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Abstract: This study constructs a novel virtual synchronous generator system based on a transfer
function, and optimizes the parameters of the model by using the improved whale algorithm to
improve the frequency control ability of virtual synchronous generator. Virtual synchronous generator
technology helps to solve the problem that the integration of large-scale renewable energy generation
into the power system leads to the deterioration of system frequency stability. It can maintain the
symmetry of grid-connected scale and system stability. The virtual synchronous generator technology
makes the inverter to have the inertia and damping characteristics of a synchronous generator.
The inverter has the inertia characteristics and damps to reduce the frequency instability of high
penetration renewable energy power system. The improved whale algorithm is efficient to find
the best combination of control parameters and the effectiveness of the algorithm is verified by
microgrid and power system. The results show that the proposed frequency coordination control
scheme suppresses the frequency deviation of power system and keep the system frequency in a
reasonable range.

Keywords: power system; virtual synchronous generator; renewable energy; improved whale
optimization algorithm; frequency control

1. Introduction

Renewable energy (RE), such as solar energy and wind energy, has the advantages of being
clean and pollution-free. A large-scale development of RE such as solar energy and wind energy
is increasingly valued for environmental reasons [1–4]. Karasoy et al. [5] argued the relationship
between energy consumption and environmental pollution and proved the RE consumption reduces
carbon emissions at any time scale. Anastasiadis et al. [6] presented the power network feasibility
including solar power generation and wind power generation. Shankar et al. [7] presented the results
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of solar cooling thermal power plant to show the system proposed is suitable for industry and family
needs. Stritih et al. [8] studied the solar energy storage and the results show that the economic and
effective thermal energy storage is necessary. RE has shown practical value in the fields of power
generation; especially, when it is integrated into the micro-grid that leads more advantages [9–12].
This is considered as an attractive substitute for fossil energy. The increase in the grid connection rate
of renewable energy has brought the system instability problem. Therefore, the symmetry between the
grid connection rate of renewable energy and the stability of the system should be maintained.

Synchronous generator (SG) has better inertia and damping characteristics to support the power
system frequency [13]. Power electronic inverters have replaced SG in a large number in the renewable
energy power generation system. The inverter has no inertia and damping characteristics and has
a weak ability to adjust system fluctuations [14,15]. Renewable power generation has low inertia
and results in serious frequency fluctuations [16–18]. The instability of the system limits the power
transmission capacity [19–22]. This instability limits the RE penetration in power systems to limit
grid de-carbonization [23,24]. In view of this problem, prior studies have put forward solutions to
improve the RE penetration in the power system. One is to design a specific inverter control algorithm
to make the inverter have the SG inertia characteristics and improve the stability of the system
frequency [25–27]. This systematic control method is called virtual synchronous generator (VSG).
For instance, Zheng et al. [28] presented VSG and control strategies were proposed, but parameters
were not optimized. Intelligent algorithms have advantages in parameter optimization and are used
in various problems of parameter optimization [29–31]. Magdy et al. [32] discussed the optimizing
control parameters by using intelligent algorithm to improve the performance of control strategy.
These studies are lacking to address and research on model optimization. Using intelligent algorithms
to optimize model parameters enhances the performance of the model.

The objective is to propose a VSG control method based on algorithm optimization to improve the
frequency stability of renewable energy power systems due to improving the stability of the renewable
energy power system and promoting the use of clean energy. A VSG control structure and parameter
optimization method are proposed and the optimal value of parameters is set by using the improved
whale optimization algorithm (WOA). The contributions of this study are as follows: (1) A VSG-based
systematic control method for RE power system inverter is developed. The method is beneficial to
improve the system inertia and stabilize the system frequency; (2) the control parameters are optimized
with an improved WOA; but the algorithm has few parameters, fast convergence speed, and high
convergence accuracy; and (3) the effectiveness of the control strategy is validated on two experimental
test models: one is a micro-grid system and the other is a large power system. The simulations show
that the proposed VSG systematic control method has a better practical effect.

The rest of this study is arranged as follows. Section 2 is literature review, Section 3 introduces the
VSG model, Section 4 introduces the configuration of the test model, Section 5 discusses and analyzes
the experimental results, and the conclusion is in Section 6.

2. Literature Review

VSG improves the inertia and the frequency stability of the system. The proposed control strategy
measures the disturbance and generate reference power. The proposed control strategy provides more
inertia and disturbance attenuation for the inverter. Prior studies on VSG included system stability,
grid connection, and optimal control [33–36].

VSG system stability studies the stability of control system and its influence on power system
stability. In order to improve the system stability, for instance, Li et al. [33] studied the virtual damping
link and root locus method, established the VSG small signal model, analyzed the relationship between
control parameters and system stability, and designed the system parameters quantitatively. Chen and
O’Donnell [34] argued a VSG comprehensive analysis based on a transfer function that was proposed
to improve the performance. In the work of Shuai et al. [35], the safety and stability of the system are
initially analyzed in qualitative consideration and proposed to use Lyapunov direct method to analyze
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the VSG transient angle stability. The adverse effects of reactive power circuits on system stability and
the effects of different parameters on transient angle stability are analyzed, which provides a basis for
system stability design. Du et al. [37] proposed a method to avoid mode approaching and divides
the influence on the mode approaching. The relationship between VSG and power system stability is
studied to guide the design. The expansibility needs to be further proven. Shi et al. [38] proposed
a VSG self-adjusting parameter on control strategy when the system frequency oscillates; this leads
to VSG increasing or decreasing the virtual inertia according to the virtual angular velocity. Virtual
damping improves the frequency stability of microgrid, but at the same time increases the burden of
energy storage system. Magdy et al. [39] presented a frequency coordination strategy based on optimal
PID controller to optimize relevant parameters with intelligent algorithm and the control strategy leads
to robustness. Hu et al. [40] argued the multiple VSG coordination control and joint use reduced the
oscillation period and overshoot during transient response to enhance the operation performance and
anti-interference ability. Ding et al. [41] analyzed the dynamic characteristics of the parallel capacitor
photovoltaic power supply in depth, and proposed a VSG systematic control method to solve the
problem that photovoltaic power supply cannot be used as a DC power supply due to the fluctuation.

VSG grid connected study means to pre synchronize the phase and reduce the impact of the
inverter grid connected to the power system. There is a restriction relationship between the VSG
response speed and the power output overshoot. For instance, Zhang et al. [42] showed the lumped
interference is compensated by feedforward. A power controller for grid connection is proposed based
on the linear active interference suppression control. A power controller for grid connection transmits
the active power to the grid in time and avoids overshoot. The system has strong robustness. Wang and
Sun [43] studied the imbalance phenomenon and expanded the application scenario of self-synchronous
VSG strategy in the balanced power grid and the second-order generalized integrator is used to deal
with the double frequency ripple component, which improves the accuracy of self-synchronization.
Shi et al. [44] proposed a VSG integrated switching systematic control method and includes quasi
synchronous algorithm and islanding monitoring algorithm. The integration method improves the
reliability and quality of the power supply. In the energy storage research, the problems of capacity
allocation and optimal control of energy storage system matching with VSG are discussed. Li et al. [33]
studied the cascaded H-bridge converter technology and proposed a transformer free energy storage
system. In the field of battery and supercapacitor, Fang et al. [45] proposed a hybrid system composed
of the two to fulfill the gap in this study.

Prior studies on the VSG optimal control attempted to design a reasonable control structure ad
optimize the relevant parameters to achieve the best control effect. For instance, in vector current control,
Asrari et al. [46] proposed a VSG systematic control method to provide stable power transmission for
an extremely weak AC power grid while the power grid voltage is unbalanced and the traditional
control method has no corresponding measures, and the output current is distorted. Zheng et al. [47]
proposed a new control method to solve and reduce the power system’s oscillation. The inertia of the
traditional VSG rotor is fixed, which cannot meet the requirements of various operating environments.
In order to solve this problem, Zeng and Su [48] proposed an adaptive adjustment method of rotor
inertia. In the oscillation simulation, VSG adaptively changes the inertia of virtual rotor, so as to adjust
the inertia of the whole system, making it more conducive to the stability of the system. The grid
connected inverter controlled by VSG suffers the inherent low-frequency vibration. For instance,
Liu et al. [49] and Cao et al. [50] studied the control scheme to solve the VSG low-frequency oscillation
problem and the grid connection process is interfered by various factors. In traditional VSG, it is
hard to eliminate these factors and results in performance degradation. Yu and Hu [51] studied the
VSG auto disturbance rejection control method, which effectively improved the performance when
connected to the grid.

To sum up, prior studies have proposed specific control strategies, but have not studied the
optimal selection of control strategy parameters in depth. The control parameters have an important
influence on the quality of control effects. Different parameter values have different control effects and
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a reasonable value of parameters is of great help to improve the control effect of the control strategy.
A novel design of a VSG system is proposed. The power electronic inverter has the similar frequency
support ability as SG by simulating the rotor and frequency modulation function of SG. The WOA is
applied to optimize the control parameters of the controller, so that the controller achieves the best
performance. The superiority of the proposed control scheme is verified by experiments.

3. Virtual Synchronous Generator Model

RE has poor inertia and damping that leads to the undesired increase of frequency fluctuation [22].
VSG technology introduces a “virtual rotor” into the power electronic inverter, to create “simulated
inertia” to dampen frequency fluctuations. The rotor of SG has the following energy relationship.

PMec(s) − PLoad(s) = (2Hrs + Dr) f (s) (1)

Hr is the inertia constant of the rotor, Dr is the damping coefficient, PMec is the change of input
mechanical power, PLoad is the change of load power, and f (s) is the frequency offset. Equation (1)
presents the rotor inertia constant Hr and damping coefficient Dr which play an important role in
stabilizing the system frequency. Under the same power deviation condition, the larger the rotor
inertia is, the smaller the frequency deviation is. In time scale, the frequency of the SG regulating
system includes three processes: Inertia response process, governor regulating process, and frequency
regulator regulating process. When the system power is unbalanced, the power of the SG rotor is
adjusted first, which depends on the energy stored in the rotor rotation. If a large frequency deviation
is still caused, the system governor is activated and the governor regulates the system frequency by
controlling the input mechanical power. The frequency regulator adjusts the system frequency in a
longer time range, so that the frequency does not exceed the specified range. The functions of SG
should be taken into account, so that designing VSG has the same functions as inertia regulation,
governor regulation, and frequency regulator regulation of SG.

3.1. Virtual Inertia and Damping Characteristics

The inertia of SG is supported by the rotor, so the function of “virtual rotor” should be designed
in the VSG. The function of the virtual rotor is described by Equation (2).

Pre f = (Hvs + Dv)∆ f (2)

Pre f is the reference power output, Hv is the VSG virtual rotor virtual inertia, and Dv is the virtual
damping coefficient. VSGs have the characteristics of SG rotor by designing “virtual rotor” with
Equation (2).

3.2. Virtual Primary Frequency Modulation and Virtual Secondary Frequency Modulation

The SG has a governor device to adjust the input mechanical power after the frequency offset,
and compensate the power and frequency offset proportions. The corresponding proportional link
is designed to achieve the VSG primary frequency regulation function. The secondary frequency
modulation of SG is to adjust the frequency of system to the rated value, so the integration link is
designed to play the role in a longer time span and realize the role of virtual secondary frequency
modulation. The control relationship is described by Equation (3).

∆P = K1∆ f +
K2

s
∆ f (3)

∆P is the power value of the virtual primary frequency modulation and virtual secondary
frequency modulation. K1 and K2 are virtual primary and virtual secondary gain, respectively.
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3.3. Inverter Model

The output power of the power electronic inverter follows the command signal through pulse
width modulation. The response speed of power electronic inverter is faster compared with SG.
Based on this feature, the inverter is modeled as an inertial link, as shown in Equation (4). Ti is the
time constant.

G(s) =
1

Tis + 1
(4)

3.4. Virtual Controller Design

3.4.1. Structure Design of Virtual Controller

The structure of virtual controller not only affects the VSG system stability, but also has a decisive
influence on the control performance. The structure of virtual controller includes not only virtual
rotor, virtual primary frequency modulation, and virtual secondary frequency modulation, but also an
independent integration link. This design is to give full play to the ability of the controller to adjust the
system frequency and improve the frequency stability of the system. The schematic of the controller is
shown below.

In Figure 1, K3 is the gain of the controller integration link, and other parameters are as described.
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3.4.2. Parameter Design of Virtual Controller

The parameter selection of the virtual controller has an important influence on the performance of
the virtual controller. The VSG virtual controller has three important parameters, namely, the virtual
main controller coefficient, the virtual auxiliary controller coefficient K2, and the integral controller
coefficient K3, these parameters not only affect the VSG frequency regulation effect, but also affect the
stability of the whole control system. Conventional methods are hard to determine the best value of
these three key parameters. The improved WOA is used to find the optimal combination of parameters
to obtain the optimal control performance.

1. Example description

Equation (5) is the transfer function of the virtual controller. The parameters of the controller are
set according to the results of the improved whale algorithm to achieve the optimal control performance.
The issue of frequency control in power systems has been studied, and the object of VSG frequency
control is to minimize the frequency deviation [52,53]. Therefore, the objective function of the improved
WOA is the sum of the squares of the frequency offset in the steady state, and in consideration of the
dynamic performance of the system, the frequency offset value in the dynamic process is added to the
objective function, and the weighted sum of the two is the final objective function value. The final
form of the objective function is shown in Equation (6).

G(s) =
(Hvs + Dv)(K1 +

K2
s ) + K3

s
Tis + 1

(5)
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Ob f = m1

∫ tsim

0
(∆ f )2 + m2

∫ tmax

tmin

(∆ f )2 (6)

In Equation (6), m1 and m2 are weighting coefficients and satisfy m1 + m2 = 1, tsim is simulation
time, and this time does not include transient time, tmin is transient start time, tmax is transient end time.

2. Whale Optimization Algorithm

WOA is a novel heuristic algorithm, which is inspired by humpback whale’s bubble hunting
strategy [54]. WOA has the advantages of few parameters and strong global optimization characteristics.
It is applied here to the controller design to find the optimal controller parameters. The WOA consists
of the following main processes.

(1) Random search
The mathematical expression of the hunt process is as follows.

D =
∣∣∣Xi(t) − EXr

∣∣∣ (7)

Xi(t + 1) = Xr − BD (8)

In the Equation, Xr represents a position randomly selected from the current group position;
Xi stands for the position vector of the individual; t stands for the current number of iterations;
Equation (7) is the distance between the individual and the random individual. B and E are coefficients.

B = 2ar− a (9)

E= 2r (10)

a decreases as the number of iterations increases; r is a random number between 0 and 1.
(2) Siege predation
Humpback whales shrink to encircle prey as follows.

D =
∣∣∣EXbest(t) −Xi(t)

∣∣∣ (11)

Xi(t + 1) = Xbest(t) − BD (12)

Xbest(t) stands for the position vector of the current optimal individual, which changes with the
number of iterations.

(3) Attack prey
Humpback whales approach prey in a spiral manner, and the mathematical model of attacking

prey is shown in the following Equation.

Xi(t + 1) = Xbest(t) + DPebm cos(2πm) (13)

In Equation (13), DP =
∣∣∣Xbest(t) −Xi(t)

∣∣∣ represents distance, b is the constant that define the shape,
m is the random number between [−1,1].

When whales approach their prey in a spiral shape, they also need to shrink and encircle their prey.
To simulate this behavior, this study assumes to choose between the spiral motion and the shrinking
encirclement with a probability of 50%. The Equation is as follows.

X(t + 1) =
{

Xbest(t) −AD p < 0.5
Xbest(t) + DPebl cos(2πl) p > 0.5

(14)

Parameter A is the random vector between the intervals [−2,2]. When 0 ≤|A|≤ 1 , the current
random individual position Xrand is the position of the prey, and humpback whales attack close to the
prey. When |A|> 1 , whales are far away from the random individual.
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Changing the change mode of convergence factor a from linear reduction to nonlinear reduction
increases the global search ability of whale algorithm and the improved mode is adopted. In order
to prove the advantages of the improved algorithm, run the following six different test functions.
The results of improved WOA and the unimproved WOA are shown in Figure 2. In general,
the improved WOA algorithm improves the solution accuracy and speed compared with the
original algorithm.
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To conclude, the steps to search the optimal solution of controller parameters by using the
improved WOA are as follows:

• Initialization of algorithm, number of iterations, population size, and other parameters related to
the operation of initialization algorithm.

• Population initialization, set the initialization population. The optimal individual of each iteration
cycle is recorded.

• Update iteratively, update each individual according to the algorithm update method described,
and calculate the fitness of each individual.

• Update the parameters such as the optimal individual and the number of iterations. When the
end condition is reached, go to step (5), otherwise, return to step (3).
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• The optimal solution of the optimization problem is obtained.

4. Test Verification

4.1. Model Description

4.1.1. Wind Farm

The wind power generation system model is shown in Figure 3 [39]. The random wind speed is
simulated by the white noise module of MATLAB.
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Figure 3. Wind power model.

The output power of wind power generation is calculated using Equation (15).

Pwind = 0.5ρAVwind
3C(λ, β) (15)

ρ (Kg/m3) is the air density, A
(
m2

)
is the swept area of the rotor, Vwind (m/s) is the wind speed,

and C(λ, β) is the power conversion coefficient, which is calculated by the following Equation.

C(λ, β) = B1 ∗

(B2

λL
− B3β− B4

)
∗ e
−B5
λL + B6λU (16)

β is the pitch angle, and B1~B6 are the turbine coefficients. λL is the intermittent optimal tip speed
ratio determined by λU and β, which are determined by Equation (17). λU is the best tip speed ratio, as
shown in Equation (18).

λL =
1

λU + 0.08β
−

0.035
β3 + 1

(17)

λU =
ωr ∗ rT

Vwind
(18)

Assume that under all wind speed conditions, it operates at the best tip speed ratio, that is
λU = λU

optimal, rT is the radius.
The test system is tested when there is a wind farm. The parameter values of the wind turbine

unit are shown in Table 1.

Table 1. Wind power plant parameters.

Parameter Value Parameter Value

Vwind 12 B4 5
ρ 1.23 B5 21
A 5905 B6 0.02
B1 0.39 rT 43.36
B2 116 nT 22.50
B3 0.40
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4.1.2. Photovoltaic Power Plant

The photovoltaic output power includes basic power and random fluctuation power.
The fluctuation power is obtained by multiplying the random fluctuation by the standard deviation of
the initial power. The solar power deviation is simulated by Equation (19). The schematic diagram is
presented in Figure 4.

∆Psolar = 0.6
√

PInit (19)

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 23 

 

1B  0.39 Tr  43.36 

2B  116 Tn  22.50 

3B  0.40   

4.1.2. Photovoltaic Power Plant 

The photovoltaic output power includes basic power and random fluctuation power. The 

fluctuation power is obtained by multiplying the random fluctuation by the standard deviation of 

the initial power. The solar power deviation is simulated by Equation (19). The schematic diagram is 

presented in Figure 4. 

solar n0.6 I itP P 
 

(19) 

 

Figure 4. Photovoltaic model. 

4.1.3. Load Model 

The random module is multiplied by standard deviation of the initial load value to simulate the 

random fluctuation of load curve. The load deviation close to the actual load change is simulated by 

Equation (20). Figure 5 is the load model. 

L 0.6 LoadP P 
 

(20) 

 

 

Figure 5. Load model. 

Figure 4. Photovoltaic model.

4.1.3. Load Model

The random module is multiplied by standard deviation of the initial load value to simulate the
random fluctuation of load curve. The load deviation close to the actual load change is simulated by
Equation (20). Figure 5 is the load model.

∆PL = 0.6
√

PLoad (20)
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4.2. Microgrid System

The micro-grid model is constructed, and the proposed control scheme is simulated and verified.
The micro-grid structure is simple, the construction is flexible, and it is convenient to verify the
applicability of the control strategy.
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4.2.1. System Configuration

The model consists of a traditional energy power plant, RE power plant, and household load.
The detailed configuration of the system is shown in Table 2, and Figure 6 shows the structure of the
system. The wind, solar, and load models are described earlier.

Table 2. Micro-grid parameters.

Parameter Value Parameter Value

K1 0.42 Hν 0.92
K2 0.05 Dν 10.50
T1 0.10 Hi 0.05
T2 0.42 Saturation1 0.05
Ts 0.082 Saturation2 0.02
Ds 0.015 Rate Limit 0.20
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4.2.2. Whale Optimization Algorithm Application

The WOA code is run to obtain the optimal combination of controller parameters after the
micro-grid model is built. The objective function of algorithm optimization is given in Equation (6),
and the WOA code is executed in MATLAB. Table 3 shows the parameter values of WOA. Assign
the optimization results to the controller so that the controller plays a better role. Table 4 shows the
optimization results of WOA.
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Table 3. Whale optimization algorithm (WOA) parameter settings.

Parameter Search Agent Number Maximum Iterations Probability Coefficient

Value 30 10 0.50

Table 4. Controller parameters.

Parameter K1 K2 K3

Value 38 52 77

4.3. Egyptian Power System

A simulation model of power system is established building on the data provided in the 2017
Egyptian power holding company annual report [55]. The control algorithm proposed is applied to
compare with the traditional control algorithm to verify the performance of the algorithm proposed.
Figure 7 shows the structure of Egypt’s power system.
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4.3.1. System Configuration

Egypt’s power system contains both non-renewable and RE. Non-renewable power plants include
non-reheat power plants, reheating power plants and hydropower plants. The renewables energy is
able to meet 42% of electricity consumption by 2025 in Egypt’s 2017 annual report. We design the
reference model to this scale, as shown in Figure 7. The models are built according to different types of
power plants. The configuration of related parameters is shown in Table 5.
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Table 5. Egyptian power system parameters.

Parameter Value Parameter Value Parameter Value

Hs 5.71 Tw 1 P3 0.14
Ds 0.03 m 0.50 Kp 71.25

HsT1 0.40 R1 2.50 Ki 5.91
T2 0.40 R2 2.50 Kd 6.10
T3 90 R3 1 Hν 0.90
Td 5 P1 0.25 Dν 10.40
Th 6 P2 0.61 Ti 0.04

4.3.2. Application of WOA

The WOA is applied to optimize the proportion and integral coefficient, and the configuration
of WOA parameters is shown in Table 3. The objective function has been given in the previous
experiments. When the objective function is the smallest, the optimal controller parameters are found.
The performance of the controller is optimal after the optimal parameters are configured. Table 6
shows the optimization results.

Table 6. Optimal parameters.

Parameter K1 K2 K3

Value 23 41 56

5. Results

The model is built in Simulink, the relevant parameters are configured to test the effectiveness
of the frequency control scheme. Different power system scenarios are simulated by changing the
system inertia parameters. Compared with the traditional non inertial systematic control method,
the effectiveness of the frequency control method is tested.

5.1. Evaluation of System Performance in High Inertia Environment

According to the original parameter configuration model, the test is carried out under step load
and random load. The test results and analysis are as follows.

5.1.1. Step Load Test

When t = 500 s, a step load is added to the system to simulate the impact of sudden load or
generator unit shutdown on the system. The test results are showed in Figure 8. The traditional
control is primary and secondary frequency control, and the VSG control is added with inertia control.
When t = 500 s, the system frequency drops due to the sudden increase of load in the system. In the
conventional control, the time of frequency change point A and recovery point B is 500 s and 534 s,
respectively, which takes a total of 34 s. In VSG control, the time of points A and B is 500 s and 514 s,
respectively, which takes a total of 14 s. The control has the advantages of faster frequency recovery
and stable frequency and less fluctuation compared with the conventional control.
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5.1.2. Random Load Disturbance Test

Figure 9 is a waveform of random load. Figure 10 shows the test results for random load.
The random load is connected at t = 500 s to test the ability of the system to deal with random
disturbance. The system frequency fluctuates when the random load is connected. In the conventional
control, the time of frequency change point A and recovery point B is 500 s and 533 s, respectively,
which takes a total of 33 s. In VSG control, the time of points A and B is 500 s and 506 s respectively,
which takes a total of 6 s. Compared with conventional control, the system frequency recovery is faster
and more stable when VSG control.
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5.2. Evaluation of System Performance in Low Inertia Environment

The same test is to test the control effect of the frequency control method in the environment of
low system inertia. The test is also carried out under step load and random load. The test results and
analysis are as follows.

5.2.1. Step Load Test

At t = 500 s, step load is added to the system, and the experimental results are shown in Figure 11.
The frequency offset increases under the same load disturbance due to the decrease of system inertia,
and the frequency drop increases from 0.15 Hz under high inertia to 0.2 Hz. In the conventional control,
the time of frequency change point A and recovery point B is 500 s and 534 s, respectively, which takes
a total of 34 s. In VSG control, the time of points A and B is 500 s and 508 s, respectively, which takes a
total of 8 s. The VSG control system frequency recovery time is shorter than that of traditional control,
and the frequency is more stable.

5.2.2. Random Load Disturbance Test

When t = 500 s, the random load is added to the system, and the experimental results are shown
in Figure 12. The frequency is decreased under the disturbance of the same load compared with that of
the high inertia. As the system inertia decreases, the frequency deviation increases under the same
disturbance. However, in the conventional control, the time of frequency change point A and recovery
point B is 500 s and 531 s, respectively, which takes a total of 31 s. In VSG control, the time of points A
and B is 500 s and 509 s, respectively, which takes a total of 9 s. VSG control system frequency recovery
time is shorter and frequency is more stable compared with the traditional frequency control system.
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In summary, step load and random load are added to the system, and carry the experiments under
different inertial conditions to prove the adaptability of the control algorithm. VSG control system has
shorter frequency recovery time and stronger frequency stability compared with the traditional control,
no matter the high system inertia, low system inertia, time step load change, or random load change,
which verifies the effectiveness and adaptability of the algorithm proposed. The reason is that VSG
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enhances the inertia of the system, and the VSG optimized by algorithm enhances the adaptability to
the environment, thus restraining the large fluctuation of frequency.

5.3. Egyptian Power System Test

The frequency control scheme proposed is compared with the results of the conventional frequency
control schemes to verify the superiority of the scheme. Step load and random load are tested in the
test, and the test results prove the adaptability of the scheme. The tests are described in detail below.

5.3.1. Step Load Test

In the Egyptian power system model mentioned, step load is added when t = 500 s and the load
value is 0.05 pu to test the system’s ability to cope with step load and system stability. The test results
are showed in Figure 13. The first figure is the result of traditional frequency control, the second figure
is the result of inertial control strategy proposed.Symmetry 2020, 12, x FOR PEER REVIEW 18 of 23 
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The system is connected to step load at t = 500 s, the frequency of both control schemes decreases.
However, it is obvious that the frequency control scheme proposed to reduce the frequency reduction
amplitude, frequency recovery time, and the disturbance degree of step load to the system is due to
providing certain inertia to the system. In contrast, the traditional control system does not provide
inertial support. During the load disturbance, the frequency fluctuation amplitude is large and the
time is long, which affects the frequency stability of the system.

5.3.2. Random Load Disturbance Test

When t = 500 s, the system is connected with the random load to simulate the large-scale random
load in real life connected to the power system at any time. The random load waveform is shown in
Figure 9. The test results are shown in Figure 14.
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When t = 500 s, the random load is connected and the system frequency drops. Without inertia
control, the drop amplitude reaches 0.004 Hz, the frequency instability time is longer. With inertia
control, the frequency drop amplitude is 0.002 Hz, the frequency instability time is shorter, and the
steady-state frequency is smoother. The inertia and frequency stability of the system are increased
by using the frequency control method proposed in this study. The results verify the effectiveness of
the frequency control scheme. The frequency control method proposed is superior to the traditional
control method.

6. Conclusions

In RE systems, this study develops a VSG frequency systematic control method to solve the
problem of frequency stability of new energy power systems, which becomes a key challenge for
large-scale access of new energy to power systems. The control strategy makes the inverter have the
characteristics of traditional SG and also includes the primary and secondary frequency regulation
mechanisms. The control loop has certain inertia, which increases the ability of a system to suppress
frequency fluctuation, thereby increasing the RE power system frequency stability. The unique control
loop structure is designed. The parameters of the control strategy are optimized by using the improved
WOA. The virtual controller is designed by the optimization results of the algorithm to achieve the
best control effect.

Two kinds of test models are established. The small power system verifies the control effect
and adaptive performance of frequency coordination strategy under different inertia conditions.
The simulation system is established to verify the VSG systematic control method performance in
power system based on the data of an Egyptian electric power holding company. The experimental
results show that the proposed frequency coordinated control strategy increases the inertia and
damping of the system, so the frequency is more stable compared with the traditional frequency
control method. Under the same disturbance, the system frequency fluctuation amplitude and time
are significantly reduced, which proves the excellent performance of the frequency coordinated control
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strategy. The systematic control method proposed in this study improves the inertia of the inverter,
so as to improve the frequency stability of the system. The main contribution of this study is to propose
a novel control strategy, and also to apply the improved WOA to parameter optimization, so as to
maximize the performance of the control strategy. This study solves the problems of low inertia and
unstable frequency of RE power system, promotes the penetration of clean energy in power system
and promotes sustainable development of environment.

The VSG frequency control is studied to ensure the frequency stability and active power balance of
the system. The voltage control is not discussed, which is the deficiency of this study. Reactive power
balance and voltage stability of a power system occupy the same important position as frequency
stability. Future studies might be on VSG voltage control and more optimization methods to this field
to further improve the control strategy and maintain the symmetry between the grid connection rate of
new energy and the voltage stability of power system.
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