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Abstract

:

Let G be a simple, connected and undirected graph. The atom-bond connectivity index (  A B C ( G )  ) and Randić index (  R ( G )  ) are the two most well known topological indices. Recently, Ali and Du (2017) introduced the difference between atom-bond connectivity and Randić indices, denoted as   A B C − R   index. In this paper, we determine the fourth, the fifth and the sixth maximum chemical trees values of   A B C − R   for chemical trees, and characterize the corresponding extremal graphs. We also obtain an upper bound for   A B C − R   index of such trees with given number of pendant vertices. The role of symmetry has great importance in different areas of graph theory especially in chemical graph theory.
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1. Introduction


Let G be a simple, connected and undirected graph. having   V ( G )   and   E ( G )   as the set of vertices and edges respectively. The number of vertices and edges in G are denoted by n m, respectively. Let   d u   denotes the degree of vertex u in G, while   Δ ( G )   and   δ ( G )   are used to denote the maximum and minimum degree of G. The distance    d G   ( x , y )    between vertices x and y is defined as the length of any shortest path in G connecting x and y. The eccentricity of   v i   in G is defined as    e i  =  max   v j  ∈ V  ( G )     d G   (  v i  ,  v j  )   . For more concepts and terminologies in Graph Theory, we refer to [1].



Topological indices is one of the useful tools of graph theory [2]. Molecular compounds are often modeled by molecular graphs are used to represent the molecules and molecular compounds with the help of lines and dots. In study of QSPR/QSAR, topological indices are considered as one of the useful topics [3].



In 1975, Randić [4] defined the Randić index as follows:


  R  ( G )  =  ∑  u v ∈ E ( G )    1    d u   d v     .  











Details about Randić index and most of its mathematical properties can be found in [5,6,7,8,9,10].



Estrada et al. [11] proposed the atom-bond connectivity (  A B C   for short) for a molecular graph as


  A B C  ( G )  =  ∑  u v ∈ E ( G )       d u  +  d v  − 2    d u   d v     .  











This index became popular only ten years later, when the paper [12] was published. For the details, see the surveys [13], the recent papers [14,15,16,17,18,19] and the references cited therein.



Nowadays, studying the relationship or comparison between topological indices, see [20,21,22,23], is becoming popular. Recently, Ali and Du [24] investigated extremal binary and chemical trees results for the difference between   A B C   and R indices. A tree with maximum degree at most three or four called a binary and chemical tree, respectively.



For a connected graph G of order at least 3, the difference between   A B C   and R is represented as (see [24])


   ( A B C − R )   ( G )  =  ∑  u v ∈ E ( G )        d u  +  d v  − 2   − 1     d u   d v     .  











Note that   ( A B C − R ) ( G ) ≥ 0   and equality holds if and only if   G =  P 3   . So in our discussion we consider   n ≥ 4  .



In this paper, motivated by the results in [24], we further investigated the extremal chemical trees for   A B C − R  . Moreover, maximal trees with fixed number of pendant vertices are also investigated for   A B C − R   index. The techniques used in this paper are very similar to that of Refs. [19,24,25].




2. Preliminary Results


Let the number of edges connecting the vertices of degree p and q is denoted by   x  p , q   . In term of   p , q   and   x  p , q     A B C − R   can be rewritten as follows [24]:


   ( A B C − R )   ( G )  =  ∑  δ ≤ p ≤ q ≤ Δ       p + q − 2   − 1    p q     x  p , q   .  



(1)







Let   n p   be the number of vertices of degree p in G, where   1 ≤ p ≤ 4  . Then for any n-vertex chemical tree the following system of equations holds (see [19,24]):


   n 1  +  n 2  +  n 3  +  n 4  = n ,  



(2)






   n 1  + 2  n 2  + 3  n 3  + 4  n 4  = 2  ( n − 1 )  ,  



(3)






   x  1 , 2   +  x  1 , 3   +  x  1 , 4   =  n 1  ,  



(4)






   x  1 , 2   + 2  x  2 , 2   +  x  2 , 3   +  x  2 , 4   = 2  n 2  ,  



(5)






   x  1 , 3   +  x  2 , 3   + 2  x  3 , 3   +  x  3 , 4   = 3  n 3  ,  



(6)






   x  1 , 4   +  x  2 , 4   +  x  3 , 4   + 2  x  4 , 4   = 4  n 4  .  



(7)







From Equations (2) and (3), it follows that


   n 2  + 2  n 3  + 3  n 4  = n − 2 ,  








and thus,


  n ≡  n 2  + 2  n 3  + 2  (  mod   3 )  .  



(8)







By solving the sysmtem of Equations (2)–(7), the values of   x  1 , 4    and   x  4 , 4    are, respectively, given as below (see also Refs. [24,26]):


      x  1 , 4   =   2 n + 2  3  −  4 3   x  1 , 2   −  10 9   x  1 , 3   −  2 3   x  2 , 2   −  4 9   x  2 , 3   −  1 3   x  2 , 4   −  2 9   x  3 , 3   −  1 9   x  3 , 4   ,        x  4 , 4   =   n − 5  3  +  1 3   x  1 , 2   +  1 9   x  1 , 3   −  1 3   x  2 , 2   −  5 9   x  2 , 3   −  2 3   x  2 , 4   −  7 9   x  3 , 3   −  8 9   x  3 , 4   .     











Note that the detailed calculation of obtaining the values for   x  1 , 4    and   x  4 , 4    can be referred in [26].



By substituting these values of   x  1 , 4    and   x  4 , 4    in Equation (1), one has:


     ( A B C − R ) ( G )    =      4  3  +  6  − 5  12  n +   4  3  − 5  6  + 1  12  −   8  3  −  6  − 7  12   x  1 , 2             −   32  3  − 13  6  − 19  36   x  1 , 3   −   4  3  +  6  − 6  2  + 1  12   x  2 , 2             −   8  3  + 11  6  − 18  2  − 13  36   x  2 , 3   −   2  3  + 2  6  − 3  2  − 4  12   x  2 , 4             −   4  3  + 7  6  − 23  36   x  3 , 3   −   4  3  + 4  6  − 3  15  − 5  18   x  3 , 4   .     



(9)







Let


    θ   =      8  3  −  6  − 7  12   x  1 , 2   +   32  3  − 13  6  − 19  36   x  1 , 3   +   4  3  +  6  − 6  2  + 1  12   x  2 , 2             +   8  3  + 11  6  − 18  2  − 13  36   x  2 , 3   +   2  3  + 2  6  − 3  2  − 4  12   x  2 , 4             +   4  3  + 7  6  − 23  36   x  3 , 3   +   4  3  + 4  6  − 3  15  − 5  18   x  3 , 4   .     



(10)







Then Equation (9) can be rewritten as


   ( A B C − R )   ( G )  =   4  3  +  6  − 5  12  n +   4  3  − 5  6  + 1  12  − θ .  



(11)




since


    θ   ≈    0.367243  x  1 , 2   + 0.127285  x  1 , 3   + 0.157701  x  2 , 2   + 0.0651375  x  2 , 3             + 0.0100367  x  2 , 4   + 0.0298509  x  3 , 3   + 0.00595623  x  3 , 4   .     



(12)







From Equation (12) we have   θ ≥ 0  . Moreover Equation (11) implies that a chemical tree which gives the minimum value of  θ  will produce the maximum of   ( A B C − R )  .



Theorem 1

([24]).  Consider the set of all n-vertex chemical trees.




	(1)

	
Suppose that   n ≡ 0  (  m o d   3 )  .



	(1.1)

	
For   n ≥ 9  , the maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   3 + 2  2  − 3  6   4  ,  








which is uniquely attained by those trees that contain a unique vertex of degree 2 and no vertex of degree 3, that is,    n 2  = 1   and    n 3  = 0  , such that the unique vertex of degree 2 is adjacent to two vertices of degree 4, that is,    x  1 , 2   = 0   and    x  2 , 4   = 2  .




	(1.2)

	
For   n ≥ 21  , the second maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   4  15  − 7  6  − 4  3  + 7  4  ,  








which is uniquely attained by those trees that contain no vertex of degree 2 and exactly two vertices of degree 3, that is,    n 2  = 0   and    n 3  = 2  , such that each vertex of degree 3 is adjacent to three vertices of degree 4, that is,    x  1 , 3   =  x  3 , 3   = 0   and    x  3 , 4   = 6  .




	(1.3)

	
For   n ≥ 21  , the third maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   4  15  − 4  3  − 9  6  + 11  6  ,  








which is uniquely attained by those trees that contain no vertex of degree 2 and exactly two vertices of degree 3, which are adjacent, that is,    n 2  = 0  ,    n 3  = 2  , and    x  3 , 3   = 1   such that each vertex of degree 3 is adjacent to exactly two vertices of degree 4, that is,    x  1 , 3   = 0   and    x  3 , 4   = 4  .








	(2)

	
Suppose that   n ≡ 1  (  m o d   3 )  .



	(2.1)

	
For   n ≥ 13  , the maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   11 + 6  15  − 4  3  − 13  6   12  ,  








and the equality holds if and only if    n 2  = 0   and    n 3  = 1   such that    x  1 , 3   = 0   and    x  3 , 4   = 3  .




	(2.2)

	
For   n ≥ 13  , the second maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   12  2  − 13  6  − 4  3  + 17  12  ,  








which is uniquely attained by those trees that contain exactly two vertices of degree 2 and no vertex of degree 3, that is,    n 2  = 2   and    n 3  = 0  , such that either vertex of degree 2 is adjacent to two vertices of degree 4, that is,    x  1 , 2   =  x  2 , 2   = 0   and    x  2 , 4   = 4  .




	(2.3)

	
For   n ≥ 25  , the third maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   12  15  − 6  2  − 25  6  − 16  3  + 29  12  ,  








which is uniquely attained by those trees that contain a unique vertex of degree 2 and exactly two vertices of degree 3, that is,    n 2  = 1   and    n 3  = 2  , such that each vertex of degree 2 and 3 is adjacent to only vertices of degree 4, that is,    x  1 , 2   =  x  1 , 3   =  x  2 , 3   =  x  3 , 3   = 0  ,    x  2 , 4   = 2  , and    x  3 , 4   = 6  .








	(3)

	
Suppose that   n ≡ 2  (  m o d   3 )  .



	(3.1)

	
For   n ≥ 5  , the maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   4  3  − 5  6  + 1  12  ,  








which is uniquely attained by those trees that contain no vertex of degree 2 or 3, that is,    n 2  =  n 3  = 0  .




	(3.2)

	
For   n ≥ 17  , the second maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   6  15  + 6  2  − 17  6  − 8  3  + 19  12  ,  








which is uniquely attained by those trees that contain a unique vertex of degree 2 and a unique vertex of degree 3, that is,    n 2  =  n 3  = 1  , such that each vertex of degree 2 and 3 is adjacent to only vertices of degree 4, that is,    x  1 , 2   =  x  1 , 3   =  x  2 , 3   = 0  ,    x  2 , 4   = 2  , and    x  3 , 4   = 3  .




	(3.3)

	
For   n ≥ 29  , the third maximum   A B C − R   value is


    4  3  +  6  − 5  12  n +   18  15  − 29  6  − 20  3  + 31  12  ,  








which is uniquely attained by those trees that contain no vertex of degree 2 and exactly three vertices of degree 3, that is,    n 2  = 0   and    n 3  = 3  , such that each vertex of degree 3 is adjacent to three vertices of degree 4, that is,    x  1 , 3   =  x  3 , 3   = 0  , and    x  3 , 4   = 9  .
















3. Maximum   ABC − R   Index for Chemical Trees


In this section, we present a main result which deals with the maximal chemical trees for   A B C − R   index.



Theorem 2.

Consider the set of all n-vertex chemical trees.








	(1)

	
Suppose that   n ≡ 0  (  m o d   3 )  .



	(1.1)

	
For   n ≥ 21  , the fourth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   18  15  + 36  2  − 36  3  − 63  6  + 81  36  ,   








and the equality holds if and only if    n 2  = 2   and    n 3  = 1   such that    x  1 , 2   =  x  1 , 3   =  x  2 , 2   =  x  2 , 3   = 0  ,    x  2 , 4   = 4   and    x  3 , 4   = 3  .




	(1.2)

	
For   n ≥ 33  , the fifth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   54  15  + 18  2  − 72  3  − 99  6  + 117  36  ,   








and the equality holds if and only if    n 2  = 1   and    n 3  = 3   such that    x  1 , 2   =  x  1 , 3   =  x  2 , 3   =  x  3 , 3   = 0  ,    x  2 , 4   = 2   and    x  3 , 4   = 9  .




	(1.3)

	
For   n ≥ 33  , the sixth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   24  2  − 12  3  − 21  6  + 33  12  ,   








and the equality holds if and only if    n 2  = 4  ,    n 3  = 0   such that    x  1 , 2   =  x  2 , 2   = 0   and    x  2 , 4   = 8  .








	(2)

	
Suppose that   n ≡ 1  (  m o d   3 )  .



	(2.1)

	
For   n ≥ 37  , the fourth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   72  15  − 84  3  − 111  6  + 123  36  ,   








and the equality holds if and only if    n 2  = 0   and    n 3  = 4   such that    x  1 , 3   =  x  3 , 3   = 0   and    x  3 , 4   = 12  .




	(2.2)

	
For   n ≥ 37  , the fifth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   24  15  + 18  2  − 36  3  − 66  6  + 90  36  ,   








and the equality holds if and only if    n 2  = 1  ,    n 3  = 2   such that    x  3 , 3   = 1 ,  x  1 , 2   =  x  1 , 3   =  x  2 , 3   = 0  ,    x  2 , 4   = 2  , and    x  3 , 4   = 4  .




	(2.3)

	
For   n ≥ 37  , the sixth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   18  15  + 54  2  − 48  3  − 75  6  + 105  36  ,   








and the equality holds if and only if    n 2  = 3   and    n 3  = 1   such that    x  1 , 2   =  x  1 , 3   =  x  2 , 2   =  x  2 , 3   = 0  ,    x  2 , 4   = 6  , and    x  3 , 4   = 3  .








	(3)

	
Suppose that   n ≡ 2  (  m o d   3 )  .



	(3.1)

	
For   n ≥ 29  , the fourth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   18  2  − 8  3  − 17  6  + 25  12  ,   








and the equality holds if and only if    n 2  = 3   and    n 3  = 0   such that    x  1 , 2   =  x  2 , 2   = 0   and    x  2 , 4   = 6  .




	(3.2)

	
For   n ≥ 29  , the fifth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   42  15  − 78  6  − 48  3  + 96  36  ,   








and the equality holds if and only if    n 2  = 0   and    n 3  = 3   such that    x  1 , 3   = 0  ,    x  3 , 3   = 1   and    x  3 , 4   = 7  .




	(3.3)

	
For   n ≥ 29  , the sixth maximum   A B C − R   value is


     4  3  +  6  − 5  12  n +   36  15  + 36  2  − 60  3  − 87  6  + 111  36  ,   








and the equality holds if and only if    n 2  = 2   and    n 3  = 2   such that    x  1 , 2   =  x  1 , 3   =  x  2 , 2   =  x  2 , 3   =  x  3 , 3   = 0  ,    x  2 , 4   = 4   and    x  3 , 4   = 6  .















Proof. 

First, we claim that   θ > 0.080294   when    x  1 , 2   +  x  1 , 3   +  x  2 , 2   ≥ 1   or    x  2 , 3   ≥ 2  . More precisely, from Equation (12),








	
when    x  1 , 2   ≥ 1  ,


  θ ≥   8  3  −  6  − 7  12  ≈ 0.367243 > 0.080294 ,  











	
when    x  1 , 3   ≥ 1  ,


  θ ≥   32  3  − 13  6  − 19  36  ≈ 0.127285 > 0.080294 ,  











	
when    x  2 , 2   ≥ 1  ,


  θ ≥   4  3  +  6  − 6  2  + 1  12  ≈ 0.157701 > 0.080294 ,  











	
when    x  2 , 3   ≥ 2  ,


  θ ≥ 2 ·   8  3  + 11  6  − 18  2  − 13  36  ≈ 0.130275 > 0.080294 .  
















So we may assume that    x  1 , 2   =  x  1 , 3   =  x  2 , 2   = 0  , and    x  2 , 3   = 0   or 1. It follows from Equations (5) and (6) that


   x  2 , 4   = 2  n 2  −  x  2 , 3    



(13)




and


  2  x  3 , 3   +  x  3 , 4   = 3  n 3  −  x  2 , 3   .  



(14)







Case 1.   x  2 , 3   = 1  .



Observe that    n 2  ≥ 1  ,    n 3  ≥ 1  , and thus    x  2 , 4   ≥ 1   from Equation (13).



If    x  2 , 4   ≥ 2  , then by the Equation (12),


  θ ≥   8  3  + 11  6  − 18  2  − 13  36  + 2 ·   2  3  + 2  6  − 3  2  − 4  12  ≈ 0.0852109 > 0.080294 .  











Suppose now that    x  2 , 4   = 1  . If    x  3 , 3   = 0  , then by Equation (14),    x  3 , 4   ≥ 2  , together with Equation (12), it leads to


    θ   ≥      8  3  + 11  6  − 18  2  − 13  36  +   2  3  + 2  6  − 3  2  − 4  12            + 2 ·   4  3  + 4  6  − 3  15  − 5  18         ≈    0.08708666 > 0.080294 .     



(15)







If    x  3 , 3   ≥ 1  , then by Equation (12),


    θ   ≥      8  3  + 11  6  − 18  2  − 13  36  +   2  3  + 2  6  − 3  2  − 4  12            +   4  3  + 7  6  − 23  36         ≈    0.1050251 > 0.080294 .     



(16)







Case 2.   x  2 , 3   = 0  .



From Equations (13) and (14), it follows that


   x  2 , 4   = 2  n 2   



(17)




and


  2  x  3 , 3   +  x  3 , 4   = 3  n 3  .  



(18)







If    x  3 , 3   ≥ 3  , then by Equation (12),


  θ ≥ 3 ·   4  3  + 7  6  − 23  36  ≈ 0.0895526 > 0.0802936 .  








If    x  3 , 3   = 2  , then    n 3  ≥ 3  , and    x  3 , 4   ≥ 5   from Equation (14), and thus by Equation (12),


  θ ≥ 2 ·   4  3  + 7  6  − 23  36  + 5 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.0894829 > 0.0802936 .  











Now, we consider the two cases:    x  3 , 3   = 1   and    x  3 , 3   = 0  .



Subcase 2.1.   x  3 , 3   = 1  .



Clearly,    n 3  ≥ 2  . The proofs will be partitioned into several parts according to the value of   n 3  :    n 3  = 2  ,    n 3  = 3  ,    n 3  ≥ 4  .



Firstly suppose that    n 3  = 2  , then,    x  3 , 4   = 4   from Equation (14). Note that the case    n 2  = 0   is known to belong to one of the first three minimum  θ  values, see Theorem 1-(1.3). If    n 2  = 1  , then   n ≡ 1  (  mod   3 )   from Equation (8),    x  2 , 4   = 2   from Equation (17), and by Equation (12),


    θ   =    2 ·   2  3  + 2  6  − 3  2  − 4  12  +   4  3  + 7  6  − 23  36  + 4 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.0737492 .     











If    n 2  ≥ 2  , then,    x  2 , 4   ≥ 4   from Equation (17), and by Equation (12),


    θ   ≥    4 ·   2  3  + 2  6  − 3  2  − 4  12  +   4  3  + 7  6  − 23  36  + 4 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.09382262 > 0.0802936 .     











Next, suppose that    n 3  = 3  , then    x  3 , 4   = 7   from Equation (14). If    n 2  = 0  , then   n ≡ 2  (  mod   3 )   from Equation (8),    x  2 , 4   = 0   from Equation (17), and by Equation (12),


  θ =   4  3  + 7  6  − 23  36  + 7 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.0715445 .  











If    n 2  ≥ 1  , then    x  2 , 4   ≥ 2   from Equation (17), and by Equation (12),


    θ   ≥    2 ·   2  3  + 2  6  − 3  2  − 4  12  +   4  3  + 7  6  − 23  36  + 7 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.0916179 > 0.0802936 .     











Finally, if    n 3  ≥ 4  , then    x  3 , 4   ≥ 10   from Equation (16), and by Equation (12),


    θ   ≥      4  3  + 7  6  − 23  36  + 10 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.0894132 > 0.0802936 .     











Subcase 2.2.   x  3 , 3   = 0  .



In this case,    x  3 , 4   = 3  n 3    from Equation (18). This time, we partition the proofs according to the value of   n 2  :    n 2  = 0  ,    n 2  = 1  ,    n 2  = 2  ,    n 2  = 3  ,    n 2  = 4  ,    n 2  ≥ 5  .



Firstly suppose that    n 2  = 0  , that is,    x  2 , 4   = 0   from Equation (17). Note that the cases    n 3  = 0 , 1 , 2 , 3   were known to belong to the first three minimum  θ  value, see Theorem 1. If    n 3  = 4  , then   n ≡ 1  (  mod   3 )   from Equation (8),    x  3 , 4   = 12  , and by Equation (12),


  θ = 12 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.0714748 .  











If    n 3  ≥ 5  , then    x  3 , 4   ≥ 15  , and by Equation (12),


  θ ≥ 15 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.08934345 > 0.0802936 .  











Next, suppose that    n 2  = 1  , that is,    x  2 , 4   = 2   from Equation (17). Note that the cases    n 3  = 0 , 1 , 2   were known to belong to the first three minimum  θ  values, see Theorem 1. If    n 3  = 3  , then   n ≡ 0  (  mod   3 )   from Equation (8),    x  3 , 4   = 9  , and by Equation (12),


  θ = 2 ·   2  3  + 2  6  − 3  2  − 4  12  + 9 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.0736795 .  











If    n 3  ≥ 4  , then    x  3 , 4   ≥ 12  , and by Equation (12),


    θ   ≥    2 ·   2  3  + 2  6  − 3  2  − 4  12  + 12 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.091548 > 0.0802936 .     











Now, suppose that    n 2  = 2  , that is,    x  2 , 4   = 4   from Equation (17). The case    n 3  = 0   was known to belong to one of the first three minimum  θ  values, see Theorem 1-(2.2). If    n 3  = 1  , then   n ≡ 0  (  mod   3 )   from Equation (8),    x  3 , 4   = 3  , and by Equation (12),


  θ = 4 ·   2  3  + 2  6  − 3  2  − 4  12  + 3 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.0580155 .  











If    n 3  = 2  , then   n ≡ 2  (  mod   3 )   from Equation (8),    x  3 , 4   = 6  , and by Equation (12),


  θ = 4 ·   2  3  + 2  6  − 3  2  − 4  12  + 6 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.07588419 .  











If    n 3  ≥ 3  , then    x  3 , 4   ≥ 9  , and by Equation (12),


    θ   ≥    4 ·   2  3  + 2  6  − 3  2  − 4  12  + 9 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.09375289 > 0.0802936 .     











Suppose that    n 2  = 3  , that is,    x  2 , 4   = 6   from Equation (17). If    n 3  = 0  , then   n ≡ 2  (  mod   3 )   from Equation (8),    x  3 , 4   = 0  , and by Equation (12),


  θ = 6 ·   2  3  + 2  6  − 3  2  − 4  12  ≈ 0.0602202 .  











If    n 3  = 1  , then   n ≡ 1  (  mod   3 )   from Equation (8),    x  3 , 4   = 3  , and by Equation (12),


  θ = 6 ·   2  3  + 2  6  − 3  2  − 4  12  + 3 ·   4  3  + 4  6  − 3  15  − 5  18  ≈ 0.0780889 .  











If    n 3  ≥ 2  , then    x  3 , 4   ≥ 6  , and by Equation (12),


    θ   ≥    6 ·   2  3  + 2  6  − 3  2  − 4  12  + 6 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.0959576 > 0.0802936 .     











Suppose that    n 2  = 4  , that is,    x  2 , 4   = 8   from Equation (17). If    n 3  = 0  , then   n ≡ 0  (  mod   3 )   from Equation (8),    x  3 , 4   = 0  , and by Equation (12),


  θ = 8 ·   2  3  + 2  6  − 3  2  − 4  12  ≈ 0.0802936 .  











If    n 3  ≥ 1  , then    x  3 , 4   ≥ 3  , and by Equation (12),


    θ   ≥    8 ·   2  3  + 2  6  − 3  2  − 4  12  + 3 ·   4  3  + 4  6  − 3  15  − 5  18        ≈    0.0981623 > 0.0802936 .     











Finally, if    n 2  ≥ 5  , then    x  2 , 4   ≥ 10   from Equation (17), and by Equation (12),


  θ ≥ 10 ·   2  3  + 2  6  − 3  2  − 4  12  ≈ 0.100367 > 0.0802936 .  











In conclusion, we obtain the following








	(i)

	
If   n ≡ 0  (  mod   3 )  , then the fourth, fifth and sixth minimum  θ  values are 0.0580155, 0.0736795 and 0.0802936, respectively.




	(ii)

	
If   n ≡ 1  (  mod   3 )  , then the fourth, fifth and sixth minimum  θ  values are 0.0714748, 0.0737492 and 0.0780889, respectively.




	(iii)

	
If   n ≡ 2  (  mod   3 )  , then the fourth, fifth and sixth minimum  θ  values are 0.0602202, 0.0715445 and 0.07588419, respectively.









Now, the Equation (11) implies the fourth, fifth and sixth maximum   A B C − R  . □





In Figure 1, Figure 2 and Figure 3, the chemical trees with the smallest numbers of vertices in Theorem 2 are listed.




4. Upper Bound for   ABC − R   Index of Molecular Trees


In this section, we consider the class of molecular tress and investigated the sharp bound on   A B C − R   for this class of graphs.



Let   T  n ,  n 1     be the set of molecular trees satisfying


   x  1 , 4   =  n 1  ,  










   x  2 , 2   = n − 2  n 1  + 3 −  1 3   x  2 , 3   ,  








and


   x  2 , 4   =  n 1  − 4 −  2 3   x  2 , 3   .  











Theorem 3

([19]). Let T be a molecular tree with n vertices,    n 1  ≥ 5   of which are pendant vertices. Then


   ( A B C )   ( T )  ≤   2  2  n +    3  −  2   2   n 1  −   2  2   








with equality holds if and only if   T ∈  T  n ,  n 1     .





Obviously, from Equation (1) we obtain


     ( A B C − R ) ( T )    =       2  − 1   3    x  1 , 3   +    3  − 1  2   x  1 , 4   +    2  − 1  2   x  2 , 2   +    3  − 1   6    x  2 , 3   +            1  8    x  2 , 4   +  1 3   x  3 , 3   +    5  − 1   12    x  3 , 4   +    6  − 1  4   x  4 , 4       



(19)







Now let    T   n ,  n 1   ′   be the set of molecular trees satisfying


   x  1 , 4   =  n 1  ,  










   x  2 , 2   = n − 2  n 1  + 3 ,  








and


   x  2 , 4   =  n 1  − 4 .  











Theorem 4.

Let T be a molecular tree of order n and    n 1  ≥ 5   pendant vertices, then


    ( A B C − R )   ( T )  ≤    2  − 1  2  n +   2 − 3  2  + 2  3   4   n 1  +  1  2   −  3 2    








with equality holds if and only if   T ∈   T   n ,  n 1   ′   .





Proof. 

Since T is a molecular tree, we have Equations (2)–(7). Suppose that


     f 1    =     x  1 , 2   +  x  1 , 3   +  x  1 , 4         f 2    =     x  1 , 2   +  x  2 , 3         f 3    =     x  1 , 3   +  x  2 , 3   + 2  x  3 , 3   +  x  3 , 4         f 4    =     x  1 , 4   +  x  3 , 4   + 2  x  4 , 4   ,     








that is,


     f 1    =    n 1       f 2    =    2  n 2  − 2  x  2 , 2   −  x  2 , 4         f 3    =    3  n 3        f 4    =    4  n 4  −  x  2 , 4   ,     








we have


      ∑  i = 1  4   f i     =    2  ( n − 1 )  − 2  (  x  2 , 2   +  x  2 , 4   )         ∑  i = 1  4   1 i   f i     =    n − (  x  2 , 2   +  3 4   x  2 , 4   ) ,     








implying that


     x  2 , 2     =     3 2   ∑  i = 1  4   f i  − 4  ∑  i = 1  4   1 i   f i  + n + 3       x  2 , 4     =    − 2  ∑  i = 1  4   f i  + 4  ∑  i = 1  4   1 i   f i  − 4 .     











Thus we have


     x  1 , 4     =     n 1  −  x  1 , 2   −  x  1 , 3         x  2 , 2     =    n − 2  n 1  + 3 −  x  1 , 2   −  1 3   x  1 , 3   −  1 3   x  2 , 3   +  1 3   x  3 , 3   +  2 3   x  3 , 4   +  x  4 , 4         x  2 , 4     =     n 1  − 4 +  x  1 , 2   +  1 3   x  1 , 3   −  2 3   x  2 , 3   −  4 3   x  3 , 3   −  5 3   x  3 , 4   − 2  x  4 , 4   .     











Substituting them back into Equation (19), we have


     ( A B C − R ) ( T )    =       2  − 1  2  n +   2 − 3  2  + 2  3   4   n 1  +  1  2   −  3 2          +   4 −  2  − 2  3   4   x  1 , 2   +   8 −  2  − 10  3  + 4  6   12   x  1 , 3           +   1 +  2  −  6   6   x  2 , 3   +   1 −  2   6   x  3 , 3           +   2  15  − 4 −  2  − 2  3   12   x  3 , 4   +    6  − 3  4   x  4 , 4         ≈       2  − 1  2  n +   2 − 3  2  + 2  3   4   n 1  +  1  2   −  3 2          − 0.219579  x  1 , 2   − 0.078064  x  1 , 3   − 0.005879  x  2 , 3           − 0.069036  x  3 , 3   − 0.094362  x  3 , 4   − 0.137628  x  4 , 4       








with negative coefficients   x  1 , 2   ,   x  1 , 3   ,   x  2 , 3   ,   x  3 , 3   ,   x  3 , 4    and   x  4 , 4   . Thus


   ( A B C − R )   ( T )  ≤    2  − 1  2  n +   2 − 3  2  + 2  3   4   n 1  +  1  2   −  3 2   








and equality in above holds if and only if   x  1 , 2    =   x  1 , 3    =   x  2 , 3    =   x  3 , 3    =   x  3 , 4    =   x  4 , 4    = 0, or equivalently,    x  1 , 4   =  n 1   ,    x  2 , 2   = n − 2  n 1  + 3  ,    x  2 , 4   =  n 1  − 4  , i.e.,   T ∈   T   n ,  n 1   ′   . □






5. Conclusions


In this paper, we considered more maximum values of the difference   A B C − R  , where   A B C   and R are the atom-bond connectivity index and Randić index, respectively. In particular, we characterized the fourth, the fifth and the sixth maximum chemical trees with respect to the invariant   A B C − R  , and thus extended the result by Ali and Du [24] in 2017. It is very challenging to find more maximum values of   A B C − R   invariant unless new efficient method is introduced. By using the technique from [19], we also obtained a sharp upper bound for the   A B C − R   index of molecular (or chemical) trees with fixed number of pendant vertices. The work on bounds for the   A B C − R   index of general graphs and trees is widely open and one can consider many directions.
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Figure 1. Chemical trees with the fourth (A), the fifth (B) and the sixth (C) maximum   A B C − R   values in Theorem 2-(1). 






Figure 1. Chemical trees with the fourth (A), the fifth (B) and the sixth (C) maximum   A B C − R   values in Theorem 2-(1).
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Figure 2. Chemical trees with the fourth (D), the fifth (E) and the sixth (F) maximum   A B C − R   values in Theorem 2-(2). 






Figure 2. Chemical trees with the fourth (D), the fifth (E) and the sixth (F) maximum   A B C − R   values in Theorem 2-(2).
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Figure 3. Chemical trees with the fourth (G), the fifth (H) and the sixth (I) maximum   A B C − R   values in Theorem 2-(3). 






Figure 3. Chemical trees with the fourth (G), the fifth (H) and the sixth (I) maximum   A B C − R   values in Theorem 2-(3).
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