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Abstract: The dynamic model of the system of bodies with elastic connections substantiates the
conceptual basis for evaluating the technological vibrations of the compactor roller as well as of the
parameters of the vibrations transmitted from the vibration source to the remainder of the equipment
components. In essence, the multi-body model with linear elastic connections consists of a body
in vertical translational motion for vibrating roller with mass m1, a body with composed motion of
vertical translation and rotation around the transverse axis passing through its weight center for the
chassis of the car with mass m and the moment of mass inertia J and a body of mass m’ representing
the traction tire-wheel system located on the opposite side of the vibrating roller. The study analyzes
the stationary motion of the system of bodies that are in vibrational regime as a result of the harmonic
excitation of the m mass body, with the force F(t) = m0rω2 sinωt, generated by the inertial vibrator
located inside the vibrating roller. The vibrator is characterized by the total unbalanced m0 mass
in rotational motion at distance r from the axis of rotation and the angular velocity or circular
frequency ω.
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1. Introduction

The real-time assessment of the degree of compaction of the foundation soil both with stabilized
natural soil as well as mixed with stone mineral aggregates or in the case of compaction of asphalt
concrete layers, requires precision and high sensitivity of the dynamic response in amplitude of the
compactor roller to the changes of soil rigidity as a result of the compaction process.

After each passage on the same compacted layer, the final rigidity of the soil has a new value,
higher than the initial rigidity. In this case, after each passage, there can be estimated, through an
appropriate instrumental system, the modified amplitude of vibration in correlation with the new state
of compaction of the soil corresponding to modified rigidity.

Currently, there are several companies manufacturing vibration compactor machines that use
instrumental and computer systems for capturing, treating, and processing the specific signal to the
vibration of the vibrating roller. Usually, the dynamic calculation model used is reduced to that of the
vibrating roller system with a single degree of freedom, without taking into account the effect of the
other vibrating moving masses of the machine.

Frequently, for vibration regime at frequencies in the range of 40–50 Hz, the system ensures the
degree of compaction in real time based on the change in rigidity with each passing on the same layer
of land. In this case, the first two resonant frequencies are neglected, although they may be important
in the work process.

At frequencies between 15 and 30 Hz, the automatic analysis of technological vibration systems
produce errors 30% larger, which leads to major inconveniences. For these reasons, the current dynamic
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study highlights the influence of the masses of the body assembly at various dynamic regimes for
functional frequencies from 15 Hz to 80 Hz. According to the category of the compaction technology,
that is, the change in final rigidity after each passage of the compacted layer, there are many scientific
and technical approaches with case studies on technologically defined sites that require a more complete
dynamic approach, highlighting the influences of the body system on the dynamic response and of the
degree of compaction [1,2].

The numerical data used for the case study represent parametric values established on an
experimental basis both in the laboratory and “in situ”. [2,3]

2. Multibody System Model

The dynamic multibody model of the vibrating roller is presented in Figure 1 [4–6], where the
following notations are used:

I1—elastic connection point of the vibrating roller with vertical translational movement;
I2—connection point of the elastic system to the front side of the car chassis;
I3—connection point between the rear of the car chassis to the traction unit consisting of tire-wheels;
m’—mass of the vibrating roller;
m—mass of the car chassis;
J = Jz—moment of mass inertia in relation to the transverse axis z passing through the center of

mass C of the car chassis;
m1—mass of the traction group;
k1—rigidity of the compacted material;
k2—rigidity of the elastic connection system and dynamic insulation between the vibrating roller

and the front chassis;
k3—combined rigidity of the traction wheel tires in contact with the compacted material;
a, b—distances of the C mass center in relation to the I2 and I3 ends of a chassis, so that a + b = l,

where l = I2I3 is the equivalent length of the chassis;
x, ϕ = ϕz—instantaneous displacements of the chassis; and
x1, x2, x3—absolute instantaneous displacements relative to a fixed reference system.
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Figure 1. Dynamic multibody model with linear elastic connections.

Instantaneous displacements of points i = 1, 2, 3, can be determined with the following matrix
relation [7,8]:

uIi =


xi
yi
zi

+


0 −ϕz ϕy

ϕz 0 −ϕz

−ϕy ϕx 0




xi
yi
zi

 (1)

where x, y, z are the tri-orthogonal instantaneous linear coordinates of the mass center belonging to
each rigid body I1 and C, respectively.

ϕx,ϕy, ϕz—the tri-orthogonal instantaneous angular coordinates relative to the competing x,y,z
axes in the center of mass of each rigid body C1 and C2, respectively.
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For the m1 mass body with vertical translational motion and the null instantaneous angular
coordinates, that is ϕx = ϕy = ϕz = 0, the displacement of the I1 ≡ C1 point is

uI1 =


x1

0
0

+


0 0 0
0 0 0
0 0 0




0
0
0

 = x1 (2)

For the mass body m and moment of inertia Jz = J, with the instantaneous angular coordinates
ϕx = ϕy = 0 and ϕz = ϕ, it has a plane motion (x, ϕ), so that the displacements of points I2 and I3 can
be determined as follows:

uI2 =


x
0
0

+


0 −ϕ 0
ϕ 0 0
0 0 0




0
a
0

 = x− aϕ (3)

uI3 =


x
0
0

+


0 −ϕ 0
ϕ 0 0
0 0 0




0
−b
0

 = x + bϕ (4)

2.1. Kinetic Energy of the Multibody System

Taking into account the motion of body C1 of mass m1 with translation coordinate x1 and of
the assembled body C2C3 with mass m + m’, moment of mass inertia J + m′b2, with coordinates x,
ϕ (vertical translation and rotation), the kinetic energy of the assembly of bodies is [9,10]

2E =
〈 .
q, M

.
q
〉
=

.
qTM

.
q. (5)

where
.
q is the column vector of the generalized velocity with

.
qT

=
[ .

x1
.
x

.
ϕ

]
;

M—symmetric and positively defined inertia matrix; and〈 .
q, M

.
q
〉
—scalar product between vectors

.
q and M

.
q.

Matrix M of the entire system of instantaneous moving bodies with generalized coordinates x1, x,
and ϕ, consists of inertial elements of zero order m1, m + m’, one order m’b and two order J + m′b2,
placed on the main diagonal and symmetrically in relation to it, highlighting an inertial coupling due
to a C3 body eccentrically assembled on body C2. In this case, matrix M can be written as follows:

M =


m1 0 0
0 m + m′ m′b
0 m′ J + m′b2

 (6)

The analytical expression of the kinetic energy, based on relations (5) and (6), can be developed in
the form of

2E = m̃1
.
x2

1 + m̃2
.
x2

+ m̃3
.
ϕ

2
+ 2m̃23

.
x

.
ϕ (7)

where the following notations were used for the inertia coefficients m2, m3, and m23, so m̃2 = m + m′;
m̃3 = J + m′b2; m̃23 = m′b.

2.2. Elastic Potential Energy

For the elastic elements, modeled as linear springs with rigidities k1, k2, k3, the vector of the elastic
deformations v, with vT =

[
v1 v2 v3

]
has the following components [7,11]:

v1 = x1

v2 = uI2 − x1 = x− aϕ− x1 (8)
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v3 = x3 = x + bϕ

Thus, vector v can be written as

v =


x1

x− aϕ− x1

x + bϕ

 (9)

The transition from the elastic deformations vector v
=

to the vector of instantaneous displacements

q with qT =
[

x1 x ϕ
]

can be done by the linear transformation of

v = Aq (10)

where A is the matrix of the linear transformation as an operator of influence of the displacements on
deformations.

Taking into account relations (9) and (10), matrix A can be formulated as follows:

A =


1 0 0
−1 1 −a
0 1 b

 (11)

The potential elastic energy 2V can be formulated based on the use of the scalar product between
vectors v and K0 v, where K0 = diag

[
k1 k2 k3

]
, as follows:

2V = 〈v, K0v〉 (12)

Using the linear transformation (10) where A has the property of a self-adjoint operator inside the
scalar product, relation (12) becomes

2V =
〈
Aq, K0Aq

〉
or

2V =
〈
q, ATK0Aq

〉
=

〈
q, Kq

〉
(13)

where K is the rigidity matrix of the multibody elastic system.
In this case, matrix K = ATK0Aq can be written as

K = ATK0Aq =


k1 + k2 −k2 ak2

−k2 k2 + k3 −ak2 + bk3

ak2 −ak2 + bk3 a2k2 + b2k3

 (14)

It is found that matrix K is symmetrical and positively defined with elastic coupling elements
symmetrically placed in relation to the main diagonal. In general form, matrix K can be written
as follows:

K =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 (15)

where elements kij are those in formulation (15), that is:

k11 = k1 + k2; k12 = −k2; k13 = ak2

k21 = −k2 ; k22 = k2 + k3; k23 = ak2 + bk3

k31 = ak2; k32 = −ak2 + bk3; k33 = a2k2 + b2k3
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The potential elastic energy in analytical form, in this case, can be formulated in the form of
2V = Φ, as follows

2V = (k1 + k2)x2
1 + (k2 + k3)x2 +

(
a2k2 + b2k3

)
ϕ2
− 2k2x1x + 2(−ak2 + bk3)xϕ+ 2ak2x1ϕ = Φ (16)

Elastic force Qj, which corresponds to the generalized coordinate qj can be written as follows:

QV
j = −

∂V
∂q j

(17)

In this case, deriving the relation (16) in the form of 2V = Φ in relation to coordinate q j, that is
∂(2V)
∂q j

= ∂Φ
∂q j

leads to ∂V
∂q j

= 1
2
∂Φ
∂q j

, and thus we obtain


QV

1 = − ∂V
∂q1

= − 1
2
∂Φ
∂q1

QV
2 = − ∂V

∂q2
= − 1

2
∂Φ
∂q2

QV
3 = − ∂V

∂q3
= − 1

2
∂Φ
∂q3

(18)

Taking into account function Φ in relation (16) and the fact that q1 = x1, q2 = x and q3 = ϕ,
applying relations (18), we obtain

QV
1 = − 1

2
∂Φ
∂q1

= −(k1 + k2)x1 + k2x− ak2ϕ

QV
2 = − 1

2
∂Φ
∂q2

= −(k2 + k3)x + k2x1 − (−ak2 + bk3)ϕ

QV
3 = − 1

2
∂Φ
∂q3

= −
(
a2k2 + b2k3

)
ϕ− (−ak2 + bk3)x− ak2x1

(19)

2.3. Disruptive Force

The harmonic excitation is given by the disruptive force F(t) = F0 sinωt, where the amplitude of
the force is F0 = m0rω2. This is applied on body C1 in order to generate forced vibrations in the vertical
direction so that the mass body m1 and coordinate x1 only have vertical translational movement.

In this case, the vector of disruptive forces is

fT =
[

F0 sinωt 0 0
]

The generalized force corresponding to the disruptive force after the generalized coordinated qj
can be determined as follows:

QF
j =

δL j

δq j
(20)

where δL j is the virtual mechanical work of force F;
δq j—virtual variation of coordinate qj,
In this case, forces QF

1 , QF
2 , QF

3 emerge as

QF
1 =

Fδx1

δx1
= F = F0 sinωt (21)

and
QF

2 = QF
3 = 0 because δL2 = δL3 = 0.

3. Analysis of Forced Vibrations

The response of the multibody system with elastic connections is given by the excitation given by
the harmonic force F(t) = F0 sinωt. F0 = m0rω2 defines the inertial force of mass m0 in the rotational
motion at distance r with the circular frequency ω in relation to the axis of rotation of the vibrating
device placed symmetrically inside the vibrating roller [1,2,8].
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For the multibody system, the Lagrange equations of the second kind can be applied as follows [5,11]:

d
dt

 ∂E
∂

.
q j

− ∂E
∂q j

= QV
j + QF

j , j = 1, 2, 3 (22)

where E is the kinetic energy expressed by relation (7), and the generalized forces QV
j and QF

j are given
by the relations (19) and (21), respectively.

Taking into account relations (7), (19), and (21), respectively, the Lagrange equations of the second
kind given by relation (22), for each degree of freedom, can be written in the form

m1
..
x1 + (k1 + k2)x1 − k2x + ak2ϕ = F0 sinωt

m̃2
..
x + m̃23

..
ϕ+ (k2 + k3)x− k2x1 + (−ak2 + bk3)ϕ = 0

m̃23
..
x + m̃3

..
ϕ+

(
a2k2 + b2k3

)
ϕ+ (−ak2 + bk3)x + ak2x1 = 0

(23)

In stationary forced mode, the dynamic response is given by the solutions of the system of linear
differential Equation (23), as follows: 

x1 = A1 sinωt
x = Ax sinωt
ϕ = Aϕ sinωt

(24)

which introduced together with
..
x1,

..
x and

..
ϕ in system (23) results in an algebraic system having as

unknown amplitudes A1, Ax, and Aϕ, as
a11A1 + a12Ax + a13Aϕ = F0

a21A1 + a22Ax + a23Aϕ = 0
a31A1 + a32Ax + a33Aϕ = 0

(25)

Coefficients aij i, j = 1, 2, 3 have the following expressions thus determined:

a11 = k1 + k2 −m1ω2

a22 = k2 + k3 − m̃2ω2

a33 = a2k2 + b2k3 − m̃3ω2

a12 = a21 = −k2

a13 = a31 = −ak2

a23 = a32 = −ak2 + bk3 − m̃23ω2

(26)

The determinant of the unknown coefficients based on relation (25) emerges as follows:

D = a11a22a33 + 2a12a13a23 − a11a23
2
− a22a13

2
− a33a12

2 (27)

Condition D = 0 generates the pulse equation, from where there emerges three real values of ω
that coincide with the three own pulses ωnj, j = 1, 2, 3.

Amplitudes A1, Ax, and Aϕ are obtained by solving out the algebraic equation system (25) applying
Cramer’s method, so that we have

A1 =
(
a22a33 − a23

2
)m0rω2

D
(28)

Ax = A2 = (a13a23 − a12a33)
m0rω2

D
(29)

Aϕ = A3 = (a12a23 − a13a22)
m0rω2

D
(30)
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For a vibrating equipment modeled as a multibody system, the parametric values resulting from
the numerical evaluation are given as follows: m1 = 2·103 kg; m̃2 = 4.5·103 kg; m̃3 = 32·103 kgm2;
m̃23 = 106 kgm; k1 = (1; 2; 4; 6)·107 N/m; k2 = 106 N/m; k1 = 1.25·106 N/m; m0r = 2 kgm; a = 1 m;
b = 2 m.

For the variation of ω in the range of values (0 ÷ 400) rad/s, the response curves of amplitudes
A1(ω), A2(ω), and A3(ω) were drawn and represented in Figures 2–4 for four discrete values of
rigidity k1. Thus, three own pulses emerge of which the first two at the values ωn1 = 12.23 rad/s,
ωn2 = 22.24 rad/s, are common and constant for the four values of rigidity k1 = (1; 2; 4; 6)·107 N/m;
the last value of the own pulse ωn3 is different according to rigidity k1. In this case, for kj, j = 1, 2,

3, we have k1 = 107 N/m, ω(1)
n3 = 74.73 rad/s, k1 = 2·107 N/m, ω(2)

n3 = 102.1 rad/s, k1 = 4·107 N/m,

ω
(3)
n3 = 142.6 rad/s, and k1 = 6·107 N/m, ω(4)

n3 = 174.1 rad/s. It can be found that in the post-resonance
regime for ω > ωnj, amplitude A1 tends asymptomatically toward a constant value and stable motion
at the value A1 = 1.245 mm, and amplitudes A2 and A3 tend toward very small values, of the order
1.87 × 10−3 mm, respectively, 3 × 10−7 rad.
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Figure 4. Family of curves for amplitude A3. (a) Normal representation. (b) Enlarged scale representation.

In order to determine the resonance pulses to ensure a post-resonance regime, only the significant
linear elastic case was considered, obviously with the neglect of the viscous effects.

The low numerical values of amplitudes A2 and A3 in post-resonance highlight the fact that the
forced vibrations transmitted from body C1 to body C2 are negligible.

The amplitude variation curves in Figures 2–4 were numerically elevated for the previously
specified parametric data for a towed vibrating roller, with a hydrostatic system for continuously
changing the excitation pulsation (i.e., the angular velocity of the eccentric mass of the vibrator).
Thus, the resonance pulses were measured for each case, with an accuracy of ±5 Hz compared to
the numerically obtained value. A Bosch hydrostatic control system and a Bruel & Kjaer vibration
measurement system were used.

4. Conclusions

The structural assembly of a vibrating roller can be modeled as a system of two rigid bodies
with linear elastic connections so that two contradictory desiderata can be achieved simultaneously,
namely: achieving technological vibrations for body C1 (vibrating roller) and the significant reduction
of the vibrations transmitted to body C2 (machine chassis) in the control cabin was assembled with the
working space for the operating mechanic and the drive unit.

In this context, the modeling of the multi-body system was conducted taking into account the
inertial characteristics in direct correlation with the possible and significant movements of the two rigid
bodies. Thus, the vertical translational motion of body C1 of mass m1 is characterized by a coordinate
or a single dynamic degree of freedom that describes the vertical instantaneous displacement.

The motion of the C2 body is characterized by two degrees of dynamic freedom defined by the
x and ϕ coordinates. They describe the instantaneous vertical translational motion and respectively,
the instantaneous angular rotational motion around the horizontal axis passing through the center of
gravity of body C2. In this case, the multibody system is characterized by three degrees of dynamic
freedom noted with x1, x, and ϕ.

As a result of the dynamic study developed in the paper, based on the numerical analysis and the
experimental results obtained on five categories of equipment, the presented model faithfully describes
the dynamic behavior of the tested equipment. In this context, the following conclusions can be drawn.

(a) The dynamic model of the multibody system with elastic connections is characterized by the
inertia matrix M and by the rigidity matrix K, both symmetrical in relation to the main diagonal;

(b) The elements of inertial coupling m23 = m′b and of elastic coupling −k2, ak2 and −ak2 + bk3 are
found in the differential equations of motion (23) with significant effects on the equation of own pulses
(27) and of amplitudes A1, A2, A3 as a dynamic response to the harmonic excitation F(t) = m0rω2 sinωt.
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(c) The numerical and experimental analysis on a vibrating roller equipment, with mass, elastic and
excitation data, for the evaluated case study, provides the following conclusions:

- the first two own pulses with relatively low values ωn1 = 12.23 rad/s and ωn2 = 22.24 rad/s were
influenced by the fact that the inertial effect is large enough and rigidity k2 of the elastic connection
system between bodies C1 and C2 is low enough for good post-resonance vibration isolation at
ω > ωn3;

- the last own pulse ωn3, is mainly influenced by rigidity k1 of the compaction soil. Thus, for four
distinct values of k1, which correspond to successive passages on the same layer of road structure,
in the compaction process, there emerged four distinct values of the own pulses (resonance) ωn3,
in ascending order, as follows: 74.73 rad/s, 102.1 rad/s, 142.6 rad/s, 174.1 rad/s [12].

(d) The family of curves for amplitudes A1, A2, and A3 represented in Figures 2–4 highlights the
fact that in the post-resonance regime for ω > ωn3, amplitude A1 of the technological vibrations is
constant and stable for ω ∈ (300 . . . 400) rad/s, and amplitudes A2 and A3 tend toward small values,
assuring the favorable effect of dynamic insulation for body C2.

(e) The analytical relations (26), (27), and (28) can be used for the parametric optimization of the
dynamic response, as follows:

- amplitude A1 of the technological vibrations, which must be constant and stable at the excitation
pulse ω, must meet the post-resonance operating condition ω > 1.5 ωn3. Practically, it is
recommended that ω = 2ωn3 to achieve the technological requirements of efficient compaction;

- amplitudes A2 and A3 of body C2 must have low values so that the degree of isolation of the
vibrations transmitted from the body C1 to be Iv ≥ 95%; and

- the first two own pulses or resonance circular frequencies must be within the range (10 ÷ 60) rad/s,
so that the influence of the two resonance zones for ω = ωn1 and ω = ωn2 becomes negligible for
stable optimal operation [13].

Given the above, the analytical approach of the dynamic behavior of multibody systems with
effective applications for vibratory rollers for compacting road structures can be useful in the stage of
establishing technical design solutions as well as in the parametric optimization stage.

This can be achieved by adjustments and tuning that can be made during the working process
such as the discrete change in steps, the static moment m0r, and/or the continuous modification of the
excitation pulse ω that can be achieved with the hydrostatic actuation of the vibrator [14].
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