy

kIyz
kIzx

kIzy
kIzz

, and krCk =
1

Mk
·

 pk∑
j=1

σ j ·
krC j ·m j

,

Mk =
pk∑

j=1
σ j ·m j,( j = 1→ pi ∈ N) ⊂ (i = 1→ n), and σ j =

{{
1; j ∈ i

}
;
{
−1; j < i

}} (63)

Equation (62) shows that the pseudo inertial tensor is a squared (4× 4) symmetrical matrix [4].
According to (63), it contains the inertial tensor of planar and centrifugal terms, the static moments,
and the total mass of the kinetic ensemble as well.



Symmetry 2020, 12, 95 13 of 24

4.2. The Acceleration Energy of Second-Order

The mechanical systems characterized by fast motions, subjected to the action of external forces
and characterized by a time variation law, are defined by linear and angular accelerations of higher
order. Unlike the formulations presented in paper [4], where the acceleration energy of the second
order was established by using the mass integrals, in the following, the expression of the acceleration
energy of second-order, is written in a matrix form as:

E(2)
A

[
θ(t);

.

θ(t);
..

θ(t);
...
θ(t)

]
= 1

2 ·
...
θ

T
(t) ·M

[
θ(t)

]
·

...
θ(t) + 3 ·

...
θ

T
(t) ·V

[
θ(t);

.

θ(t);
..

θ(t)
]
+

+
...
θ

T
(t) ·H

[
θ(t);

.

θ
2
(t)

]
·

.

θ(t) + E(2)
A

[
θ(t);

.

θ(t);
..

θ
2
(t)

]
+ E(2)

A

[
θ(t);

.

θ
6
(t);

..

θ(t)
]
.

(64)

The components E(2)
A

[
θ(t);

.

θ(t);
..

θ
2
(t)

]
and E(2)

A

[
θ(t);

.

θ
6
(t);

..

θ(t)
]

are not developed in this paper.

Their components in explicit form can be found in the research presented in [4].
Equation (64) includes the dynamics matrices of the second order. They are defined as:

V
[
θ(t);

.

θ(t);
..

θ(t)
]
=

[
V∗i

[
θ(t);

.

θ(t);
..

θ(t)
]
, where i = 1→ n

]
,

and V∗i
(n×1)

[
θ(t);

.

θ(t);
..

θ(t)
]
=

..

θ
T
·

[{
Vi jm = Vimj

}
, where j = 1→ n and m = 1→ n

]
·

.

θ,
(65)

H
[
θ(t) ;

.

θ
2
(t)

]
(n×n)

=

[
Hi j

[
θ(t);

.

θ
2
(t)

]
, where i = 1→ n and j = 1→ n

]
, (66)

Hi j

[
θ(t);

.

θ
2
(t)

]
=

.

θ
T
·

Hi jlm =
n∑

k=max (i; j;l;m)

Tr
[
Aki ·

kIpsk ·AT
kjlm

]
, l = 1→ n , m = 1→ n

 · .

θ. (67)

Therefore, along with the inertia matrix and the matrix of Coriolis and centrifugal terms, in
the expression for the acceleration energy of second-order acceleration, the pseudo inertial matrix

H
[
θ(t) ;

.

θ
2
(t)

]
(n×n)

, defined by Equations (66) and (67) can also be found.

4.3. The Acceleration Energy of Third-Order

Based on the preliminary aspects presented in the Section 4.2, referring to the fast motion which
characterizes the mechanical systems subjected to the action of a system of external forces with a time
variation law, the dynamic study is extended to the acceleration energy of third order. As mentioned
before, the explicit form of the acceleration energy of the third-order was presented in the paper [4].
According to [3], an equation for defining the acceleration energy of third order in matrix form, as a

function which depends exclusively of
....
θ = (

....
q i, i = 1→ n)T, is presented:

E(3)
A

[
θ(t);

.

θ(t);
..

θ(t);
...
θ(t);

....
θ (t)

]
= 1

2 ·
....
θ

T
(t) ·M

[
θ(t)

]
·

....
θ (t) + 4 ·

....
θ

T
(t) ·V

[
θ(t);

.

θ(t);
...
θ(t)

]
+

+3 ·
....
θ

T
(t) ·V∗

[
θ(t);

..

θ
2
(t)

]
+ 6 ·

....
θ

T
(t) ·H∗

[
θ(t);

.

θ
2
(t)

]
·

..

θ(t) +
....
θ

T
(t) ·K∗

[
θ(t);

.

θ
4
(t)

]
.

(68)

The dynamics matrices of the third order, included in the acceleration energy of third order, have
the following expressions of definition:

V
[
θ(t);

.

θ(t);
...
θ(t)

]
= Matrix

(n×1)

{ ...
θ

T
·

[
Vi jm, where i = 1→ n, j = 1→ n, m = 1→ n

]
·

.

θ
}T

, (69)
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V ∗
[
θ(t);

..

θ
2
(t)

]
= Matrix

(n×1)

{ ..

θ
T
·

[
Vi jm, where i = 1→ n, j = 1→ n, m = 1→ n

]
·

..

θ

}T

, (70)

H∗
[
θ(t);

.

θ
2
(t)

]
= Matrix

(n×n)

{
H∗i j

[
θ(t);

.

θ
2
(t)

]
, where i = 1→ n, j = 1→ n

}
, (71)

H∗i j

[
θ(t);

.

θ
2
(t)

]
=

.

θ
T
·

[
Hi jlm, where l = 1→ n, m = 1→ n

]
·

.

θ, (72)

K∗
[
θ(t);

.

θ
4
(t)

]
= Matrix

(n×1)

{
K∗i

[
θ(t);

.

θ
4
(t)

]
, where i = 1→ n

}T

, (73)

K∗i

[
θ(t);

.

θ
4
(t)

]
=

.

θ
T
·

{ .

θ
T
·

[
Ki jlmp, j = 1→ n, l = 1→ n, m = 1→ n, p = 1→ n

]
·

.

θ

}
·

.

θ, (74)

where Ki jlmp =
n∑

k=max (i; j;l;m;p)

Tr
[
Aki ·

kIpsk ·AT
kjlmp

]
. (75)

It should be noted that, in case of the acceleration energy of third-order, the mass properties are
defined by the pseudo inertial tensor and higher-order differential matrices A jklm and A jklmp. The last
two matrices are defined based on Equations (46)–(55) from the Section 3.

Likewise, Equation (68) comprises the pseudo-inertial matrix of third order, which is defined
according to Equations (73)–(75), previously presented.

5. The Advanced Dynamics Equations

The advanced equations from the dynamics of the current and fast motions of the mechanical
systems, according to differential principles from analytical dynamics of systems, are based on the
advanced notions of dynamics: generalized driving and inertia forces, as well as the acceleration
energies, along with their higher orders time derivatives.

Advanced notions are developed in direct correlation with generalized variables which univocally
characterize the holonomic systems (robot mechanical structure). In analytical mechanics, the advanced
notions are substituted into the dynamic equations of higher order, thus obtaining the time variation
laws for the generalized forces.

5.1. The Generalized Forces of Higher-Order

According to [34–37], on every kinetic ensemble (i = 1→ n) belonging to the mechanical structure
of the serial robots, a system of external and active forces, manipulating loads, and complex friction
forces is applied (see Figure 3).

In what follows, the expressions that define the higher-order derivatives applied to generalized
inertia force are presented [34]:

(k)

Qi
iF (t) =

k∑
m=1

(k−1)!
(m−1)!(k−m)! ·

(m−1)
0 JT

i

[
θ(t)

]
·

[k−(m−1)]

0
F

∗

Xi
=

= 0 JT
i

[
θ(t)

]
·

(k)

0
F

∗

Xi
+

k−1∑
m=1

(k−1)!
m!(k−m−1)! ·

(m)
0 JT

i

[
θ(t)

]
·

[k−m]

0
F

∗

Xi
,

(76)

where 0
F

∗

Xi
=

[
0F
∗T
Xi

0N
∗T
Xi

]T
,

and 0F
∗

Xi
=

n∑
j=i

0
j [R] ·

jF
∗

j, 0N
∗

Xi
=

n∑
j=i

{(
0rC j
− pn

)
×

0
j [R] ·

jF
∗

j +
0
j [R] ·

jN
∗

j

}
.

(77)
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Figure 3. The kinematic parameters and the generalized forces.

Based on the theorem of mass center movement (Newton’s Equation) and the theorem of angular
momentum relative to the mass center (Euler’s Equation) as well, the symbols jF

∗

j and jN∗j contained
in Equation (77) represent the components of the inertia forces torsor, defined according to the
following expressions:

jF
∗

j = −M j ·
j

.
vC j

, jN
∗

j = −
(

jI∗j ·
j

.
ω j +

jω j ×
jI∗j ·

jω j

)
, (78)

where j ˙̄vC j =
j ˙̄v j +

j ˙̄ω j× jr̄C j +
jω̄ j× jω̄ j ×

jr̄C j , f or i = 1, 0 ˙̄v0 ≡ ḡ = τ · g · k̄0. (79)

In the expressions presented above, j
.
vC j is the linear acceleration of mass center, jω j and j

.
ω j

define the angular velocities and accelerations of each kinetic ensemble (i), and jI∗j the inertial tensor
axial and centrifugal relative to

{
j∗
}

frame attached to the mass center of each kinetic ensemble. Further,
the expressions for the higher-order derivatives of the generalized gravitational forces by considering
the dynamic behavior of each driving joint are developed:

(k)

Qi
g(t) =

k∑
m=1

(k−1)!
(m−1)!(k−m)! ·

(m−1)
0 JT

i

[
θ(t)

]
·

[k−(m−1)]

0
F Xi

= 0 JT
i

[
θ(t)

]
·

(k)

0
F Xi

+
k−1∑
m=1

(k−1)!
m!(k−m−1)! ·

(m)
0 JT

i

[
θ(t)

]
·

[k−m]

0
F Xi

, (80)

(n)0oXi
(6×1)

=
[

(n)0F
T
Xi

(n)0N
T
Xi

]T
,

where (n)0FXi
=

n∑
j=i

M j ·
(0)n
n [R]T · g, (n)0NXi =

n∑
j=i

M j ·
(0)n
n [R]T ·

[(
0rC j − pn

)
× g

]
,

(81)

and g = τ · g · k0, τ = ∓k
T
0 · kg, kg = 0g/

∣∣∣0g
∣∣∣, k0 − vertical unit vector ∈ {0}. (82)

The column vector (81), defined relative to the Cartesian space, is mechanically equivalent with a
reduction torsor of gravitational forces in the interval [i ; n], relative to the {n} frame (Figure 4). This
frame is attached to the geometrical center of the last driving joint belonging to the robot structure
(Figures 3 and 4).

Further, the higher-order derivative of the generalized handling (manipulating) force is defined:

(k)
QSU

[
θ(t)

]
=

k∑
m=1

(k−1)!
(m−1)!(k−m)! ·

(m−1)
0 JT

[
θ(t)

]
·

[k−(m−1)]

0
F X = 0 JT

[
θ(t)

]
·

(k)

0
F X +

k−1∑
m=1

(k−1)!
m!(k−m−1)! ·

(m)
0 JT

[
θ(t)

]
·

[k−m]

0
F X, (83)
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where 0
F X
(6×1)

=
[

0F
T
X

0N
T
X

]T
=


(n)0
n+1[R] [0]

(3×3){
(0)n
n [R]T · pn+1n×

}
n
n+1[R]

(0)n
n+1[R]

 ·
 n+1 f n+1

n+1nn+1

 (84)
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In the expressions presented above, 
j

j
Cv  is the linear acceleration of mass center, j

jω  and j
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define the angular velocities and accelerations of each kinetic ensemble ( )i , and j
jI∗  the inertial 
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forces by considering the dynamic behavior of each driving joint are developed: 

( )
( ) ( )

( ) ( )
( )[ ]

( ) ( )

( )
( )

( )
( )

( )[ ]
( )

θ θ θ

 − −  −    − −

= =

− − = ⋅ ⋅ = ⋅ + ⋅ ⋅ − − − − 
1

1 10 0 0
0 0 0

1 1

1 ! 1 ! ,
1 ! ! m! 1 !i i i

k m k mk
k m mk k

i T T T
X X Xg i i i

m m

k kQ t J t J t J t
m k m k m

    (80)

( )

( )

( ) ( )

( ) ( ) [ ] ( ) ( ) [ ] ( )
i i i

i i j

Tn n T n T
X X X

n n
n T n Tn n
n nX j X j C n

j i j i

F N

where F M R g N M R r p g

×

= =

 =  

 = ⋅ ⋅ = ⋅ ⋅ − ×   

0 0 0

6 1

0 00 0 0

,

, ,

ö

 (81)
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The column vector (81), defined relative to the Cartesian space, is mechanically equivalent with 
a reduction torsor of gravitational forces in the interval ;i n   , relative to the { }n  frame (Figure 4). 
This frame is attached to the geometrical center of the last driving joint belonging to the robot 
structure (Figures 3 and 4). 
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The column vector
[

n+1 f n+1
n+1nn+1

]T
represents the reduction torsor for the handling forces,

relative to the frame {n + 1}, attached in the characteristic point of the end-effector (Figures 3 and 4), its
components being well defined. It can be noticed that within these expressions, the Jacobian matrix
along with its higher-order time derivatives, is found (see Equations (33) and (36)). In the same
expressions, (k) and (m) represent the time deriving orders, where k ≥ 1 and m ≥ k + 1. Considering
the differential principles in generalized form (a generalization of D’Alembert–Lagrange Principle),
and by applying some transformations, the expressions for the generalized driving forces are obtained.
These forces define the dynamic behavior from every driving joint of the robot’s mechanical structure.
Thus, in the case of current movements, the expressions are applied:

Qi
m(t) = ∆2

m ·
[
∆θ ·Qi

io(t) + Qi
g(t)

]
+ (−1)∆m

·
1− ∆m

1 + 3 · ∆m
·Qi

SU(t), (85)

In the expressions above, ∆ m highlights the gravitational loads, by (Mi), the payload by (SU)

and ∆θ defines the behavior of the mechanical system (0—statics; 1—dynamics):

∆ m =
{
[−1; (SU; Mi)]; (0; SU); (1; Mi)

}
, ∆θ =

{[
1; i f

{ .

θ;
..

θ
}
, 0

]
;
[
0; i f

{ .

θ;
..

θ
}
= 0

]}
. (86)

In the case of fast motions, the higher-order time derivatives are applied on (85), resulting in:

(k−1)

Qi
m

θ(t); .

θ(t); · · · ;
(m)

θ(t)

 = ∆2
m ·

∆θ · (k−1)

Qi
iF (t) +

(k−1)

Qi
g (t)

+ (−1)∆m
·

1− ∆m

1 + 3 · ∆m
·

(k−1)

Qi
SU(t). (87)

Expression (87) includes the higher-order time derivatives of the generalized forces above-defined.

5.2. The Generalized Inertia Forces of Higher-Order

Based on the D’Alembert–Lagrange principle, corresponding to holonomic systems, the Lagrange
equations of the first and second kind, specific to conservative and non-conservative systems, are
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developed. These lead to the second-order equations corresponding to the degrees of freedom of a
mechanical system subjected to current movements.

d
dt

∂KE
∂

.
q j

− ∂KE
∂q j

= Q j, where j = 1→ n. (88)

Therefore, the Lagrange equations cannot highlight the existence of accelerations of higher-order.
In scientific literature, the generalization of Lagrange equations has been developed. The generalization
is known as Mangeron–Tsenov development and is defined in the form:

1
m
·

∂
(m)

KE

∂
(m)
q j

− (m + 1) ·
∂KE
∂q j

 = Q j. (89)

In Equations (88) and (89), KE represents the kinetic energy, q j is the generalized coordinate (d.o.f),
Q j defines the generalized inertia forces developed in the mechanical system, and m ≥ 2 is the time
deriving order. According to D’Alembert–Lagrange principle, the generalized inertia forces, defined at
first according to Equation (76), are equivalent to:

Q j
i
..
o

[
θ(t),

.

θ(t),
..

θ(t)
]
=

d
dt

∂KE
∂

.
q j

− ∂KE
∂q j

=
1
m
·

∂
(m)

KE

∂
(m)
q j

− (m + 1) ·
∂KE
∂q j

. (90)

An alternative to Lagrange’s equations of the second kind is the Gibbs–Appel equations customized
for holonomic mechanical systems, which leads to the same differential equations of motion as the
ones defined according to Equation (88):

∂E(1)
A

∂
..
q j

= Q j, where j = 1→ n. (91)

Similar to Equation (89), to emphasize the higher-order acceleration, a series of differential
transformations were conducted on the Gibbs–Appell’s equations, finally resulting in:

∂

(m−2)

E(1)
A

∂
(m)
q j

= Q j, where j = 1→ n (92)

As a result of the mathematical equivalence of relations in Equations (88), (89), (91) and (92) and
considering (90) as well, the generalized inertial forces are defined as a function of the first order
acceleration energies.

Q j
iF

θ(t); .

θ(t);
(2)

θ(t)

 = ∂

∂
(m)
q j


(m−2)

E(1)
A

θ(t); .

θ(t);
..

θ(t); · · · ;
(m)

θ (t)


,

where
(0)

E(1)
A = E(1)

A , j = 1→ n, k = 1 , m ≥ [(k + 1) = 2] , and (k) are the time deriving orders.

(93)

The differential expressions (93) represent a generalization of the Gibbs Appell equations because

they include the accelerations of higher-order (
(m)
q j ) and the higher-order time derivatives of the
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acceleration energies (
(m−2)

E(1)
A ). Further, taking into account [34], the higher-order differential equations

of motion, defined only by the components corresponding to generalized inertia forces, are presented.

(1)

Q j
iF

θ(t); .

θ(t); · · · ;
(m)

θ(t)

 = d
d t


∂

(m−2)

E(1)
A

∂
(m)
q j

 =
1

m + 1
·
∂

∂
(m)
q j

2 ·
(m−3)

E(2)
A +

(m−1)

E(1)
A

, (94)

(2)

Q j
iF

θ(t); .

θ(t); · · · ;
(m)

θ(t)

 = d2

d t2

∂
(m−2)

E(1)
A

∂
(m)
q j

 == 2
(m+1)·(m+2) ·

∂

∂
(m)
q j

5 ·
(m−4)

E(3)
A + 2 ·

(m−2)

E(2)
A +

(m)

E(1)
A

,
where j = 1→ n , k = 3, m ≥ [(k + 1) = 4], m = 4, 5, 6, . . . and

(0)

E(3)
A = E(3)

A ,

(95)

(3)

Q j
iF

θ(t); .

θ(t); · · · ;
(m)

θ(t)

 = d3

d t3

∂
(m−2)

E(1)
A

∂
(m)
q j

 = δQF ·
∂

∂
(m)
q j

9 ·
(m−5)

E(4)
A + 5 ·

(m−3)

E(3)
A +2 ·

(m−1)

E(2)
A +

(m+1)

E(1)
A

,
where δQF = 2·3

(m+1)·(m+2)·(m+3) =
(k−1)!m!
(m+k−1)! ,

and j = 1→ n , k = 4, m ≥ [(k + 1) = 5], m = 5, 6, 7, . . . and
(0)

E(4)
A = E(4)

A

(96)

Finally, the differential equations of motion of higher-order results in a generalized form:

(k−1)

Q j
iF

θ(t); .

θ(t); · · · ;
(m)

θ(t)

 = d k−1

d tk−1


∂

(m−2)

E(1)
A

∂
(m)
q j

 =
(k− 1)! ·m!
(m + k− 1)!

·
∂

∂
(m)
q j


 k∑

p=1

∆p

 ·
(m+k)−(2·p+1)

E(p)
A

, (97)

where E(p)
A = E(p)

A

θ(t); .

θ(t); · · · ;
(p+1)

θ(t)

,
 k∑

p=1
∆p

 = k∑
p=1

[
p·(p+1)

2 − δp

]
,

and p = 1→ k, δp =
{{

0 ; p = 1
}

;
{
1 ; p > 1

}}
,

k ≥ 1; k = {1; 2; 3; 4; 5; . . . ..}, m ≥ (k + 1), m = {2; 3; 4; 5; . . .}.

(98)

The above expressions are functions of the acceleration energy of higher order. By substituting
Equation (97) in (87), the higher-order equations of the advanced dynamics are obtained. By applying
the inverse dynamic modeling, the generalized driving forces along with their higher-order time
derivatives, which develop within the fast motion of the robot structures, are determined.

6. Application

The expressions for the acceleration energies, as well as the differential equations of higher order,
are validated by considering an experimental study on a serial robot of type Fanuc LR Mate 100 iB
(see Figure 5). The serial robot structure, subjected to the analysis, is mechanically characterized by
five degrees of freedom.
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Figure 5. The Fanuc LR Mate100iB robot; (a) The initial configuration; (b) The final configuration.

The purpose of this experiment is to study the rotation motion of the robot arm in the angular
interval

(
−
π
2 , π

2

)
, a motion, which is due exclusively to the actuation of the robot’s first driving

joint. Using a mono-axial accelerometer, the necessary data for this experiment were collected. By
experimental measurements have been established the time variation laws of the tangential acceleration
corresponding to a certain point from the robot arm, also named characteristic point [29]. Using the
SolidWorks application, the mechanical robot structure and the working environment were modeled.
Based on this, the parameters of mass distribution, which are essential in developing the expressions
for the driving torques of first, second and third-order, are also determined. Considering the rotation
motion of the robot arm, and using the polynomial interpolating functions of a higher order, according
to a previous paper [4], the time variation laws for the angular acceleration of first, second and
third-order (

..
q1ik(τ),

...
q 1ik(τ),

....
q 1ik(τ)), in analytical and graphical form are determined. To establish the

equations of advanced dynamics, Equation (87) is used. According to the inverse dynamic modeling,
the unknowns are the generalized driving forces and their time derivatives. For determining the
unknowns, the following expressions from the Section 3 of this paper are used: (16)–(18), (23), (30), (36)
and (40)–(55). From Section 4, the expressions of the acceleration energies (57), (64) and (68) are used,
and from Section 5, the expressions (80), (83), (87) and (93)–(95). Due to the simple rotation around the
first driving axis of the Fanuc robot, the expressions of the generalized driving forces take a simple
analytical form, as:

Q1
mik(τ) =

∂E(1)
Aik(τ)

∂
..
q1ik(τ)

+ Q1
gik(τ) =

(
M1 · x2

C1
+ M1 · z2

C1
+ 1I∆

)
·

..
q1ik(τ), (99)

.
Q

1
mik(τ) =

1
4
·

∂

∂
...
q 1ik(τ)

2 · E(2)
Aik(τ) +

(2)

E(1)
Aik(τ)

+ .
Q

1
gik(τ) =

(
M1 · x2

C1
+ M1 · z2

C1
+ 1I∆

)
·
...
q 1ik(τ), (100)


..
Q

1
mik(τ) =

1
15 ·

∂
∂
....q 1ik(τ)

5 · E(3)
Aik(τ) + 2 ·

(2)

E(2)
Aik(τ) +

(4)

E(1)
Aik(τ)

+ ..
Q

1
gik(τ) =

=
(
M1 · x2

C1
+ M1 · z2

C1
+ 1I∆

)
·
....
q 1ik(τ)

, (101)

where Q1
mik,

.
Q

1
mik and

..
Q

1
mik are driving torques of first, second and third-order, M1 is the mass

of the robot arm, xC1
, zC1

are mass center coordinates, 1I∆ is the axial inertia moment, and
(m)
q1 , where m = 2, 3, 4 are the angular accelerations of first, second and third-order, corresponding to
rotation motion for each segment of the motion trajectory in angular range

[
−
π
2 , π

2

]
. The term

..
q1(τ)

was determined by measurements (see Figure 5), while
...
q 1ik(τ) and

....
q 1ik(τ) were obtained by applying

the polynomial interpolation functions of fifth-degree [4]. Considering the previous expressions
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(see Equations (99)–(101)), in Figures 6 and 7, the time variation laws for the generalized coordinates
of first, second, or third order, corresponding to the first driving joint of the serial robot structure Fanuc
LR Mate100iB are illustrated. To obtain the graphical representation for the variation in time of the
generalized coordinate, q1 the polynomial functions of the fifth-order were applied according to [4].Symmetry 2019, 11, x FOR PEER REVIEW 21 of 25 
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In Figures 8 and 9 the time variation laws of the driving torque of the first, second and third-order
are illustrated, corresponding to the first driving joint, by considering the physical characteristics of
the Fanuc robot, (Figure 5), and the variation laws of the generalized variables, as well (see Figures 6
and 7).

The main objective of this section was to illustrate the necessity for approaching the advanced
dynamics equations in characterizing the dynamic behavior of the complex mechanical systems
subjected to fast motions. Based on the data collected from experimental measurements, the time
variation laws corresponding to the angular accelerations from the first driving axis of the robot were
obtained. Further, applying the polynomial functions of higher orders, the laws of variation for the
higher-order angular accelerations were also established. The results were included in the expression
of the generalized driving force. Thus, the time variation laws of the generalized driving force and of
its first, second, and third-order time derivatives, corresponding to the rotation motion of the robot
arm were obtained.
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7. Conclusions

The present paper focuses on some important approaches regarding the analytical dynamics of
the mechanical systems subordinated to the transient regimes and the fast movements.

According to the authors and [4], the fast movements occur in the situation where the linear
acceleration meets the condition: a ≥ 2 · g.

The main purpose of the paper was to present the defining matrix expressions for the acceleration
energies of higher-order and their use in the advanced dynamics equations, characterized by differential
equations of motion of higher order. To reach this objective, in Sections 2 and 3 of this paper, a series
of expressions that later became input values in the study of the energies of accelerations, essential
components of the dynamic equations, were presented. Thus, in Section 2, some expressions dedicated
to homogeneous transformations (1)–(3), which refer to homogeneous transformation matrices and
their components, based on matrix exponentials, were synthesized. According to (36), in the next
section, the expressions of the Jacobian matrix and of its time derivatives were established. The
advanced kinematic Equations (38) and (39) that highlight the presence of higher-order accelerations
in the serial robot structures were also determined. In the expressions mentioned above, the presence
of the matrix exponentials should be noticed. They are characterized by important advantages due to
the unitary form, and also by the fact that they do not use reference systems, which usually introduce
geometric restrictions. In the same section three, the higher-order differential matrices obtained by
using homogeneous transformations and exponential matrix functions (see (40)–(55)) were presented
in an analytical form. Their utility is obvious when establishing the dynamics matrices, essential
components of the acceleration energies of the first, second and third-order. In the Section 4 of this
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paper, the matrix expressions for the acceleration energies are presented according to (56), (57), (64)
and (68). A fundamental aspect worthy of mention is the fact that the present study, which relates to
the establishment of the expressions for the acceleration energies, was carried out by considering the
Appell functions as starting equations.

Compared to other research, in this paper, the energies of accelerations are determined for
holonomic systems subjected to general motion. Unlike the dynamic equations specific to current
movements, the advanced dynamic equations have as a central function the acceleration energies in
which the higher-order accelerations, specific to the fast movements, are found. Starting from the
Gibbs–Appell equations that characterize the current movements, a generalization of these Equation
(92), was presented in the Section 5 of the present paper. In the same section, the differential equations
of higher order that highlight the time derivatives of the generalized inertia forces (whose components
represented by the acceleration energies of higher-order) are defined according to Equations (94)–(98).
Based on the principles from advanced mechanics in robotics, the generalized forces of inertia and
their derivatives are an integral part of the equations of advanced dynamics (87). According to the
inverse dynamic model, the unknowns were represented by considering the generalized driving
forces from each robot joint as well as of their time derivatives. To illustrate the mathematical models
previously presented, in Section 6, a simple example applied on a Fanuc type robot was presented. By
combining the data obtained from measurements with the analytical expressions of the acceleration
energies, the equations of the advanced dynamics were established. These are characterized by the
presence of the generalized driving forces (according to Equations (99)–(101)), and they are graphically
illustrated in Figures 8 and 9. This simple example illustrates analytically and graphically the existence
of higher-order accelerations and their influence on the dynamic behavior of the serial structures of
robots, subordinated to either transient or rapid movement regimes.

In conclusion, the novelty of this paper constitute the establishment of the Jacobian matrix, the
advanced kinematic equations, and the differential matrices, as well as the higher-order time derivatives
of the accelerations by using the matrix exponentials.

Moreover, the novelty of the approach consists in the defining expressions of the acceleration
energies, written in the matrix form, as well as by their encompassment in the advanced dynamics
equations. These equations define the dynamic behavior of a mechanical system (serial robot) on
transient modes and in fast motions.

8. Contributions of the Authors

Therefore, the contributions of the first author are highlighted by a great number of expressions
included in the following sections of this paper:

(1) 2. Matrices of the homogenous transformations. The new expressions are (1)–(7);
(2) 3.1. Matrix exponentials in advanced kinematics. New Equations: (18), (23), (25)–(36), (38), (39);
(3) 3.2. The differential matrices in advanced kinematics. New Equations: (41), (42), (44), (46)–(55);
(4) 4. The matrix expressions of the acceleration energies. New expressions: (56)–(61), (64)–(75);
(5) 5. The advanced dynamics equations. New Equations: (76), (80), (83), (85)–(87), (93)–(98).
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