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Abstract: Building upon the notion of the Gutman index SGut(G), Mao and Das recently introduced
the Steiner Gutman index by incorporating Steiner distance for a connected graph G. The Steiner
Gutman k-index SGutk(G) of G is defined by SGutk(G) = ∑S⊆V(G), |S|=k (∏v∈S degG(v)) dG(S),
in which dG(S) is the Steiner distance of S and degG(v) is the degree of v in G. In this paper, we derive
new sharp upper and lower bounds on SGutk, and then investigate the Nordhaus-Gaddum-type
results for the parameter SGutk. We obtain sharp upper and lower bounds of SGutk(G) + SGutk(G)

and SGutk(G) · SGutk(G) for a connected graph G of order n, m edges, maximum degree ∆ and
minimum degree δ.
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1. Introduction

We consider simple, undirected graphs in this paper. For the standard theoretical graph
terminology and notation not defined here, follow [1]. For a graph G, let V(G) and E(G) represent
its sets of vertices and edges, respectively. Let |E(G)| = m be the size of G. The complement of G
is conventionally denoted by G. For a vertex v ∈ V(G), degG(v) is the degree of v. The maximum
and minimum degrees are, respectively, denoted by ∆ and δ. Like degrees, distance is a fundamental
concept of graph theory [2]. For two vertices u, v ∈ V(G) with connected G, the distance d(u, v) =
dG(u, v) between these two vertices is defined as the length of a shortest path connecting them.
An excellent survey paper on this subject can be found in [3].

The above classical graph distance was extended by Chartrand et al. in 1989 to the Steiner
distance, which since then has become an essential concept of graph theory. Given a graph G(V, E)
and a vertex set S ⊆ V(G) containing no less than two vertices, an S-Steiner tree (or an S-tree, a Steiner
tree connecting S) is defined as a subgraph T(V′, E′) of G, which is a subtree satisfying S ⊆ V′. If G
is connected with order no less than 2 and S ⊆ V is nonempty, the Steiner distance d(S) among the
vertices of S (sometimes simply put as the distance of S) is the minimum size of connected subgraph
whose vertex sets contain the set S. Clearly, for a connected subgraph H ⊆ G with S ⊆ V(H) and
|E(H)| = d(S), H is a tree. When T is subtree of G, we have d(S) = min{|E(T)| , S ⊆ V(T)}.
For S = {u, v}, d(S) = d(u, v) reduces to the classical distance between the two vertices u and v.
Another basic observation is that if |S| = k, d(S) ≥ k− 1. For more results regarding varied properties
of the Steiner distance, we refer to the reader to [3–8].
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In [9], Li et al. generalized the concept of Wiener index through incorporating the Steiner distance.
The Steiner k-Wiener index SWk(G) of G is defined by

SWk(G) = ∑
S⊆V(G)

|S|=k

d(S) .

For k = 2, it is easy to see the Steiner Wiener index coincides with the ordinary Wiener index.
The interesting range of the Steiner k-Wiener index SWk resides in 2 ≤ k ≤ n− 1, and the two trivial
cases give SW1(G) = 0 and SWn(G) = n− 1.

Gutman [10] studied the Steiner degree distance, which is a generalization of ordinary
degree distance. Formally, the k-center Steiner degree distance SDDk(G) of G is given as

SDDk(G) = ∑
S⊆V(G)

|S|=k

(
∑
v∈S

degG(v)

)
dG(S) .

The Gutman index of a connected graph G is defined as

Gut(G) = ∑
u,v∈V(G)

degG(u) degG(v) dG(u, v).

The Gutman index of graphs attracted attention very recently. For its basic properties
and applications, including various lower and upper bounds, see [11–13] and the references
cited therein. Recently, Mao and Das [14] further extended the concept of the Gutman index by
incorporating Steiner distance and considering the weights as multiplications of degrees. The Steiner
k-Gutman index SGutk(G) of G is defined by

SGutk(G) = ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)
dG(S) .

Note that this index is a natural generalization of the classical Gutman index—in particular,
for k = 2, SGutk(G) = Gut(G). This is the reason the product of the degrees comes to the definition of
Steiner k-Gutman index. The weighting of multiplication of degree or expected degree has also been
extensively explored in, for example, the field of random graphs [15,16] and proves to be very prolific.
For more results on Steiner Wiener index, Steiner degree distance and Steiner Gutman index, we refer
to the reader to [9,10,14,17–19].

For a given a graph parameter f (G) and a positive integer n, the well-known Nordhaus–Gaddum
problem is to determine sharp bounds for: (1) f (G) + f (G) and (2) f (G) · f (G) over the class of
connected graph G, with order n, m edges, maximum degree ∆ and minimum degree δ characterizing
the extremal graphs. Many Nordhaus–Gaddum type relations have attracted considerable attention in
graph theory. Comprehensive results regarding this topic can be found in e.g., [20–24].

In Section 2, we obtain sharp upper and lower bounds on SGutk of graph G. In Section 3, we obtain
sharp upper and lower bounds of SGutk(G) + SGutk(G) and SGutk(G) · SGutk(G) for a connected
graph G in terms of n, m, maximum degree ∆ and minimum degree δ.

2. Sharp Bounds for the Steiner Gutman Index

In [14], the following results have been obtained:

Lemma 1 ([14]). Let Kn, Sn and Pn be the complete graph, star graph and path graph of order n, respectively,
and let k be an integer such that 2 ≤ k ≤ n. Then
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(1) SGutk(Kn) = (n
k)(n− 1)n(k− 1);

(2) SGutk(Sn) = (kn− 2k + 1)(n−1
k−1);

(3) SGutk(Pn) = 2k(k− 1)( n
k+1).

For connected graph G of order n with m edges, the authors in [14] derived the following upper
and lower bounds on SGutk(G).

Lemma 2 ([14]). Let G be a connected graph of order n with m edges, and let k be an integer with 2 ≤ k ≤
n. Then

(n− 1)
(

2m
k

)k (n− 1
k− 1

)k
≥ SGutk(G) ≥

{
2m(k− 1)(n−1

k−1) if δ ≥ 2

(k− 1)(n
k) if δ = 1.

We now give lower and upper bounds for SGutk(G) in terms of n, m, maximum degree ∆ and
minimum degree δ:

Proposition 1. Let G be a connected graph of order n ≥ 3 with m edges and maximum degree ∆, minimum
degree δ. Additionally, let k be an integer with 2 ≤ k ≤ n. Then

2m(n− 1)
(

n− 1
k− 1

)
∆k−1

k
≥ SGutk(G) ≥


2m(k− 1)(n−1

k−1)
δk−1

k if δ ≥ 2

k(p
k) + 2q(k− 1)

[
(n

k)− (p
k)
]

if δ = 1,

where p is the number of pendant vertices in G, and q = max{k− p, 1}. The equality of upper bound holds
if and only if G is a regular graph with k = n. The equality of lower bound holds if and only if G is a regular
(n− k + 1)-connected graph of order n (δ ≥ 2), or G ∼= Pn and k = n > 3 (δ = 1), or G ∼= P3 and k = 2
(δ = 1).

Proof. Upper bound: For any S ⊆ V(G) and |S| = k, we have k− 1 ≤ dG(S) ≤ n− 1, and hence

(k− 1) ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)
≤ SGutk(G) ≤ (n− 1) ∑

S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)
. (1)

Let

M = ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)
= ∑
{v1,v2,...,vk}⊆V(G)

degG(v1)degG(v2) · · · degG(vk).

and
N = ∑

{v1,v2,...,vk}⊆V(G)

[degG(v1) + degG(v2) + · · ·+ degG(vk)].

We first prove the upper bound. Without loss of generality, we can assume that degG(v1) ≤
degG(v2) ≤ . . . ≤ degG(vk). Since

degG(v1)degG(v2) . . . degG(vk) ≤ ∆k−1degG(v1) (2)

≤ ∆k−1

k
(degG(v1) + degG(v2) + · · ·+ degG(vk)), (3)

it follows that
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M = ∑
{v1,v2,...,vk}⊆V(G)

degG(v1)degG(v2) . . . degG(vk)

≤ ∆k−1

k ∑
{v1,v2,...,vk}⊆V(G)

[degG(v1) + degG(v2) + · · ·+ degG(vk)]

≤ ∆k−1

k
N.

For each v ∈ V(G), there are (n−1
k−1) k-subsets in G such that each of them contains v.

The contribution of vertex v is exactly (n−1
k−1)degG(v). From the arbitrariness of v, we have

N =

(
n− 1
k− 1

)
∑

v∈V(G)

degG(v) = 2m
(

n− 1
k− 1

)
,

and hence

SGutk(G) ≤ (n− 1)M ≤ (n− 1)
∆k−1

k
N = 2m(n− 1)

(
n− 1
k− 1

)
∆k−1

k
. (4)

Suppose that the left equality holds. Then all the inequalities in the above must be equalities.
From the equality in (3), one can easily see that G is a regular graph. From the equality in (4), we have
d(S) = n − 1 for any S ⊆ V(G), |S| = k. Since G is connected, then there exists an S ⊆ V(G)

such that |dG(S)| = k − 1. If k ≤ n − 1, then one can easily see that the upper bound is strict as
|dG(S)| = k− 1 ≤ n− 2 for some S. Otherwise, k = n. Since G is connected, we have |dG(S)| = n− 1
for any S ⊆ V(G). Hence G is a regular graph with k = n.

Conversely, one can see easily that the left equality holds for regular graph with k = n.
Lower bound: Without loss of generality, we can assume that degG(v1) ≤ degG(v2) ≤ . . . ≤

degG(vk). First we assume that δ ≥ 2. Then

degG(v1)degG(v2) · · · degG(vk) ≥ δk−1degG(vk)

≥ δk−1

k
(degG(v1) + degG(v2) + · · ·+ degG(vk)), (5)

since degG(v1) ≤ degG(v2) ≤ · · · ≤ degG(vk). Furthermore, we have

SGutk(G) ≥ (k− 1) ∑
{v1,v2,...,vk}⊆V(G)

degG(v1)degG(v2) . . . degG(vk) (6)

≥ (k− 1)
δk−1

k ∑
{v1,v2,...,vk}⊆V(G)

[degG(v1) + degG(v2) + · · ·+ degG(vk)] (7)

= (k− 1)
δk−1

k
N

= 2m(k− 1)
(

n− 1
k− 1

)
δk−1

k
.

Next we assume that δ = 1. If degG(v1) = degG(v2) = · · · = degG(vk) = 1, then dG(S) ≥ k and
degG(v1)degG(v2) . . . degG(vk) = 1. If there exists some vi such that degG(vi) ≥ 2, then dG(S) ≥ k− 1
and degG(v1)degG(v2) . . . degG(vk) ≥ 2max{k−p,1} = 2q, where 1 ≤ i ≤ k. Therefore, we have
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SGutk(G) ≥ k ∑
{v1,v2,...,vk}⊆V(G),

degG(v1)=degG(v2)=···=degG(vk)=1

degG(v1)degG(v2) . . . degG(vk)

+(k− 1) ∑
{v1,v2,...,vk}⊆V(G),
some degG(vi)≥2

degG(v1)degG(v2) . . . degG(vk) (8)

≥ k
(

p
k

)
+ 2q(k− 1)

[(
n
k

)
−
(

p
k

)]
. (9)

Suppose that the right equality holds. Then all the inequalities in the above must be equalities.
Suppose that δ ≥ 2. From the equality in (6), dG(S) = k− 1 for any S ⊆ V(G) and |S| = k, that is,
G[S] is connected for any S ⊆ V(G) and |S| = k, and hence G is (n− k + 1)-connected. From the
equality in (7), we have degG(v1) = degG(v2) = · · · = degG(vk) for any S = {v1, v2, . . . , vk} ⊆ V(G),
and hence G is a regular graph. Thus, G is a regular (n− k + 1)-connected graph of order n.

Next suppose that δ = 1. From the equality in (9), we obtain degG(vi) = 1 or degG(vi) = 2 for
any vertex vi ∈ V(G). Since G is connected, G ∼= Pn and p = 2. If k ≥ 3, then q = k− p ≥ 1. In this
case dG(S) = k− 1 for any S ⊆ V(G) and |S| = k. One can easily see that G ∼= Pn and k = n > 3
(otherwise, dG(S) > k− 1 for some S ⊆ V(G) as q = k− p). Otherwise, k = p = 2 and hence q = 1.
In this case G ∼= P3 and k = 2.

Conversely, one can see easily that the equality holds on lower bound for a regular (n − k +
1)-connected graph of order n (δ ≥ 2), or G ∼= Pn and k = n > 3 (δ = 1), or G ∼= P3 and k = 2
(δ = 1).

Example 1. Let G ∼= Kn with k = n. Then

SGutk(G) = (n− 1)n+1 = 2m(n− 1)
(

n− 1
k− 1

)
∆k−1

k
.

Let G ∼= Kn\sK2 (n = 2s) with k = 3. Then G is a n− 2 regular graph of order n. Then

SGutk(G) = 2(n− 2)3
(

n
3

)
= 2m(k− 1)

(
n− 1
k− 1

)
δk−1

k
.

Let G ∼= Pn with k = n > 3. Then

SGutk(G) = 2n−2(n− 1) = k
(

p
k

)
+ 2q(k− 1)

[(
n
k

)
−
(

p
k

)]
as p = 2.

Let G ∼= Pn with k = 2. Then

SGutk(G) = 6 = k
(

p
k

)
+ 2q(k− 1)

[(
n
k

)
−
(

p
k

)]
as p = 2.

3. Nordhaus–Gaddum-Type Results on SGutk(G)

We are now in a position to give the Nordhaus–Gaddum-type results on SGutk(G).

Theorem 1. Let G be a connected graph of order n with m edges, maximum degree ∆, minimum degree δ and a
connected G. Additionally, let k be an integer with 2 ≤ k ≤ n. Then
(1)

SGutk(G) + SGutk(G) ≤ (n− 1)2
(

n
k

)
sk−1

1
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and

SGutk(G) · SGutk(G) ≤ 2m(n2 − n− 2m)(n− 1)2
(

n− 1
k− 1

)2 ∆k−1 (n− δ− 1)k−1

k2 ,

where s1 = max{∆, n− δ− 1}. Moreover, the upper bounds are sharp.
(2)

SGutk(G) + SGutk(G)

≥



(n− 1)(k− 1)(n
k) tk−1

1 if δ ≥ 2, ∆ ≤ n− 3

2m(k− 1)(n−1
k−1)

δk−1

k + k(n
k) if δ ≥ 2, ∆ = n− 2

k(n
k) + [n(n− 1)− 2m](k− 1)(n−1

k−1)
(n−∆−1)k−1

k if δ = 1, ∆ ≤ n− 3

2k(n
k) if δ = 1, ∆ = n− 2,

where t1 = min{δ, n− ∆− 1}.
(3)

SGutk(G) · SGutk(G)

≥



2m(n2 − n− 2m)(k− 1)2(n−1
k−1)

2 δk−1 (n−∆−1)k−1

k2 if δ ≥ 2, ∆ ≤ n− 3

2m(k− 1)(n
k)(

n−1
k−1)δ

k−1 if δ ≥ 2, ∆ = n− 2

[n(n− 1)− 2m](k− 1)(n
k)(

n−1
k−1)(n− ∆− 1)k−1 if δ = 1, ∆ ≤ n− 3

k2(n
k)

2 if δ = 1, ∆ = n− 2.

Proof. (1) From Proposition 1, we have

SGutk(G) ≤ 2m(n− 1)
(

n− 1
k− 1

)
∆k−1

k

and

SGutk(G) ≤ [n(n− 1)− 2m](n− 1)
(

n− 1
k− 1

)
(n− δ− 1)k−1

k
,

and hence

SGutk(G) + SGutk(G) ≤ (n− 1)2
(

n
k

)
sk−1

1

and

SGutk(G) · SGutk(G) ≤ 2m(n2 − n− 2m)(n− 1)2
(

n− 1
k− 1

)2 ∆k−1(n− δ− 1)k−1

k2 .

(2) From Proposition 1, if δ ≥ 2 and ∆ ≤ n− 3, then

SGutk(G) + SGutk(G)

≥ 2m(k− 1)
(

n− 1
k− 1

)
δk−1

k
+ [n(n− 1)− 2m](k− 1)

(
n− 1
k− 1

)
(n− ∆− 1)k−1

k

≥ (n− 1)(k− 1)
(

n
k

)
tk−1
1 .
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If δ(G) ≥ 2 and ∆ = n− 2, then

SGutk(G) + SGutk(G)

≥ 2m(k− 1)
(

n− 1
k− 1

)
δk−1

k
+ k
(

p′

k

)
+ 2q′(k− 1)

[(
n
k

)
−
(

p′

k

)]

≥ 2m(k− 1)
(

n− 1
k− 1

)
δk−1

k
+ k
(

p′

k

)
+ 2(k− 1)

[(
n
k

)
−
(

p′

k

)]

≥ 2m(k− 1)
(

n− 1
k− 1

)
δk−1

k
+ k
(

p′

k

)
+ k

[(
n
k

)
−
(

p′

k

)]

= 2m(k− 1)
(

n− 1
k− 1

)
δk−1

k
+ k
(

n
k

)
,

where p′ is the number of pendant vertices in G, and q′ = max{k− p′, 1}.
If δ = 1 and ∆ ≤ n− 3, then

SGutk(G) + SGutk(G)

≥ k
(

p
k

)
+ 2q(k− 1)

[(
n
k

)
−
(

p
k

)]
+ [n(n− 1)− 2m](k− 1)

(
n− 1
k− 1

)
(n− ∆− 1)k−1

k

≥ k
(

n
k

)
+ [n(n− 1)− 2m](k− 1)

(
n− 1
k− 1

)
(n− ∆− 1)k−1

k
,

where p is the number of pendant vertices in G, and q = max{k− p, 1}.
If δ = 1 and ∆ = n− 2, then

SGutk(G) + SGutk(G)

≥ k
(

p
k

)
+ 2q(k− 1)

[(
n
k

)
−
(

p
k

)]
+ k
(

p′

k

)
+ 2q′(k− 1)

[(
n
k

)
−
(

p′

k

)]

≥ k
(

n
k

)
+ k
(

n
k

)
≥ 2k

(
n
k

)
,

where p, p′ are the number of pendant vertices in G, G, respectively, and q = max{k − p, 1},
q′ = max{k− p′, 1}.

From the above argument, we have

SGutk(G) + SGutk(G)

≥



(n− 1)(k− 1)(n
k) tk−1

1 if δ ≥ 2, ∆ ≤ n− 3

2m(k− 1)(n−1
k−1)

δk−1

k + k(n
k) if δ ≥ 2, ∆ = n− 2

k(n
k) + [n(n− 1)− 2m](k− 1)(n−1

k−1)
(n−∆−1)k−1

k if δ = 1, ∆ ≤ n− 3

2k(n
k) if δ = 1, ∆ = n− 2.

For (3), from Proposition 1, if δ ≥ 2 and ∆ ≤ n− 3, then
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SGutk(G) · SGutk(G) ≥ 2m(n2 − n− 2m)(k− 1)2
(

n− 1
k− 1

)2 δk−1 (n− ∆− 1)k−1

k2 .

If δ ≥ 2 and ∆ = n− 2, then

SGutk(G) · SGutk(G)

≥
[

2m(k− 1)
(

n− 1
k− 1

)
δk−1

k

] [
k
(

p′

k

)
+ 2q′(k− 1)

[(
n
k

)
−
(

p′

k

)]]

≥ 2m(k− 1)
(

n
k

)(
n− 1
k− 1

)
δk−1,

where p′ is the number of pendant vertices in G, and q′ = max{k− p′, 1}.
If δ = 1 and ∆ ≤ n− 3, then

SGutk(G) · SGutk(G)

≥
[
[n(n− 1)− 2m](k− 1)

(
n− 1
k− 1

)
(n− ∆− 1)k−1

k

] [
k
(

p
k

)
+ 2q(k− 1)

[(
n
k

)
−
(

p
k

)]]

≥ [n(n− 1)− 2m](k− 1)
(

n
k

)(
n− 1
k− 1

)
(n− ∆− 1)k−1,

where p is the number of pendant vertices in G, and q = max{k− p, 1}.
If δ(G) = 1 and ∆ = n− 2, then

SGutk(G) · SGutk(G)

≥
[

k
(

p
k

)
+ 2q(k− 1)

[(
n
k

)
−
(

p
k

)]] [
k
(

p′

k

)
+ 2q′(k− 1)

[(
n
k

)
−
(

p′

k

)]]

≥ k2
(

n
k

)2
,

where p, p′ are the number of pendant vertices in G and G, respectively, and q = max{k − p, 1},
q′ = max{k− p′, 1}.

From the above argument, we have

SGutk(G) · SGutk(G)

≥



2m(n2 − n− 2m)(k− 1)2(n−1
k−1)

2 δk−1 (n−∆−1)k−1

k2 if δ(G) ≥ 2, ∆ ≤ n− 3

2m(k− 1)(n
k)(

n−1
k−1)δ

k−1 if δ(G) ≥ 2, ∆ = n− 2

[n(n− 1)− 2m](k− 1)(n
k)(

n−1
k−1)(n− ∆− 1)k−1 if δ(G) = 1, ∆ ≤ n− 3

k2(n
k)

2 if δ(G) = 1, ∆ = n− 2.

To show the sharpness of the upper bound and the lower bound for δ(G) ≥ 2, ∆ ≤ n− 3, we let
G and G be two n−1

2 -regular graphs of order n, where n is odd. If k = n, then SGutk(G) =

(n− 1)( n−1
2 )n, SGutk(G) = (n− 1)( n−1

2 )n, s1 = max{∆, n− δ− 1} = n−1
2 , ∆ (n− δ− 1) = ( n−1

2 )2,
t1 = min{δ, n− ∆− 1} = n−1

2 and δ (n− ∆− 1) = ( n−1
2 )2. Furthermore, we have SGutk(G) +

SGutk(G) = 2(n − 1)( n−1
2 )n = (n − 1)2(n

k)s
k−1
1 , SGutk(G) · SGutk(G) = (n − 1)2( n−1

2 )2n =
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2m(n2 − n − 2m)(n − 1)2(n−1
k−1)

2 ∆k−1 (n−δ−1)k−1

k2 , SGutk(G) + SGutk(G) = 2(n − 1)( n−1
2 )n =

(n − 1)(k − 1)(n
k)t

k−1
1 and SGutk(G) · SGutk(G) = (n − 1)2( n−1

2 )2n = 2m(n2 − n − 2m)(k −
1)2(n−1

k−1)
2 δk−1 (n−∆−1)k−1

k2 .

The following corollary is immediate from the above theorem.

Corollary 1. Let G be a connected graph of order n ≥ 4 with maximum degree ∆ and minimum degree δ. Then
(1)

(n− 1)2
(

n
k

)
sk−1

1 ≥ SGutk(G) + SGutk(G)

≥



(n− 1)(k− 1)(n
k) tk−1

1 if δ ≥ 2, ∆ ≤ n− 3

n(k− 1)(n−1
k−1)

δk

k + k(n
k) if δ ≥ 2, ∆ = n− 2

k(n
k) + n(k− 1)(n−1

k−1)
(n−∆−1)k

k if δ = 1, ∆ ≤ n− 3

2k(n
k) if δ = 1, ∆ = n− 2,

where s1 = min{∆, n− δ− 1}, t1 = min{δ, n− ∆− 1};
(2)

n2
(

n− 1
k− 1

)2 ∆k−1 (n− δ− 1)k−1 (n− 1)4

4k2 ≥ SGutk(G) · SGutk(G)

≥



n2(k− 1)2(n−1
k−1)

2 δk (n−∆−1)k

k2 if δ ≥ 2, ∆ ≤ n− 3

n(k− 1)(n
k)(

n−1
k−1)δ

k if δ ≥ 2, ∆ = n− 2

n(k− 1)(n
k)(

n−1
k−1) (n− ∆− 1)k if δ = 1, ∆ ≤ n− 3

k2(n
k)

2 if δ = 1, ∆ = n− 2.

The following is the famous inequality by Pólya and Szegö:

Lemma 3. (Pólya–Szegö inequality) [25] Let (a1, a2, . . . , ar) and (b1, b2, . . . , br) be two positive r-tuples
such that there exist positive numbers M1, m1, M2, m2 satisfying:

0 < m1 ≤ ai ≤ M1, 0 < m2 ≤ bi ≤ M2, 1 ≤ i ≤ r.

Then
r
∑

i=1
a2

i

r
∑

i=1
b2

i(
r
∑

i=1
ai bi

)2 ≤
1
4

(√
M1 M2

m1 m2
+

√
m1 m2

M1 M2

)2

. (10)

We now give more lower and upper bounds for SGutk(G) · SGutk(G) in terms of n, ∆ and δ.

Theorem 2. Let G be a connected graph of order n with maximum degree ∆, minimum degree δ and a
connected G. Additionally, let k be an integer with 2 ≤ k ≤ n. Then
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SGutk(G) · SGutk(G) ≥

 (k− 1)2 δk (n− δ− 1)k (n
k)

2 if ∆ + δ ≤ n− 1,

(k− 1)2 ∆k (n− ∆− 1)k (n
k)

2 if ∆ + δ ≥ n− 1
(11)

with equality holding if and only if G is a regular graph with dG(S) = dG(S) = k− 1 for any S ⊆ V(G),
|S| = k, and

SGutk(G) · SGutk(G) ≤ (n− 1)2k+2

22k+2

(
n
k

)2
[(

∆ (n− δ− 1)
δ (n− ∆− 1)

)k
+

(
δ (n− ∆− 1)
∆ (n− δ− 1)

)k
+ 2

]
,

Moreover, the equality holds if and only if G is a
(

n−1
2

)
-regular graph with k = n, n is odd.

Proof. Lower bound: By Cauchy–Schwarz inequality with (1), we have

SGutk(G) · SGutk(G) ≥ (k− 1)2 ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)
∑

S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)
(12)

≥ (k− 1)2

 ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v) ∏
v∈S

degG(v)

)1/2


2

(13)

≥ (k− 1)2

 ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v) (n− 1− degG(v))

)1/2


2

.

Since δ ≤ degG(v) ≤ ∆, one can easily see that

degG(v) (n− 1− degG(v)) ≥

 δ (n− δ− 1) if ∆ + δ ≤ n− 1,

∆ (n− ∆− 1) if ∆ + δ ≥ n− 1.
(14)

From the above results, we have

SGutk(G) · SGutk(G) ≥

 (k− 1)2 δk (n− δ− 1)k (n
k)

2 if ∆ + δ ≤ n− 1,

(k− 1)2 ∆k (n− ∆− 1)k (n
k)

2 if ∆ + δ ≥ n− 1.

The equality holds in (12) if and only if dG(S) = dG(S) = k− 1 for any S ⊆ V(G) with |S| = k.
By the Cauchy–Schwarz inequality, the equality holds in (13) if and only if

∏v∈S1
degG(v)

∏v∈S1
degG(v)

=
∏v∈S2

degG(v)
∏v∈S2

degG(v)
for any S1, S2 ∈ V(G) with |S1| = |S2| = k,

that is, if and only if degG(u) = degG(v) for any u, v ∈ V(G), that is, if and only if G is a regular graph.
Hence the equality holds in (11) if and only if G is a regular graph with dG(S) = dG(S) = k− 1 for any
S ⊆ V(G), |S| = k.

Upper bound: Let ∆ and δ be the maximum degree and the minimum degree of
graph G, respectively. Then ∆ = n− δ− 1 and δ = n− ∆− 1. By (1) and (10), we have
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SGutk(G) · SGutk(G)

≤ (n− 1)2 ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)
∑

S⊆V(G)

|S|=k

(
∏
v∈S

degG(v)

)

≤ (n− 1)2

 ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v) ∏
v∈S

degG(v)

)1/2


2

1
4

(∆ ∆
δ δ

)k/2

+

(
δ δ

∆ ∆

)k/2
2

≤ (n− 1)2

4

 ∑
S⊆V(G)

|S|=k

(
∏
v∈S

degG(v) (n− 1− degG(v))

)1/2


2 (∆ ∆
δ δ

)k/2

+

(
δ δ

∆ ∆

)k/2
2

.

One can easily see that

degG(v) (n− 1− degG(v)) ≤
(n− 1)2

4
for any v ∈ V(G).

Using this result in the above with ∆ = n− δ− 1 and δ = n− ∆− 1, we get

SGutk(G) · SGutk(G) ≤ (n− 1)2k+2

22k+2

(
n
k

)2
[(

∆ (n− δ− 1)
δ (n− ∆− 1)

)k
+

(
δ (n− ∆− 1)
∆ (n− δ− 1)

)k
+ 2

]
.

Moreover, the above equality holds if and only if G is a
(

n−1
2

)
-regular graph with k = n, n is odd

(very similar proof of the Proposition 1).

Example 2. Let G ∼= Cn with k = n. Then δ = 2 and hence

SGutk(G) · SGutk(G) = (n− 1)2(n− 3)n 2n = (k− 1)2 δk (n− δ− 1)k
(

n
k

)2
.

Let G be a
(

n−1
2

)
-regular graph of order n with k = n and odd n. Then ∆ = δ = n−1

2 and hence

SGutk(G) · SGutk(G) =
(n− 1)2n+2

22n

=
(n− 1)2k+2

22k+2

(
n
k

)2
[(

∆ (n− δ− 1)
δ (n− ∆− 1)

)k
+

(
δ (n− ∆− 1)
∆ (n− δ− 1)

)k
+ 2

]
.

We now give more lower and upper bounds of SGutk(G) + SGutk(G) in terms of n, ∆ and δ.

Theorem 3. Let G be a connected graph of order n with maximum degree ∆, minimum degree δ and a
connected G. Additionally, let k be an integer with 2 ≤ k ≤ n. Then

SGutk(G) + SGutk(G) ≥


2 (k− 1) δk/2 (n− δ− 1)k/2 (n

k) if ∆ + δ ≤ n− 1,

2 (k− 1)∆k/2 (n− ∆− 1)k/2 (n
k) if ∆ + δ ≥ n− 1

(15)

with equality holding if and only if G is a
(

n−1
2

)
-regular graph with odd n and dG(S) = dG(S) = k − 1

for any S ⊆ V(G), |S| = k, and
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SGutk(G) + SGutk(G) ≤ (n− 1)
[
∆k + (n− δ− 1)k

] (n
k

)
(16)

with equality holding if and only if G is a regular graph with k = n.

Proof. For any two real numbers a, b, we have (a − b)2 ≥ 0, that is, a2 + b2 ≥ 2 a b with equality
holding if and only if a = b. Therefore we have

∏
v∈S

degG(v) + ∏
v∈S

degG(v) ≥ 2

(
∏
v∈S

degG(v) ∏
v∈S

degG(v)

)1/2

= 2

(
∏
v∈S

degG(v) degG(v)

)1/2

= 2

(
∏
v∈S

degG(v) (n− degG(v)− 1)

)1/2

.

From the above result with (14), we get

∏
v∈S

degG(v) + ∏
v∈S

degG(v) ≥

 2 δk/2 (n− δ− 1)k/2 if ∆ + δ ≤ n− 1,

2 ∆k/2 (n− ∆− 1)k/2 if ∆ + δ ≥ n− 1.

Now,

SGutk(G) + SGutk(G) = ∑
S⊆V(G)

|S|=k

[(
∏
v∈S

degG(v)

)
dG(S) +

(
∏
v∈S

degG(v)

)
dG(S)

]

≥ (k− 1) ∑
S⊆V(G)

|S|=k

[
∏
v∈S

degG(v) + ∏
v∈S

degG(v)

]

≥


2 (k− 1) δk/2 (n− δ− 1)k/2 (n

k) if ∆ + δ ≤ n− 1,

2 (k− 1)∆k/2 (n− ∆− 1)k/2 (n
k) if ∆ + δ ≥ n− 1.

From the above, one can easily see that the equality holds in (15) if and only if G is a
(

n−1
2

)
-regular

graph with odd n and dG(S) = dG(S) = k− 1 for any S ⊆ V(G), |S| = k.
Upper bound: By arithmetic-geometric mean inequality, we have
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SGutk(G) + SGutk(G) = ∑
S⊆V(G)

|S|=k

[(
∏
v∈S

degG(v)

)
dG(S) +

(
∏
v∈S

degG(v)

)
dG(S)

]

≤ (n− 1) ∑
S⊆V(G)

|S|=k

[
∏
v∈S

degG(v) + ∏
v∈S

degG(v)

]

≤ (n− 1) ∑
S⊆V(G)

|S|=k


 ∑

v∈S
degG(v)

k

k

+

 ∑
v∈S

degG(v)

k

k

=
(n− 1)

kk ∑
S⊆V(G)

|S|=k

(∑
v∈S

degG(v)

)k

+

(
∑
v∈S

(n− degG(v)− 1)

)k


=
(n− 1)

kk ∑
S⊆V(G)

|S|=k

(∑
v∈S

degG(v)

)k

+

(
k (n− 1)− ∑

v∈S
degG(v)

)k


≤ (n− 1)
kk ∑

S⊆V(G)

|S|=k

[
(k ∆)k + (k (n− 1)− k δ)k

]

= (n− 1)
[
∆k + (n− δ− 1)k

] (n
k

)
.

From the above, one can easily see that the equality holds in (16) if and only if G is a regular graph
with k = n (very similar proof of the Proposition 1).

Example 3. Let G be a
(

n−1
2

)
-regular graph with odd n and k = n. Then δ = n−1

2 and hence

SGutk(G) + SGutk(G) =
(n− 1)n+1

2n−1 = 2 (k− 1) δk/2 (n− δ− 1)k/2
(

n
k

)
Let G ∼= Cn with k = n. Then ∆ = δ = 2, ∆ = δ = 2 and hence

SGutk(G) + SGutk(G) = (n− 1)
[
2n + (n− 3)n

]
= (n− 1)

[
∆k + (n− δ− 1)k

] (n
k

)
.
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