
symmetryS S

Article

Deep Reinforcement Learning by Balancing Offline
Monte Carlo and Online Temporal Difference Use
Based on Environment Experiences

Chayoung Kim

College of Liberal Arts and Interdisciplinary Studies, Kyonggi University, 154-42 Gwanggyosan-ro,
Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, Korea; kimcha0@kgu.ac.kr; Tel.: +82-31-249-9509

Received: 7 September 2020; Accepted: 13 October 2020; Published: 14 October 2020
����������
�������

Abstract: Owing to the complexity involved in training an agent in a real-time environment,
e.g., using the Internet of Things (IoT), reinforcement learning (RL) using a deep neural network,
i.e., deep reinforcement learning (DRL) has been widely adopted on an online basis without prior
knowledge and complicated reward functions. DRL can handle a symmetrical balance between bias
and variance—this indicates that the RL agents are competently trained in real-world applications.
The approach of the proposed model considers the combinations of basic RL algorithms with
online and offline use based on the empirical balances of bias–variance. Therefore, we exploited
the balance between the offline Monte Carlo (MC) technique and online temporal difference (TD)
with on-policy (state-action–reward-state-action, Sarsa) and an off-policy (Q-learning) in terms of
a DRL. The proposed balance of MC (offline) and TD (online) use, which is simple and applicable
without a well-designed reward, is suitable for real-time online learning. We demonstrated that, for a
simple control task, the balance between online and offline use without an on- and off-policy shows
satisfactory results. However, in complex tasks, the results clearly indicate the effectiveness of the
combined method in improving the convergence speed and performance in a deep Q-network.

Keywords: Q-learning (off-policy); sarsa (on-policy); reinforcement learning (RL); internet of things
(IoT); monte carlo (offline); Q-learning (online); deep learning

1. Introduction

Reinforcement learning (RL) and deep reinforcement learning (DRL) are incredibly autonomous
and interoperable, i.e., they have many real-time Internet of Things (IoT) applications. RL pertains to
a machine learning method based on trial-and-error, which improves the performance by accepting
feedback from the environment [1,2]. There have been many studies on applying RL or DRL in IoT,
which are relevant to a variety of applications, such as energy demand based on the critical load
or real-time electricity prices in a smart grid. Robots or smart vehicles using IoT are autonomous
in their working environment, wherein they attempt to find a collision-free path from the current
location to the target. Regarding the applications of RL or DRL in autonomous IoT, a broad spectrum
of technology exists, such as fast real-time decisions made locally in a vehicle or the transmission of
data to and from the cloud [1,2]. In particular, one of the large issues regarding a real-time fast decision
is online learning and decision making based on approximate results from the learning [1–3] similar to
near-optimal path-planning with respect to real-time criteria. However, the real-time environment
might be imprecise, dynamic, and partially non-structured [1–4]. Owing to the complexity of online
learning and real-time decisions in RL or DRL, Q-learning or a deep Q-network (DQN) has been
widely adopted along with some pre-trained [5] or prior knowledge, such as environmental maps or
environmental dynamics [6]. In [5], the authors showed that deep Q-learning with transfer learning is

Symmetry 2020, 12, 1685; doi:10.3390/sym12101685 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4186-5882
http://dx.doi.org/10.3390/sym12101685
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/10/1685?type=check_update&version=3

Symmetry 2020, 12, 1685 2 of 16

significantly applicable in emergency situations such as fire evacuation planning. Their models have
shown that an emergency evacuation can benefit from RL because it is highly dynamic, with a lot of
changing variables and complex constraints. Prior knowledge can help a smart robot with navigation
planning and even obstacle avoidance. Fundamentally, however, little prior knowledge of RL has
been presumed.

The approach of the proposed model is similar to that of recent studies [7,8], which have applied
RL techniques to real-time applications on an online basis and a combination of different algorithms,
without prior knowledge. These environments pose more challenges than a simulated environment,
such as enlarged state spaces and an increased computational complexity. The primary advantage
of RL lies in its inherent power of automatic learning even in the presence of small changes in the
real-time environment. Regardless of whether real-time applications with self-learning have become
a significant research topic, there have already been some studies based on improved Q-learning or
a DQN on the replacement of the complicated parameters, although in approximations and not in
actual results [1,2]. In [7], the authors investigated when an optimization is necessary through an
online method. In the era of big data, in [7], a DQN and deep policy gradient (DPG) are proposed to
overcome the time consumption required for all possible solutions and to allow the best solution to be
chosen. Moreover, the authors showed that their models are capable of generalization and exploitation
and minimize the energy consumption or cost in newly encountered situations [7]. In [8], the authors
demonstrated how a different mixing of off-policy gradient estimates with on-policy samples contribute
to improvements in the empirical performance of a DRL. However, recent research [1] has shown
that a DRL is confronted with situations that differ in minor ways from those upon which the DRL
was trained, indicating that solutions to DRLs are often extremely superficial. Most of these studies
require the state spaces of the smart grid to be well-organized, notwithstanding that real applications
take place in real value vectors of the state spaces, which are continuous and large in scale [1]. Thus,
using only Q-learning with complicated reward functions in real applications can lead to larger
issues, such as the curse of dimensionality [1,7]. In terms of the approximation of a value function, a
generalization in RL can cause a divergence in the case of bootstrapped value updates [9]. Therefore,
we are devoted to determining and thoroughly understanding why and when an RL is able to work
well. The design is also inspired by recent studies [2,9–11] that provide a better understanding on
the role of online and offline environments in RL, which are characterized by an extremely high
observation dimensionality and infinite-dimensional state spaces. Hausknecht and Stone [9] indicated
that mixing an off-policy Q-learning of online TD updates with offline MC updates provides an
increased performance and stability for a deep deterministic policy gradient. However, Hausknecht
and Stone [9] showed slow learning for deep Q-learning. In addition, Xu et al. [10] proposed deep
Sarsa and Q-networks, which are combined with both on-policy Sarsa and off-policy Q-learning in
online learning. Off-policy Q-learning is considered better than on-policy Sarsa in terms of the local
minima in online learning. However, Q-learning also suffers from a high bias estimate because the
estimate is never completely accurate [3]. Wang et al. [11] also combined Sarsa and Q-learning but
utilized some information regarding a well-designed reward until the maximum time is reached.
As such, their study [11] necessitated the full storage for the entire episode as a worst case. By contrast,
the proposed model does not consider a well-designed reward for optimization, thereby making it
different from the research by Wang et al. Remarkably, Amiranashvili et al. [2] demonstrated that, in a
representative online learning, the temporal difference (TD), is not always superior to a representative
offline learning, i.e., a Monte Carlo (MC) approach.

In this study, we exploit a combination of an offline learning MC approach and off-policy Q-learning
and an on-policy state-action–reward-state-action (Sarsa) of online learning TD. The purpose of this
combination is to achieve a reasonable performance and stability with reply memories and updates
to a target network [12] while ensuring a real-time online learning criterion in the environments.
By using the DQN, which is the de facto standard, Q-estimates are computed using the target network,
which can provide older Q-estimates, with a specific bias limiting the generalization but achieving a

Symmetry 2020, 12, 1685 3 of 16

more stable network instead. In RL, bias and variance indicates how well the RL signals reflect the
true rewards in the environment. A combination of online and offline environments is applied for a
bias-variance tradeoff [13]. Previous studies [8,14] have handled the issues involved in balancing bias
and variance. The most common approaches are to reduce the variance of an estimate while keeping
the bias unchanged. The baselines of such studies [8,14] are of the policy gradient [15], which utilizes
an actor, who defines the policy, and a critic, who provides a more reduced variance reward structure
to update the actor.

Herein, we consider DQN, the de facto standard, and Q-learning with a ε-greedy algorithm for
the balance of exploration and exploitation, which is easily applicable to more general cases and
is a simple but powerful strategy for the challenge of bias–variance tradeoff—a crucial element in
several RL components. This study aims to bridge the gap between theory and practice using a simple
RL strategy. Therefore, we rely on the “baseline” of the balance in offline MC and online TD with
off-policy Q-learning and on-policy Sarsa in a real-time environment. Based on these considerations,
we propose a random probability that determines whether to use an offline or online environment
during the learning process. The initial value of probability δ is δini. The value of δini is set to 1.0;
therefore, the proposed algorithm will use offline learning with higher probability during the initial
stage. For random probability δ, each step is decreased by ∆δ until δfin = 0.01. Consequently, the
proposed algorithm will more likely utilize online learning with an on- and off-policy during the
late stage. The algorithm is based on a simple and random method with probability δ, and it has
facilitated better prediction by the agent in several cases. Therefore, as training of the agent progresses,
a complete episode for offline learning is not required.

Through this study, we show that merely using only a DQN by balancing offline and online
environments with an on- and off-policy achieves a satisfactory result. We demonstrate the capability
of the proposed model and its suitability for RL in an autonomous IoT for achieving a bias–variance
trade-off. The aforementioned contributions are significant because several researchers have based
their studies on complex function approximations with deep neural networks. In the simulations
using control problems such as a cart-pole balancing, mountain-car, and lunar-lander from the OpenAI
Gym [16], we demonstrated that in simple control task such as a cart-pole and mountain-car, merely
the balance of online and offline environments without an on- and off-policy achieves satisfactory
results. However, in complex tasks such as a lunar-lander or the cart-pole and mountain-car with
qualified upper bound, the results provide direct evidence of the effectiveness of the combined method
for improving the convergence speed and performance. The proposed algorithm initially chooses a
gradual balance from an offline environment, followed by online with on- and off-policy towards the
end of the application, with a simple and random probability. Furthermore, we attempt to demonstrate
the superiority of this algorithm over other technique by comparing it with the classic DQN, DQN with
MC, and DQN with Sarsa. The proposed algorithm aims to achieve a significantly lightweight version
of a random balance of the probability, and is worth consideration in most real-time environments.

2. Background

The standard structure of the RL [17–19] is given in Figure 1. The environment and agent of
the learning system interact continuously. The agent, based on the policy, selects an action at in the
current state st. The environment will then supply a reward to the agent based on the action at,
and create a new situation, st+1. In the environment, the state st, the action at, the reward rt+1, the new
state st+1, and the new action at+1 are presented in a circular form. RL attempts to teach the agent
how to improve the action, when placed in an unknown environment, by acquiring the near-optimal
Q-values that achieve the best results for all states. The agent takes advantage of the rewards given by
the environment after selecting an action in every state to update the Q-values for a convergence of
optimality. The constant issue of a trade-off between exploration and exploitation in the unknown
environment in an RL algorithm has yet to be addressed. On the one hand, choosing the action with
the best-estimated value implies that the agent exploits its current knowledge. On the other hand,

Symmetry 2020, 12, 1685 4 of 16

choosing one of the other actions implies that the agent explores how to improve its estimate of the
values of such actions. The exploitation maximizes the reward system in the short term. However,
it does not guarantee a maximization of the accumulated reward in the long run. As such, although
the exploration reduces the short-term benefits of the total rewards, it produces the maximum reward
in the long run. This is because, after the agent has explored the actions at random, allowing the agent
to check for better alternatives, it can begin to exploit them. It must be noted that exploitation and
exploration are mutually exclusive. Hence, the agent cannot perform both exploration and exploitation
in one selection. Therefore, it is fundamentally essential to balance the exploration and exploitation for
the convergence of the near-optimal value functions. The most common algorithm for balancing this
trade-off of exploration and exploitation is the ε-greedy algorithm. In this algorithm, the action with
the maximally estimated value is called the “greedy action,” and the agent usually exploits its current
knowledge by choosing this so-called greedy action. However, there are other chances of probability
ε for the agent to explore under a random selection, i.e., “non-greedy actions.” This type of action
selection is called a ε-greedy algorithm [17–19].

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 16

the long run. This is because, after the agent has explored the actions at random, allowing the agent
to check for better alternatives, it can begin to exploit them. It must be noted that exploitation and
exploration are mutually exclusive. Hence, the agent cannot perform both exploration and
exploitation in one selection. Therefore, it is fundamentally essential to balance the exploration and
exploitation for the convergence of the near-optimal value functions. The most common algorithm
for balancing this trade-off of exploration and exploitation is the ε-greedy algorithm. In this
algorithm, the action with the maximally estimated value is called the “greedy action,” and the agent
usually exploits its current knowledge by choosing this so-called greedy action. However, there are
other chances of probability ε for the agent to explore under a random selection, i.e., “non-greedy
actions.” This type of action selection is called a ε-greedy algorithm [17–19].

Figure 1. Reinforcement learning (RL) structure.

Furthermore, two different approaches, MC and TD, are applied when dealing with the trade-
off between online and environments offline for determining the Q-value functions in RL [17]. TD
can learn before knowing the final outcome. Thus, TD can learn online after every step. However,
MC can only learn from complete sequences. Thus, MC learning is offline. Figure 2 shows a
significant difference between MC and TD. In Figure 2, V(St) is the value fuction at St and Gt is the
total discounted reward. α is the learning rate and γ is the discount factor. Rt+1 + γV(St) is the estimated
return, also known as the TD-target, and [Rt+1 + γV(St) − V(St)] is TD-error. In addition, Figure 3 shows
a first-visit MC policy evaluation [17]

Figure 2. Differences between Monte Carlo (MC) and temporal difference (TD) [17].

Figure 3. First-visit MC policy evaluation [17].

Among the most common TD algorithms are Sarsa, which is an on-policy, and Q-learning, an
off-policy. There are two types of policy learning methods in RL: on-policy and off-policy. On-policy

Figure 1. Reinforcement learning (RL) structure.

Furthermore, two different approaches, MC and TD, are applied when dealing with the trade-off

between online and environments offline for determining the Q-value functions in RL [17]. TD can learn
before knowing the final outcome. Thus, TD can learn online after every step. However, MC can only
learn from complete sequences. Thus, MC learning is offline. Figure 2 shows a significant difference
between MC and TD. In Figure 2, V(St) is the value fuction at St and Gt is the total discounted reward.
α is the learning rate and γ is the discount factor. Rt+1 + γV(St) is the estimated return, also known
as the TD-target, and [Rt+1 + γV(St) − V(St)] is TD-error. In addition, Figure 3 shows a first-visit MC
policy evaluation [17].

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 16

the long run. This is because, after the agent has explored the actions at random, allowing the agent
to check for better alternatives, it can begin to exploit them. It must be noted that exploitation and
exploration are mutually exclusive. Hence, the agent cannot perform both exploration and
exploitation in one selection. Therefore, it is fundamentally essential to balance the exploration and
exploitation for the convergence of the near-optimal value functions. The most common algorithm
for balancing this trade-off of exploration and exploitation is the ε-greedy algorithm. In this
algorithm, the action with the maximally estimated value is called the “greedy action,” and the agent
usually exploits its current knowledge by choosing this so-called greedy action. However, there are
other chances of probability ε for the agent to explore under a random selection, i.e., “non-greedy
actions.” This type of action selection is called a ε-greedy algorithm [17–19].

Figure 1. Reinforcement learning (RL) structure.

Furthermore, two different approaches, MC and TD, are applied when dealing with the trade-
off between online and environments offline for determining the Q-value functions in RL [17]. TD
can learn before knowing the final outcome. Thus, TD can learn online after every step. However,
MC can only learn from complete sequences. Thus, MC learning is offline. Figure 2 shows a
significant difference between MC and TD. In Figure 2, V(St) is the value fuction at St and Gt is the
total discounted reward. α is the learning rate and γ is the discount factor. Rt+1 + γV(St) is the estimated
return, also known as the TD-target, and [Rt+1 + γV(St) − V(St)] is TD-error. In addition, Figure 3 shows
a first-visit MC policy evaluation [17]

Figure 2. Differences between Monte Carlo (MC) and temporal difference (TD) [17].

Figure 3. First-visit MC policy evaluation [17].

Among the most common TD algorithms are Sarsa, which is an on-policy, and Q-learning, an
off-policy. There are two types of policy learning methods in RL: on-policy and off-policy. On-policy

Figure 2. Differences between Monte Carlo (MC) and temporal difference (TD) [17].

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 16

the long run. This is because, after the agent has explored the actions at random, allowing the agent
to check for better alternatives, it can begin to exploit them. It must be noted that exploitation and
exploration are mutually exclusive. Hence, the agent cannot perform both exploration and
exploitation in one selection. Therefore, it is fundamentally essential to balance the exploration and
exploitation for the convergence of the near-optimal value functions. The most common algorithm
for balancing this trade-off of exploration and exploitation is the ε-greedy algorithm. In this
algorithm, the action with the maximally estimated value is called the “greedy action,” and the agent
usually exploits its current knowledge by choosing this so-called greedy action. However, there are
other chances of probability ε for the agent to explore under a random selection, i.e., “non-greedy
actions.” This type of action selection is called a ε-greedy algorithm [17–19].

Figure 1. Reinforcement learning (RL) structure.

Furthermore, two different approaches, MC and TD, are applied when dealing with the trade-
off between online and environments offline for determining the Q-value functions in RL [17]. TD
can learn before knowing the final outcome. Thus, TD can learn online after every step. However,
MC can only learn from complete sequences. Thus, MC learning is offline. Figure 2 shows a
significant difference between MC and TD. In Figure 2, V(St) is the value fuction at St and Gt is the
total discounted reward. α is the learning rate and γ is the discount factor. Rt+1 + γV(St) is the estimated
return, also known as the TD-target, and [Rt+1 + γV(St) − V(St)] is TD-error. In addition, Figure 3 shows
a first-visit MC policy evaluation [17]

Figure 2. Differences between Monte Carlo (MC) and temporal difference (TD) [17].

Figure 3. First-visit MC policy evaluation [17].

Among the most common TD algorithms are Sarsa, which is an on-policy, and Q-learning, an
off-policy. There are two types of policy learning methods in RL: on-policy and off-policy. On-policy

Figure 3. First-visit MC policy evaluation [17].

Symmetry 2020, 12, 1685 5 of 16

Among the most common TD algorithms are Sarsa, which is an on-policy, and Q-learning,
an off-policy. There are two types of policy learning methods in RL: on-policy and off-policy. On-policy
learns on the job, which means it evaluates or improves the policy that is used to make the decisions.
By contrast, off-policy evaluates one target policy, while following another behavior policy. TD methods
allow learning directly from the previous experience, do not require any model of the environment,
ascertain convergence for near-optimal performance, and are easy to implement. For these reasons,
TD methods have been widely adopted since researchers first started using RL algorithms. The Sarsa
algorithm was proposed by Rummery and Niranjan [20]. The Sarsa algorithm estimates the value of
Q(st, at) by applying at in state st according to the updated formula

(st, at)← (st, at) + [rt+1 + γ(st+1, at+1) − Q(st, at)] (1)

This update can be performed after every transition from a non-terminal state st. Here, Q(st+1,
at+1) is determined as zero if st+1 is terminal. Every element of the quintuple event (st, at, rt+1, st+1,
at+1) is used in the updated Formula (1), which is a transition from a pair of one state st and action at to
the next. Thus, this quintuple leads to the name Sarsa. The Sarsa algorithm is shown in Figure 4.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 16

learns on the job, which means it evaluates or improves the policy that is used to make the decisions.
By contrast, off-policy evaluates one target policy, while following another behavior policy. TD
methods allow learning directly from the previous experience, do not require any model of the
environment, ascertain convergence for near-optimal performance, and are easy to implement. For
these reasons, TD methods have been widely adopted since researchers first started using RL
algorithms. The Sarsa algorithm was proposed by Rummery and Niranjan [20]. The Sarsa algorithm
estimates the value of Q(st, at) by applying at in state st according to the updated formula

(st, at) ← (st, at) + [rt+1 + γ(st+1, at+1) − Q(st, at)] (1)

This update can be performed after every transition from a non-terminal state st. Here, Q(st+1,
at+1) is determined as zero if st+1 is terminal. Every element of the quintuple event (st, at, rt+1, st+1, at+1) is
used in the updated Formula (1), which is a transition from a pair of one state st and action at to the
next. Thus, this quintuple leads to the name Sarsa. The Sarsa algorithm is shown in Figure 4.

Figure 4. Sarsa algorithm [20].

Morever, the most popular TD, Q-learning, which is an off-policy proposed by Watkins and
Dayan, is one of the most important RL algorithms [21]. Q-learning is determined by

(st, at) ← (st, at) + [rt+1 + γmaxa(st+1, a) − Q(st, at)] (2)

where α is the learning rate, γ is the discount factor, and rt+1 is the immediate reward received from
the environment by taking action at in state st at the moment of time t. The Q-learning algorithm is
given in Figure 5. The difference between Sarsa and Q-learning is the TD-target, which is mentioned
above. The TD-target, R+ γQ(S’, A’) in Sarsa means “Update the current Q value with the immediate
reward and the Q value of the next action”. However, the TD-target, R+ γmaxaQ(S’, a) in Q-learning
means “an next action is chosen using behavior policy. But, the alternative successor action is
considered.” Therefore, Q-learning is off-policy, which means it will “Evaluate target policy while
following behavior policy”.

Figure 5. Q-learning algorithm [21].

Sarsa is actually an enhancement of Q-learning in terms of fast convergence. In other words,
Sarsa allows the agent to learn faster than normal. Apart from Sarsa, other studies have focused on
improving the learning performance in Q-learning [17–19].

Figure 4. Sarsa algorithm [20].

Morever, the most popular TD, Q-learning, which is an off-policy proposed by Watkins and Dayan,
is one of the most important RL algorithms [21]. Q-learning is determined by

(st, at)← (st, at) + [rt+1 + γmaxa(st+1, a) − Q(st, at)] (2)

where α is the learning rate, γ is the discount factor, and rt+1 is the immediate reward received from
the environment by taking action at in state st at the moment of time t. The Q-learning algorithm is
given in Figure 5. The difference between Sarsa and Q-learning is the TD-target, which is mentioned
above. The TD-target, R+ γQ(S’, A’) in Sarsa means “Update the current Q value with the immediate
reward and the Q value of the next action”. However, the TD-target, R+ γmaxaQ(S’, a) in Q-learning
means “an next action is chosen using behavior policy. But, the alternative successor action is
considered.” Therefore, Q-learning is off-policy, which means it will “Evaluate target policy while
following behavior policy”.

Sarsa is actually an enhancement of Q-learning in terms of fast convergence. In other words,
Sarsa allows the agent to learn faster than normal. Apart from Sarsa, other studies have focused on
improving the learning performance in Q-learning [17–19].

Symmetry 2020, 12, 1685 6 of 16

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 16

learns on the job, which means it evaluates or improves the policy that is used to make the decisions.
By contrast, off-policy evaluates one target policy, while following another behavior policy. TD
methods allow learning directly from the previous experience, do not require any model of the
environment, ascertain convergence for near-optimal performance, and are easy to implement. For
these reasons, TD methods have been widely adopted since researchers first started using RL
algorithms. The Sarsa algorithm was proposed by Rummery and Niranjan [20]. The Sarsa algorithm
estimates the value of Q(st, at) by applying at in state st according to the updated formula

(st, at) ← (st, at) + [rt+1 + γ(st+1, at+1) − Q(st, at)] (1)

This update can be performed after every transition from a non-terminal state st. Here, Q(st+1,
at+1) is determined as zero if st+1 is terminal. Every element of the quintuple event (st, at, rt+1, st+1, at+1) is
used in the updated Formula (1), which is a transition from a pair of one state st and action at to the
next. Thus, this quintuple leads to the name Sarsa. The Sarsa algorithm is shown in Figure 4.

Figure 4. Sarsa algorithm [20].

Morever, the most popular TD, Q-learning, which is an off-policy proposed by Watkins and
Dayan, is one of the most important RL algorithms [21]. Q-learning is determined by

(st, at) ← (st, at) + [rt+1 + γmaxa(st+1, a) − Q(st, at)] (2)

where α is the learning rate, γ is the discount factor, and rt+1 is the immediate reward received from
the environment by taking action at in state st at the moment of time t. The Q-learning algorithm is
given in Figure 5. The difference between Sarsa and Q-learning is the TD-target, which is mentioned
above. The TD-target, R+ γQ(S’, A’) in Sarsa means “Update the current Q value with the immediate
reward and the Q value of the next action”. However, the TD-target, R+ γmaxaQ(S’, a) in Q-learning
means “an next action is chosen using behavior policy. But, the alternative successor action is
considered.” Therefore, Q-learning is off-policy, which means it will “Evaluate target policy while
following behavior policy”.

Figure 5. Q-learning algorithm [21].

Sarsa is actually an enhancement of Q-learning in terms of fast convergence. In other words,
Sarsa allows the agent to learn faster than normal. Apart from Sarsa, other studies have focused on
improving the learning performance in Q-learning [17–19].

Figure 5. Q-learning algorithm [21].

DQN is a well-known, model-free RL algorithm attributed to discrete action spaces.
In DQN [18,19], we construct a DNN, Q, which approximates Q* and is greedily defined as
πQ(s) = argmaxa∈AQ(s,a) [18,19]. This is a ε-greedy policy with probability ε that takes the action πQ(s)
with probability 1-ε. Each episode uses the ε-greedy policy following Q as an approximation of a
DNN. The tuples (st, at, rt, st+1) are stored in the replay buffer, and each new episode is configured to
neural network training [18,19]. The DNN is trained using the gradient descent of random episodes
on a loss function, encouraging Q to follow the Bellman equation [17]. The tuples are sampled from
the replay buffer of random episodes. The target network yt is computed using a separate neural
network that changes more slowly than the main deep neural network to optimize the process stability.
The weights of the target network are set to the current weights of the main deep neural network.
The DQN algorithm [18,19] is presented in Figure 6. The maximum action at is selected by Q*((st),
a; θ) of DNN with the probability 1-ε. The TD-target, yj is rj + γmaxa’Q(Φj+1, a’; θ) and TD-error is
yj − Q(Φj, aj; θ). The DNN performs a gradient descent on the TD-error.

Symmetry 2020, 12, x FOR PEER REVIEW 6 of 16

DQN is a well-known, model-free RL algorithm attributed to discrete action spaces. In DQN
[18,19], we construct a DNN, Q, which approximates Q* and is greedily defined as πQ(s) = argmaxa∈

AQ(s,a) [18,19]. This is a ε-greedy policy with probability ε that takes the action πQ(s) with probability
1-ε. Each episode uses the ε-greedy policy following Q as an approximation of a DNN. The tuples (st,
at, rt, st+1) are stored in the replay buffer, and each new episode is configured to neural network
training [18,19]. The DNN is trained using the gradient descent of random episodes on a loss function,
encouraging Q to follow the Bellman equation [17]. The tuples are sampled from the replay buffer of
random episodes. The target network yt is computed using a separate neural network that changes
more slowly than the main deep neural network to optimize the process stability. The weights of the
target network are set to the current weights of the main deep neural network. The DQN algorithm
[18,19] is presented in Figure 6. The maximum action at is selected by Q*((st), a; θ) of DNN with the
probability 1-ε. The TD-target, yj is rj + γmaxa’Q(Φj+1, a’; θ) and TD-error is yj − Q(Φj, aj; θ). The DNN
performs a gradient descent on the TD-error.

Figure 6. Deep Q-network (DQN) algorithm [18,19].

3. Proposed Algorithm

3.1. Balancing Offline and Online in DQN

RL has significant applications in real-world online learning. However, owing to the complexity
of balancing exploration and exploitation, there are some considerations when adapting it to online
learning for real-world applications. The performance of RL is significantly influenced by two
important factors used in the algorithm: “exploration” and “exploitation”. Exploration usually refers
to the selection of any action with a non-zero probability by the agent, whereas exploitation refers to
a situation wherein the agent uses its current knowledge during the selection process [17–19]. The
proposed approach, RL with an online and offline environment, combines offline MC, which is
unbiased but has high-variance, and the online approach of off-policy Q-learning and on-policy
Sarsa, which is low-variance but biased. The approach of the proposed model considers the
combinations of basic algorithms in RL with online and offline environments for an exploration–
exploitation tradeoff that considers the empirical balances of bias–variance, similar to [22], which
uses variance estimates in multi-armed bandits for an exploration–exploitation trade-off. Owing to
the integration of various RL methods, several computational parameters should be tuned, which
leads to prolonged computational times. Moreover, these factors may worsen the online learning in
terms of convergence. Therefore, RL in combination with heuristic methods, such as human
interactions, has been proposed to accelerate the convergence. Most of these approaches are related
to the management balance in Q-learning, which is the most well-known RL method. In [11,23],
complicated reward functions were studied with respect to balancing the exploration and
exploitation in Q-learning, e.g., tuned action-selection policies or the adaptive learning rate and
discount rate parameters with applied artificial intelligence (AI) techniques with fuzzy logic.
Moreover, the two policies Q-learning and Sarsa are merged for bias and variance balance by

Figure 6. Deep Q-network (DQN) algorithm [18,19].

3. Proposed Algorithm

3.1. Balancing Offline and Online in DQN

RL has significant applications in real-world online learning. However, owing to the complexity
of balancing exploration and exploitation, there are some considerations when adapting it to online
learning for real-world applications. The performance of RL is significantly influenced by two important
factors used in the algorithm: “exploration” and “exploitation”. Exploration usually refers to the
selection of any action with a non-zero probability by the agent, whereas exploitation refers to a situation
wherein the agent uses its current knowledge during the selection process [17–19]. The proposed
approach, RL with an online and offline environment, combines offline MC, which is unbiased but
has high-variance, and the online approach of off-policy Q-learning and on-policy Sarsa, which is
low-variance but biased. The approach of the proposed model considers the combinations of basic
algorithms in RL with online and offline environments for an exploration–exploitation tradeoff that

Symmetry 2020, 12, 1685 7 of 16

considers the empirical balances of bias–variance, similar to [22], which uses variance estimates in
multi-armed bandits for an exploration–exploitation trade-off. Owing to the integration of various RL
methods, several computational parameters should be tuned, which leads to prolonged computational
times. Moreover, these factors may worsen the online learning in terms of convergence. Therefore,
RL in combination with heuristic methods, such as human interactions, has been proposed to accelerate
the convergence. Most of these approaches are related to the management balance in Q-learning,
which is the most well-known RL method. In [11,23], complicated reward functions were studied
with respect to balancing the exploration and exploitation in Q-learning, e.g., tuned action-selection
policies or the adaptive learning rate and discount rate parameters with applied artificial intelligence
(AI) techniques with fuzzy logic. Moreover, the two policies Q-learning and Sarsa are merged for bias
and variance balance by employing baseline strategies such as actor–critic methods [8,14]. Q-learning
has an off-policy TD, whereas Sarsa, an alternative to Q-learning, has an on-policy TD [2]. Overall,
Q-learning provides a better final performance, whereas Sarsa provides faster convergence [11].
However, Q-learning with the abovementioned strategies remains a challenge in terms of balancing
the exploitation and exploration, because the estimate is never completely accurate [3] and involves an
enormous number of computations. Therefore, in this study, a combination of offline MC and online
TD with off-policy Q-learning and on-policy Sarsa is suggested as a deep learning approach without
complicated reward functions, AI techniques, integrated ensemble algorithms, or actor–critic baselines.
We merely consider how to combine online and offline environments in a simple manner to allow quick
convergence and improve the final performance. Furthermore, the proposed algorithm is inspired
by the recent research conducted on open-review-net [24]. Some reviews on open-review-net [24]
indicate that it is not easy to design a fundamentally proper reward function. Moreover, despite a
well-designed reward, it is not easy to avoid local optimization. Occasionally, the result may become
unstable and difficult to reproduce [3].

We simply rely on the “baseline” of the probability δ1 in terms of balancing the online and offline
environments and the probability δ2 for off-policy Q-learning and on-policy Sarsa in an online real-time
environment for a deep learning structure. For probability, δ1, δ1ini = 0.99, and δ1fin = 0.01, for each
step, ∆δ1, ∆δ1 = δ1ini − (δ1ini − δ1fin)/N, where N is the number of total episodes, we continue to use the
offline MC in the initial learning stage, where agents know little about the environment. As the learning
process progresses, we are more likely to use online TD of off-policy Q-learning and on-policy Sarsa.
While achieving a more accurate expected value approximation, the following remains true: the larger
the number of samples, the more accurate the value function that can be found. There is a small
number of samples in the early stages; therefore, an agent can wait until the end of an episode before
a return is known. Consequently, MC works satisfactorily for an episodic environment and learns
from complete sequences. During the progression of learning, deep learning operates satisfactorily as
a value approximation, and TD is more likely to be used during the late stages because an AI agent
expects the approximation better during such stages, and the lengths of the episodes increase over
time. For the on- and off-policy, we set the probability δ2 similar to the probability δ1. For probability
δ2, δ2ini = 0.99 and δ2fin = 0.01, for each step ∆δ2, ∆δ2= δ2ini − (δ2ini − λfin)/N, where N is the number
of total training steps per episode, we continue to use off-policy Q-learning in the initial learning stage.
Based on the δ2-greedy algorithm, the agent continues with Q-learning in the beginning. Over time,
the agent can employ Sarsa for faster convergence. The offline MC is an on-policy control method.
The proposed approach starts with on-policy (MC) in small episodes and then moves to both on-policy
and off-policy (TD). This is advantageous because the agent makes the best use of an on-policy towards
the achievement of an on- and off-policy for breaking the local optimum. Moreover, the ε-greedy
algorithm can be adaptable for both a random policy and the balance between Q-learning and Sarsa,
such as Q(S, A)← Q(S, A) + α[R + γQ(S’, A’) − Q(S, A)] [20] or Q(S, A)← Q(S, A) + α[R + γmaxaQ(S’,
a) − Q(S, A)] [21]. Based on the ε-greedy algorithm [18,19], the agent can achieve the balance between
exploration and exploitation. The proposed structure of a DQN integrated with balancing both an

Symmetry 2020, 12, 1685 8 of 16

offline environment with probability δ1 and an on- and off-policy of an online environment with the
probability δ2 is presented in Section 3.2.

3.2. Algorithm Description

In the proposed Algorithm 1, Offline–Online in DQN, the agent follows a ε-greedy policy for
selecting actions according to the Q-value. The ε-greedy algorithm was originally applied to an
exploration for which it can be established to guarantee a minimization of the local optima [1,18,19].
The Offline–Online in DQN exploits well-known technologies known as experience replay [18,19]
in a dataset D and target network [18,19] with different weights θˆ. Moreover, we employ another
experience replay Ω for offline MC, where the tuples of experience are pooled in the form of {st, rt, done}.
By utilizing both D and Ω, the behavior distribution is utilized over numerous actions, smoothing out
from offline learning to online learning, or actually, from an on-policy (MC) to an on- and off-policy
(Q-learning and Sarsa) to avoid divergence in the parameters. In this research [9], an MC based
on the control of an on-policy can assist the removal of the target network because an MC update
cannot diverge because the target is computed directly from the trajectories rather than the bootstraps.
However, an on-policy-based MC which suffers from an exploration might negatively skew the Q-value
estimates. Such an MC update is reasonable when the estimates of the next state in a neural network
are inaccurate, particularly when an agent begins learning. We use the target network for off-policy
Q-learning and on-policy Sarsa to address the issue, because on-policy MC updates are computed.
Similar to [18,19], for every C step, we copy the weights of the target network. We can exploit the target
network to overcome oscillations in the update of Q-learning for more stability. The Offline–Online in
DQN takes advantage of Sarsa to reduce overestimations owing to the fact that Sarsa follows a certain
strategy rather than making an exploration toward the end of the learning [10]. The Offline–Online in
DQN utilizes the probability δ1 for combining offline MC with online TD and the probability δ2 for
off-policy Q-learning and on-policy Sarsa of TD. The approach introduces combinations of online and
offline environments for an exploration–exploitation trade-off with a balance between the bias and
variance. The purpose is to take advantage of the basic and lighter version of the balance on DNNs as
a function approximates in a real-time environment. We adopt the probability δ1 and the probability
δ2 strategies without taking advantage of the actor–critic [8,14] or pre-trained models [5]. To provide
a simple yet powerful strategy, we consider only the fact that probability δ1 and probability δ2 are
applicable to cases that are more general. Although previous studies [5,8,14] have been mostly suitable
theoretically and empirically, they are not always generally suitable for real-world online learning
with dynamic and partially observable settings.

More specifically, in line 4, every episode has many training steps. In line B, in every training step,
the agent is trained through both online learning and offline learning with probability δ1. In line iv of
online learning, the transition tuples (Φt, at, rt, Φt+1) are stored in D, and in line iv of offline learning,
the transition tuples (st, rt, done) are stored in Ω. In line 1O, based on the probability δ2, the agent is
trained by both off-policy Q-learning and on-policy Sarsa of TD. In line C, based on the probability δ1,
the agent is trained using MC.

Symmetry 2020, 12, 1685 9 of 16

Algorithm 1 Offline-Online in DQN

1. Initialize reply memories D for online learning and Ω for offline learning
2. Initialize action-value function Q with random weights θ
3. Initialize target action-value function Qˆ with weight Qˆ = θ

4. For every episode do

A Initialize sequence s1 = {x1} and preprocessed sequence Φ1 = Φ(s1)
B For every training-step do

I If the probability δ1 (online),

i. If ε-greedy, select a random action at Else, select at = argmaxa ((st), a; θ)
ii. Execute an action at in an emulator and observe reward rt and image xt+1

iii. Set st+1 = st, at, xt+1, and preprocess Φt+1 = Φ(st+1)
iv. Store transition (Φt, at, rt, Φt+1) in D
v. Sample random mini-batch of transitions (Φj, aj, rj, Φj+1) in D

vi. If terminal Φj+1, Set yj = rj
Else, if non-terminal Φj+1,

1O If the probability δ2 (off-policy), Set yj = rj + γQ(Φj+1, argmaxaQ(Φj+1, a;
θt); θt

Else (on-policy), set yj = rj + (Φj+1, aj+1, θtˆ)

vii. Perform a gradient descent step on (yj − Q(Φj, aj; θj)2 with respect to θt

viii. Every C steps, reset θˆ = θ

II Else (offline),

i. Select at = argmaxa Q(Φ(st), a; θ)
ii. Execute action at in an emulator and observe reward rt and image xt+1

iii. Set st+1 = st, at, xt+1 and preprocess Φt+1 = Φ(st+1)
iv. Store transition (st, rt, done) in Ω

C If s is not visited in all samples in Ω based on the probability δ1

I. Gt = γ*(r+Gt)
II. vˆ(s) = v(s) + α(Gt − v(s))

D Clear all samples in Ω

4. Evaluation and Results

We augmented a full episode of transition tuples into the replay memory Ω and compute backward
the tuples for online MC and in D for TD, where all samples are bootstrapped. With the probability δ1,
the targets present a way for a bias–variance tradeoff between online MC and offline TD. Moreover,
with the probability δ2, the proposed algorithm makes the Q-value estimates reduce the overestimates
and not diverge to infinity as the updates continually grow. We selected a few classic control tasks
in OpenAI Gym [16] for the comparisons of the proposed offline-online in DQN algorithm with
DQN, DQN with MC, and DQN with Sarsa. We implemented these four algorithms with PYTHON
Tensorflow and Keras [25,26]. First, we compared the offline–online approaches in the DQN algorithm
with DQN, DQN with MC, and DQN with Sarsa on a Cart-Pole [27], the most used control task
for RL algorithms. Next, we conducted experiments on MountainCar [28]. Finally, we tested the
offline–online approach using the DQN algorithm on LunarLander [29], a more complex task than
Cart-Pole and MountainCar. We exploited a function approximation, such as an artificial neural
network, for the four algorithms. For the experimental setup, the first dense layer has four inputs,
24 outputs, and a ReLU activation function [30]. The second dense layer has 24 inputs, 24 outputs,
and ReLU. The third has 24 inputs, 24 outputs, and a linear function. The loss of the model is

Symmetry 2020, 12, 1685 10 of 16

a mean square error, and the optimizer is an adaptive moment estimation (Adam) [31]. For the
hyper-parameters, the discount factor, γ = 0.95, the learning rate, α = 0.001, ε_max = 1.0, ε_min = 0.01,
ε_decay = 0.995, the bootstrapped Mini-Batch = 64, and the target network parameter update, C = 300.
For the offline-online in DQN, the probability δ1 for offline and online environments are as follows:
The initial value of probability δ1 is δ1ini = 0.99. For probability δ1, each step is decreased by ∆δ1
until it equals δ1fin = 0.01, where ∆δ1 = δ1ini − (δ1ini − δ1fin)/N, and N refers to the total number of
episodes. Likewise, the probability δ2 for an on- and off-policy are as follows: The initial value
of probability δ2 is δ2ini = 0.99. For probability δ2, each step is decreased by ∆δ2 until it equals
δ2fin = 0.01, where ∆δ2 = δ2ini − (δ2ini − δ2fin)/N, where N refers to the training steps.

4.1. Cart-Pole Balancing

In Cart-Pole [27], there are four observations and two discrete actions, as shown in Figure 7.

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 16

More specifically, in line 4, every episode has many training steps. In line B, in every training
step, the agent is trained through both online learning and offline learning with probability δ1. In line
iv of online learning, the transition tuples (Φt, at, rt, Φt+1) are stored in D, and in line iv of offline
learning, the transition tuples (st, rt, done) are stored in Ω. In line ①, based on the probability δ2, the
agent is trained by both off-policy Q-learning and on-policy Sarsa of TD. In line C, based on the
probability δ1, the agent is trained using MC.

4. Evaluation and Results

We augmented a full episode of transition tuples into the replay memory Ω and compute
backward the tuples for online MC and in D for TD, where all samples are bootstrapped. With the
probability δ1, the targets present a way for a bias–variance tradeoff between online MC and offline
TD. Moreover, with the probability δ2, the proposed algorithm makes the Q-value estimates reduce
the overestimates and not diverge to infinity as the updates continually grow. We selected a few
classic control tasks in OpenAI Gym [16] for the comparisons of the proposed offline-online in DQN
algorithm with DQN, DQN with MC, and DQN with Sarsa. We implemented these four algorithms
with PYTHON Tensorflow and Keras [25,26]. First, we compared the offline–online approaches in
the DQN algorithm with DQN, DQN with MC, and DQN with Sarsa on a Cart-Pole [27], the most
used control task for RL algorithms. Next, we conducted experiments on MountainCar [28]. Finally,
we tested the offline–online approach using the DQN algorithm on LunarLander [29], a more
complex task than Cart-Pole and MountainCar. We exploited a function approximation, such as an
artificial neural network, for the four algorithms. For the experimental setup, the first dense layer has
four inputs, 24 outputs, and a ReLU activation function [30]. The second dense layer has 24 inputs,
24 outputs, and ReLU. The third has 24 inputs, 24 outputs, and a linear function. The loss of the model
is a mean square error, and the optimizer is an adaptive moment estimation (Adam) [31]. For the
hyper-parameters, the discount factor, γ = 0.95, the learning rate, α = 0.001, ε_max = 1.0, ε_min = 0.01,
ε_decay = 0.995, the bootstrapped Mini-Batch = 64, and the target network parameter update, C = 300.
For the offline-online in DQN, the probability δ1 for offline and online environments are as follows:
The initial value of probability δ1 is δ1ini = 0.99. For probability δ1, each step is decreased by Δδ1 until
it equals δ1fin = 0.01, where Δδ1 = δ1ini − (δ1ini − δ1fin)/N, and N refers to the total number of episodes.
Likewise, the probability δ2 for an on- and off-policy are as follows: The initial value of probability
δ2 is δ2ini = 0.99. For probability δ2, each step is decreased by Δδ2 until it equals δ2fin = 0.01, where
Δδ2 = δ2ini − (δ2ini − δ2fin)/N, where N refers to the training steps.

4.1. Cart-Pole Balancing

In Cart-Pole [27], there are four observations and two discrete actions, as shown in Figure 7.

Figure 7. Environment of Cart-Pole [27].

A pole is attached to a cart, which goes back and forth from left to right. The pole starts upright.
The goal is to not fall over when increasing and decreasing the velocity of the cart. A reward of +1 is
considered by the environment for every step when the pole remains upright until the next action is

Figure 7. Environment of Cart-Pole [27].

A pole is attached to a cart, which goes back and forth from left to right. The pole starts upright.
The goal is to not fall over when increasing and decreasing the velocity of the cart. A reward of +1 is
considered by the environment for every step when the pole remains upright until the next action is
terminated. When the episode is terminated, the angle of the pole is between −12◦ and +12◦, the cart
position is between −2.4 and +2.4, or the length of the episode is greater than 200. It is considered
solved when the average reward is greater than or equal to 195.0 over 100 consecutive runs [27].

Figure 8 shows the average rewards of the four algorithms, DQN, DQN with Sarsa, DQN with
MC, and the proposed DQN with MC and Sarsa on Cart-Pole [27]. From these results, we can observe
that DQN with only offline MC and the proposed DQN with MC and Sarsa have guaranteed better
rewards and converged sooner in the final goal than the other two algorithms. This might indicate that
the proposed algorithm can work without an on-policy TD or Sarsa. However, Cart-Pole balancing is
simpler than the other tasks.

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 16

terminated. When the episode is terminated, the angle of the pole is between −12° and +12°, the cart
position is between −2.4 and +2.4, or the length of the episode is greater than 200. It is considered
solved when the average reward is greater than or equal to 195.0 over 100 consecutive runs [27].

Figure 8 shows the average rewards of the four algorithms, DQN, DQN with Sarsa, DQN with
MC, and the proposed DQN with MC and Sarsa on Cart-Pole [27]. From these results, we can observe
that DQN with only offline MC and the proposed DQN with MC and Sarsa have guaranteed better
rewards and converged sooner in the final goal than the other two algorithms. This might indicate
that the proposed algorithm can work without an on-policy TD or Sarsa. However, Cart-Pole
balancing is simpler than the other tasks.

Figure 8. Average rewards of four algorithms.

4.2. Mountain Car

For the MountainCar [28], there are two observations and three discrete actions, as shown in
Figure 9.

Figure 9. Environment of MountainCar [28].

A car goes back and forth between a “left” mountain and a “right” mountain. The goal is to drive
up the “right” mountain. The car is not strong enough to go up the “right” mountain without building
up momentum, however. Thus, it goes back and forth without a break to create the momentum. A
reward of −1 is given for every step when the position is reached at the half-point between the “left”
and “right” mountains. The episode is terminated if a 0.5 position of the height of the mountain is
reached, or the number of iterations is more than 200. It is considered solved when it obtains an
average reward of +110.0 over 100 consecutive runs.

Figure 10 shows the average rewards of the four algorithms, DQN, DQN with Sarsa, DQN with
MC, and the proposed DQN with MC and Sarsa on MountainCar [28]. From these results, we can
observe that DQN with only offline MC and the proposed DQN with MC and Sarsa have guaranteed
improved rewards similar to the results of Cart-Pole balancing in Figure 8. The results show that only

Figure 8. Average rewards of four algorithms.

Symmetry 2020, 12, 1685 11 of 16

4.2. Mountain Car

For the MountainCar [28], there are two observations and three discrete actions, as shown in
Figure 9.

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 16

terminated. When the episode is terminated, the angle of the pole is between −12° and +12°, the cart
position is between −2.4 and +2.4, or the length of the episode is greater than 200. It is considered
solved when the average reward is greater than or equal to 195.0 over 100 consecutive runs [27].

Figure 8 shows the average rewards of the four algorithms, DQN, DQN with Sarsa, DQN with
MC, and the proposed DQN with MC and Sarsa on Cart-Pole [27]. From these results, we can observe
that DQN with only offline MC and the proposed DQN with MC and Sarsa have guaranteed better
rewards and converged sooner in the final goal than the other two algorithms. This might indicate
that the proposed algorithm can work without an on-policy TD or Sarsa. However, Cart-Pole
balancing is simpler than the other tasks.

Figure 8. Average rewards of four algorithms.

4.2. Mountain Car

For the MountainCar [28], there are two observations and three discrete actions, as shown in
Figure 9.

Figure 9. Environment of MountainCar [28].

A car goes back and forth between a “left” mountain and a “right” mountain. The goal is to drive
up the “right” mountain. The car is not strong enough to go up the “right” mountain without building
up momentum, however. Thus, it goes back and forth without a break to create the momentum. A
reward of −1 is given for every step when the position is reached at the half-point between the “left”
and “right” mountains. The episode is terminated if a 0.5 position of the height of the mountain is
reached, or the number of iterations is more than 200. It is considered solved when it obtains an
average reward of +110.0 over 100 consecutive runs.

Figure 10 shows the average rewards of the four algorithms, DQN, DQN with Sarsa, DQN with
MC, and the proposed DQN with MC and Sarsa on MountainCar [28]. From these results, we can
observe that DQN with only offline MC and the proposed DQN with MC and Sarsa have guaranteed
improved rewards similar to the results of Cart-Pole balancing in Figure 8. The results show that only

Figure 9. Environment of MountainCar [28].

A car goes back and forth between a “left” mountain and a “right” mountain. The goal is to drive
up the “right” mountain. The car is not strong enough to go up the “right” mountain without building
up momentum, however. Thus, it goes back and forth without a break to create the momentum.
A reward of −1 is given for every step when the position is reached at the half-point between the
“left” and “right” mountains. The episode is terminated if a 0.5 position of the height of the mountain
is reached, or the number of iterations is more than 200. It is considered solved when it obtains an
average reward of +110.0 over 100 consecutive runs.

Figure 10 shows the average rewards of the four algorithms, DQN, DQN with Sarsa, DQN with
MC, and the proposed DQN with MC and Sarsa on MountainCar [28]. From these results, we can
observe that DQN with only offline MC and the proposed DQN with MC and Sarsa have guaranteed
improved rewards similar to the results of Cart-Pole balancing in Figure 8. The results show that only
the balance in offline MC and online Q-learning in DQN, without the balance in off-policy Q-learning
and on-policy Sarsa, might work in both Cart-Pole and MountainCar.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 16

the balance in offline MC and online Q-learning in DQN, without the balance in off-policy Q-learning
and on-policy Sarsa, might work in both Cart-Pole and MountainCar.

Figure 10. Average rewards of four algorithms.

4.3. LunarLander

In the LunarLander [29], there are three observations and four discrete actions, as indicated in
Figure 11. LunarLander as a Box2D-based game was developed by Atari. The landing pad is at the
coordinates (0, 0). An approximately 100 to 400 point reward is given by the environment from the
top to the landing pad and at zero speed. If the lander moves away from landing pad, the reward is
taken away. When the episode is terminated if the lander crashes, then the agent receives −100 or sits
down, and then it receives +100. If each leg contacts the ground, it receives +10. In addition, it is
possible to land outside the landing pad. It is considered solved when it obtains an average reward
of 200 over 100 consecutive runs.

Figure 11. Environment of LunarLander [29].

Figure 12 shows the average rewards of four algorithms: DQN, DQN with Sarsa, DQN with MC,
and the proposed DQN with MC and Sarsa on LunarLander [29]. From these results, we can see that
the proposed DQN with MC and Sarsa achieves the most stable performance for LunarLander, which
is more complex than Cart-Pole or MountainCar. However, the results show that our proposed
algorithm and DQN with MC achieved a better performance. Thus, we attempt to make more
comparisons with only the proposed algorithm and DQN with an MC based on the environments
with some time-constraints. The results are described in Section 4.4.

Figure 10. Average rewards of four algorithms.

4.3. LunarLander

In the LunarLander [29], there are three observations and four discrete actions, as indicated in
Figure 11. LunarLander as a Box2D-based game was developed by Atari. The landing pad is at the
coordinates (0, 0). An approximately 100 to 400 point reward is given by the environment from the top
to the landing pad and at zero speed. If the lander moves away from landing pad, the reward is taken
away. When the episode is terminated if the lander crashes, then the agent receives −100 or sits down,

Symmetry 2020, 12, 1685 12 of 16

and then it receives +100. If each leg contacts the ground, it receives +10. In addition, it is possible to
land outside the landing pad. It is considered solved when it obtains an average reward of 200 over
100 consecutive runs.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 16

the balance in offline MC and online Q-learning in DQN, without the balance in off-policy Q-learning
and on-policy Sarsa, might work in both Cart-Pole and MountainCar.

Figure 10. Average rewards of four algorithms.

4.3. LunarLander

In the LunarLander [29], there are three observations and four discrete actions, as indicated in
Figure 11. LunarLander as a Box2D-based game was developed by Atari. The landing pad is at the
coordinates (0, 0). An approximately 100 to 400 point reward is given by the environment from the
top to the landing pad and at zero speed. If the lander moves away from landing pad, the reward is
taken away. When the episode is terminated if the lander crashes, then the agent receives −100 or sits
down, and then it receives +100. If each leg contacts the ground, it receives +10. In addition, it is
possible to land outside the landing pad. It is considered solved when it obtains an average reward
of 200 over 100 consecutive runs.

Figure 11. Environment of LunarLander [29].

Figure 12 shows the average rewards of four algorithms: DQN, DQN with Sarsa, DQN with MC,
and the proposed DQN with MC and Sarsa on LunarLander [29]. From these results, we can see that
the proposed DQN with MC and Sarsa achieves the most stable performance for LunarLander, which
is more complex than Cart-Pole or MountainCar. However, the results show that our proposed
algorithm and DQN with MC achieved a better performance. Thus, we attempt to make more
comparisons with only the proposed algorithm and DQN with an MC based on the environments
with some time-constraints. The results are described in Section 4.4.

Figure 11. Environment of LunarLander [29].

Figure 12 shows the average rewards of four algorithms: DQN, DQN with Sarsa, DQN with MC,
and the proposed DQN with MC and Sarsa on LunarLander [29]. From these results, we can see that
the proposed DQN with MC and Sarsa achieves the most stable performance for LunarLander, which is
more complex than Cart-Pole or MountainCar. However, the results show that our proposed algorithm
and DQN with MC achieved a better performance. Thus, we attempt to make more comparisons
with only the proposed algorithm and DQN with an MC based on the environments with some
time-constraints. The results are described in Section 4.4.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 16

Figure 12. Average rewards of four algorithms.

4.4. Cart-Pole and MountainCar with Qualified Upper Bound

The maximum episode length of Cart-Pole is 500. For a better comparison of the solutions, we
consider a few requirements between only DQN with MC and the proposed offline–online in DQN
because the two algorithms show similar performances in Cart-Pole and MountainCar but not in
LularLander. The first reason for this is that they receive a reward of −100 when they fall down prior
to the maximum length of the episode. The other is that, if the average reward is more than 490 or
equal to 500 over 100 consecutive runs, then the loop is terminated. These time constraints in these
comparisons are based on the previous implementation [32], which suggests more restrictive time
conditions. Moreover, based on empirical results, we adjust a small parameter between off-policy Q-
learning and on-policy Sarsa. We followed the strategies of [10] between balancing Q-learning and
Sarsa. However, in the experiment in this section, we change the parameter slightly, i.e., if r + 1 is
between zero and a small constraint, which is selected based on many empirical trials, then we follow
the immediate policy. The results of offline–online balance use in DQN show that Q-value divergence
in the constraints is preventable. Figures 13–15 indicate that offline–online balance use in DQN is
worth considering for simple control tasks, such as Cart-Pole. We evaluated only 100 rounds owing
to the simple environment.

Figure 13. Average comparisons with DQN with MC and the proposed DQN with MC and TD.

Figure 12. Average rewards of four algorithms.

4.4. Cart-Pole and MountainCar with Qualified Upper Bound

The maximum episode length of Cart-Pole is 500. For a better comparison of the solutions,
we consider a few requirements between only DQN with MC and the proposed offline–online in DQN
because the two algorithms show similar performances in Cart-Pole and MountainCar but not in
LularLander. The first reason for this is that they receive a reward of −100 when they fall down prior
to the maximum length of the episode. The other is that, if the average reward is more than 490 or
equal to 500 over 100 consecutive runs, then the loop is terminated. These time constraints in these
comparisons are based on the previous implementation [32], which suggests more restrictive time

Symmetry 2020, 12, 1685 13 of 16

conditions. Moreover, based on empirical results, we adjust a small parameter between off-policy
Q-learning and on-policy Sarsa. We followed the strategies of [10] between balancing Q-learning and
Sarsa. However, in the experiment in this section, we change the parameter slightly, i.e., if r + 1 is
between zero and a small constraint, which is selected based on many empirical trials, then we follow
the immediate policy. The results of offline–online balance use in DQN show that Q-value divergence
in the constraints is preventable. Figures 13–15 indicate that offline–online balance use in DQN is
worth considering for simple control tasks, such as Cart-Pole. We evaluated only 100 rounds owing to
the simple environment.

Symmetry 2020, 12, x FOR PEER REVIEW 12 of 16

Figure 12. Average rewards of four algorithms.

4.4. Cart-Pole and MountainCar with Qualified Upper Bound

The maximum episode length of Cart-Pole is 500. For a better comparison of the solutions, we
consider a few requirements between only DQN with MC and the proposed offline–online in DQN
because the two algorithms show similar performances in Cart-Pole and MountainCar but not in
LularLander. The first reason for this is that they receive a reward of −100 when they fall down prior
to the maximum length of the episode. The other is that, if the average reward is more than 490 or
equal to 500 over 100 consecutive runs, then the loop is terminated. These time constraints in these
comparisons are based on the previous implementation [32], which suggests more restrictive time
conditions. Moreover, based on empirical results, we adjust a small parameter between off-policy Q-
learning and on-policy Sarsa. We followed the strategies of [10] between balancing Q-learning and
Sarsa. However, in the experiment in this section, we change the parameter slightly, i.e., if r + 1 is
between zero and a small constraint, which is selected based on many empirical trials, then we follow
the immediate policy. The results of offline–online balance use in DQN show that Q-value divergence
in the constraints is preventable. Figures 13–15 indicate that offline–online balance use in DQN is
worth considering for simple control tasks, such as Cart-Pole. We evaluated only 100 rounds owing
to the simple environment.

Figure 13. Average comparisons with DQN with MC and the proposed DQN with MC and TD.
Figure 13. Average comparisons with DQN with MC and the proposed DQN with MC and TD.Symmetry 2020, 12, x FOR PEER REVIEW 13 of 16

Figure 14. Best-case comparisons with DQN with MC and the proposed DQN with MC and TD.

Figure 15. Worst-case comparisons with DQN with MC and the proposed DQN with MC and TD.

In MountainCar, we used the phrase “Car has reached the goal” in each round for better
comparisons between the proposed algorithm and DQN with MC. It is considered solved when it
obtains an average reward of +110.0 over 100 consecutive runs. In addition, we set the reward +150
to “Car has reached its goal.” We check how many times we can use “Car has reached the goal” in a
limited number of runs. These qualified constraints in this comparisons are based on the previous
implementation [33]. Figure 16 shows the proposed algorithm uses “Car has reached the goal” 42
times, while DQN with MD uses it 23. They show that the number of “Car has reached the goal”
outputs of the proposed algorithm is higher than that obtained by DQN with MC. Under the strict
constraints for comparisons of qualification, we demonstrated that the algorithm learns slightly faster
than DQN with MC and can balance out the bias–variance trade-off during the training process. It is
natural that if we use a transferred model, such as in [5], the proposed model could become faster
during the training. However, the pre-trained model in [5] could fail in a variety of minor
perturbations [3], specifically in a real-time environment. These results might indicate that the
offline–online in DQN can check the performance in terms of the balance in offline MC and online
TD. Moreover, it can provide better results when it comes to constrains such as real-world settings.

Figure 14. Best-case comparisons with DQN with MC and the proposed DQN with MC and TD.

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 16

Figure 14. Best-case comparisons with DQN with MC and the proposed DQN with MC and TD.

Figure 15. Worst-case comparisons with DQN with MC and the proposed DQN with MC and TD.

In MountainCar, we used the phrase “Car has reached the goal” in each round for better
comparisons between the proposed algorithm and DQN with MC. It is considered solved when it
obtains an average reward of +110.0 over 100 consecutive runs. In addition, we set the reward +150
to “Car has reached its goal.” We check how many times we can use “Car has reached the goal” in a
limited number of runs. These qualified constraints in this comparisons are based on the previous
implementation [33]. Figure 16 shows the proposed algorithm uses “Car has reached the goal” 42
times, while DQN with MD uses it 23. They show that the number of “Car has reached the goal”
outputs of the proposed algorithm is higher than that obtained by DQN with MC. Under the strict
constraints for comparisons of qualification, we demonstrated that the algorithm learns slightly faster
than DQN with MC and can balance out the bias–variance trade-off during the training process. It is
natural that if we use a transferred model, such as in [5], the proposed model could become faster
during the training. However, the pre-trained model in [5] could fail in a variety of minor
perturbations [3], specifically in a real-time environment. These results might indicate that the
offline–online in DQN can check the performance in terms of the balance in offline MC and online
TD. Moreover, it can provide better results when it comes to constrains such as real-world settings.

Figure 15. Worst-case comparisons with DQN with MC and the proposed DQN with MC and TD.

Symmetry 2020, 12, 1685 14 of 16

In MountainCar, we used the phrase “Car has reached the goal” in each round for better
comparisons between the proposed algorithm and DQN with MC. It is considered solved when it
obtains an average reward of +110.0 over 100 consecutive runs. In addition, we set the reward +150
to “Car has reached its goal.” We check how many times we can use “Car has reached the goal” in a
limited number of runs. These qualified constraints in this comparisons are based on the previous
implementation [33]. Figure 16 shows the proposed algorithm uses “Car has reached the goal” 42 times,
while DQN with MD uses it 23. They show that the number of “Car has reached the goal” outputs of
the proposed algorithm is higher than that obtained by DQN with MC. Under the strict constraints for
comparisons of qualification, we demonstrated that the algorithm learns slightly faster than DQN with
MC and can balance out the bias–variance trade-off during the training process. It is natural that if we
use a transferred model, such as in [5], the proposed model could become faster during the training.
However, the pre-trained model in [5] could fail in a variety of minor perturbations [3], specifically
in a real-time environment. These results might indicate that the offline–online in DQN can check
the performance in terms of the balance in offline MC and online TD. Moreover, it can provide better
results when it comes to constrains such as real-world settings.
Symmetry 2020, 12, x FOR PEER REVIEW 14 of 16

Figure 16. Multiple “the car has reached the goal” comparisons with DQN with MC and the proposed
DQN with MC and TD.

5. Conclusions

We proposed balancing offline MC and online TD with on-policy Sarsa and off-policy Q-
learning based on the probabilities of empirical experience to achieve reasonable performance and
stability in a DQN, while pursuing real-time online learning criteria in the environment. The balance
of use between online and offline is intended to see how well the RL can handle the issues of the
tradeoff of bias–variance. We only considered a DQN because it is the de facto standard. Q-learning
in a DQN with the ε-greedy algorithm can also balance the exploration and exploitation, which
provides another powerful strategy for achieving the bias–variance tradeoff, a crucial element in
several components of RL. This study aims to bridge the gap between theory and practice with a
simple strategy of the “baseline” of balancing offline MC and online TD with off-policy Q-learning
and on-policy Sarsa in a real-time environment. Based on these considerations, we propose a random
probability that decides whether to use an offline or online environment during the learning process.
Based on the random probability, we are more likely to utilize online learning with an on- and off-
policy during the later stage. As the training of the agent progresses, the entire episode is not needed
for offline learning. In the simulations on OpenAI Gym, we demonstrated that, in a simple control
task, the balance in online and offline without on- and off-policy shows satisfactory results. However,
in a complex task, the proposed algorithm shows a direct evidence of an improvement in the
convergence speed and performance. Therefore, we suggest that the proposed algorithm is worthy
of consideration in most real-time environments with time constraints.

Funding: This research was funded by expert fee of SSiS.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lei, L.; Tan, Y.; Zheng, K.; Liu, S.; Zhang, K.; Shen, X. Deep Reinforcement Learning for Autonomous
Internet of Things: Model, Applications and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1722–1760,
doi:10.1109/COMST.2020.2988367.

2. Amiranashvili, A.; Dosovitskiy, A.; Koltun, V.; Brox, T. TD OR NOT TD: Analyzing the Role of Temporal
Differencing in Deep Reinforcement Learning. arXiv 2018, arXiv:1806.01175.

3. Marcus, G. Deep Learning: A Critical Appraisal. arXiv 2019, arXiv:1801.00631.
4. Naveed, M.; Kitchin, D.; Crampton, A.; Chrpa, L.; Gregory, P. A Monte-Carlo path planner for dynamic

and partially observable environments. In Proceedings of the 2012 IEEE Conference on Computational
Intelligence and Games (CIG), Granada, Spain, 11–14 September 2012; pp. 211–218,
doi:10.1109/CIG.2012.6374158.

5. Sharma, J.; Andersen, P.; Granmo, O.; Goodwin, M. Deep Q-Learning with Q-Matrix Transfer Learning for
Novel Fire Evacuation Environment. In IEEE Transactions on Systems, Man, and Cybernetics: Systems; IEEE:
New York, NY, USA, 2020; pp. 1–19, doi:10.1109/TSMC.2020.2967936.

Figure 16. Multiple “the car has reached the goal” comparisons with DQN with MC and the proposed
DQN with MC and TD.

5. Conclusions

We proposed balancing offline MC and online TD with on-policy Sarsa and off-policy Q-learning
based on the probabilities of empirical experience to achieve reasonable performance and stability
in a DQN, while pursuing real-time online learning criteria in the environment. The balance of use
between online and offline is intended to see how well the RL can handle the issues of the tradeoff of
bias–variance. We only considered a DQN because it is the de facto standard. Q-learning in a DQN
with the ε-greedy algorithm can also balance the exploration and exploitation, which provides another
powerful strategy for achieving the bias–variance tradeoff, a crucial element in several components
of RL. This study aims to bridge the gap between theory and practice with a simple strategy of the
“baseline” of balancing offline MC and online TD with off-policy Q-learning and on-policy Sarsa in a
real-time environment. Based on these considerations, we propose a random probability that decides
whether to use an offline or online environment during the learning process. Based on the random
probability, we are more likely to utilize online learning with an on- and off-policy during the later
stage. As the training of the agent progresses, the entire episode is not needed for offline learning.
In the simulations on OpenAI Gym, we demonstrated that, in a simple control task, the balance in
online and offline without on- and off-policy shows satisfactory results. However, in a complex task,
the proposed algorithm shows a direct evidence of an improvement in the convergence speed and

Symmetry 2020, 12, 1685 15 of 16

performance. Therefore, we suggest that the proposed algorithm is worthy of consideration in most
real-time environments with time constraints.

Funding: This research was funded by expert fee of SSiS.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Lei, L.; Tan, Y.; Zheng, K.; Liu, S.; Zhang, K.; Shen, X. Deep Reinforcement Learning for Autonomous Internet
of Things: Model, Applications and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1722–1760. [CrossRef]

2. Amiranashvili, A.; Dosovitskiy, A.; Koltun, V.; Brox, T. TD OR NOT TD: Analyzing the Role of Temporal
Differencing in Deep Reinforcement Learning. arXiv 2018, arXiv:1806.01175.

3. Marcus, G. Deep Learning: A Critical Appraisal. arXiv 2019, arXiv:1801.00631.
4. Naveed, M.; Kitchin, D.; Crampton, A.; Chrpa, L.; Gregory, P. A Monte-Carlo path planner for dynamic

and partially observable environments. In Proceedings of the 2012 IEEE Conference on Computational
Intelligence and Games (CIG), Granada, Spain, 11–14 September 2012; pp. 211–218. [CrossRef]

5. Sharma, J.; Andersen, P.; Granmo, O.; Goodwin, M. Deep Q-Learning with Q-Matrix Transfer Learning
for Novel Fire Evacuation Environment. In IEEE Transactions on Systems, Man, and Cybernetics: Systems;
IEEE: New York, NY, USA, 2020; pp. 1–19. [CrossRef]

6. Badreddine, S.; Spranger, M. Injecting Prior Knowledge for Transfer Learning into Reinforcement Learning
Algorithms using Logic Tensor Networks. arXiv 2019, arXiv:1906.06576.

7. Mocanu, E. On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Trans.
Smart Grid 2019, 10, 3698–3708. [CrossRef]

8. Gu, S.; Lillicrap, T.; Ghahramani, Z.; Turner, R.; Schlkopf, B.; Levine, S. Interpolated Policy Gradient: Merging
On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning. In Advances in Neural
Information Processing Systems; NIPS: San Diego, CA, USA, 2017.

9. Hausknecht, M.; Stone, P. On-Policy vs. Off-Policy Updates for Deep Reinforcement Learning. In Deep
Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop; AAAI Press: New York, NY, USA, 2016.

10. Xu, Z.; Cao, L.; Chen, X.; Li, C.; Zhang, Y.; Lai, J. Deep Reinforcement Learning with Sarsa and Q-Learning:
A Hybrid Approach. IEICE Trans. Inf. Syst. 2018, E101.D, 2315–2322. [CrossRef]

11. Wang, Y.-H.; Li, T.-H.; Lin, C.-J. Backward Q-learning: The combination of Sarsa algorithm and Q-learning.
Eng. Appl. Artif. Intell. 2013, 26, 2184–2193. [CrossRef]

12. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.; Veness, J.; Bellemare, M.; Graves, A.; Riedmiller, M.;
Fidjeland, A.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef] [PubMed]

13. Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [CrossRef]
14. Chen, G. Merging Deterministic Policy Gradient Estimations with Varied Bias-Variance Tradeoff for Effective

Deep Reinforcement Learning. arXiv 2019, arXiv:1911.10527.
15. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous

Methods for Deep Reinforcement Learning. In Proceedings of the International Conference on Machine
Learning, New York, NY, USA, 19–24 June 2016; pp. 1928–1937.

16. OpenAI Gym. Available online: https://gym.openai.com/ (accessed on 19 May 2020).
17. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, UK, 1998; Volume 1.
18. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari

with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.
19. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Driessche, G.V.D.; Schrittwieser, J.; Antonoglou, I.;

Panneershelvam, V.; Lanctot, M. Mastering the game of go with deep neural networks and tree search. Nature
2016, 529, 484–489. [CrossRef] [PubMed]

20. Rummery, G.A.; Niranjan, M. Online Q-Learning Using Connectionist Systems; University of Cambridge,
Department of Engineering: Cambridge, UK, 1994.

21. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
22. Audibert, J.; Munos, R.; Szepesvári, C. Exploration–exploitation tradeoff using variance estimates in

multi-armed bandits. Theor. Comput. Sci. 2009, 410, 1876–1902. [CrossRef]

http://dx.doi.org/10.1109/COMST.2020.2988367
http://dx.doi.org/10.1109/CIG.2012.6374158
http://dx.doi.org/10.1109/TSMC.2020.2967936
http://dx.doi.org/10.1109/TSG.2018.2834219
http://dx.doi.org/10.1587/transinf.2017EDP7278
http://dx.doi.org/10.1016/j.engappai.2013.06.016
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1145/2347736.2347755
https://gym.openai.com/
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1016/j.tcs.2009.01.016

Symmetry 2020, 12, 1685 16 of 16

23. Konar, A.; Chakraborty, I.G.; Singh, S.J.; Jain, L.C.; Nagar, A.K. A Deterministic Improved Q-Learning for
Path Planning of a Mobile Robot. IEEE Trans. Syst. Man Cybern. Syst. 2013, 43, 1141–1153. [CrossRef]

24. Available online: https://openreview.net/forum?id=ByBAl2eAZ (accessed on 19 May 2020).
25. Tensorflow. Available online: https://github.com/tensorflow/tensorflow (accessed on 19 May 2020).
26. Keras. Available online: https://keras.io/ (accessed on 19 May 2020).
27. Cart-Pole. Available online: https://gym.openai.com/envs/CartPole-v1/ (accessed on 19 May 2020).
28. MountainCar. Available online: https://gym.openai.com/envs/MountainCar-v0/ (accessed on 19 May 2020).
29. LunarLander. Available online: https://gym.openai.com/envs/LunarLander-v2/ (accessed on 19 May 2020).
30. Hahnloser, R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital selection and analogue

amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951. [CrossRef] [PubMed]
31. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980.
32. Available online: https://github.com/rlcode/reinforcement-learning-kr/blob/master/2-cartpole/1-dqn/

cartpole_dqn.py (accessed on 19 May 2020).
33. Available online: https://github.com/shivaverma/OpenAIGym/blob/master/mountain-car/MountainCar-v0.

py (accessed on 19 May 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSMCA.2012.2227719
https://openreview.net/forum?id=ByBAl2eAZ
https://github.com/tensorflow/tensorflow
https://keras.io/
https://gym.openai.com/envs/CartPole-v1/
https://gym.openai.com/envs/MountainCar-v0/
https://gym.openai.com/envs/LunarLander-v2/
http://dx.doi.org/10.1038/35016072
http://www.ncbi.nlm.nih.gov/pubmed/10879535
https://github.com/rlcode/reinforcement-learning-kr/blob/master/2-cartpole/1-dqn/cartpole_dqn.py
https://github.com/rlcode/reinforcement-learning-kr/blob/master/2-cartpole/1-dqn/cartpole_dqn.py
https://github.com/shivaverma/OpenAIGym/blob/master/mountain-car/MountainCar-v0.py
https://github.com/shivaverma/OpenAIGym/blob/master/mountain-car/MountainCar-v0.py
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Proposed Algorithm
	Balancing Offline and Online in DQN
	Algorithm Description

	Evaluation and Results
	Cart-Pole Balancing
	Mountain Car
	LunarLander
	Cart-Pole and MountainCar with Qualified Upper Bound

	Conclusions
	References

