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Abstract: We introduce a gradient iterative scheme with an optimal convergent factor for solving
a generalized Sylvester matrix equation ∑

p
i=1 AiXBi = F, where Ai, Bi and F are conformable

rectangular matrices. The iterative scheme is derived from the gradients of the squared norm-errors
of the associated subsystems for the equation. The convergence analysis reveals that the sequence
of approximated solutions converge to the exact solution for any initial value if and only if the
convergent factor is chosen properly in terms of the spectral radius of the associated iteration matrix.
We also discuss the convergent rate and error estimations. Moreover, we determine the fastest
convergent factor so that the associated iteration matrix has the smallest spectral radius. Furthermore,
we provide numerical examples to illustrate the capability and efficiency of this method. Finally,
we apply the proposed scheme to discretized equations for boundary value problems involving
convection and diffusion.

Keywords: gradient; linear iterative process; matrix norm; generalized Sylvester matrix equation;
convection–diffusion equation
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1. Introduction

It is well known that several problems in control and system theory are closely related to a
generalized Sylvester matrix equation of the form

p

∑
i=1

AiXBi = F, (1)

where Ai, Bi and F are given matrices of conforming dimensions. Equation (1) includes the following
special cases:

AX + XB = F, (2)

AX + XAT = F, (3)

AXB + X = F, (4)

known respectively as the Sylvester equation, the Lyapunov equation, and the Kalman–Yakubovich
equation. Equations (1)–(4) have important applications in stability analysis, optimal control,
observe design, output regulation problem, and so on; see e.g., [1–3]. Equation (1) can be solved
directly using the vector operator and the Kronecker product. Here, recall that the vector operator
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vec[·] turns each matrix into a column vector by stacking its columns consecutively. The Kronecker
product of two matrices A = [aij] and B is defined to be the block matrix A ⊗ B = [aijB]. In fact,
Equation (1) can be reduced to the linear system

Px = b where P =
p

∑
i=1

(BT
i ⊗ Ai), b = vec[F] and x = vec[X].

Thus, (1) has a unique solution if and only if P is non-singular. In particular for the Sylvester
Equation (2), the uniqueness of the solution is equivalent to the condition that A and −B have no
common eigenvalues. For Equation (4), the uniqueness condition is that all possible products of the
eigenvalues of A and B are not equal to −1. The exact solution x = P−1b is, in fact, computationally
difficult due to the large size of the Kronecker multiplication. This inspires us to investigate certain
iterative schemes to generate a sequence of approximate solutions, which are arbitrarily close to the
exact solution. Efficient iterative methods produce a satisfactory approximated solution in a small
iteration number.

Many researchers have developed such iterative methods for solving a class of matrix
Equations (1)–(4); see e.g., [4–10]. One of an interesting iterative method, called the Hermitian and
skew Hermitian splitting iterative method (HSS), was investigated by many authors, e.g., [11–14].
Gradient-based iterative methods were firstly introduced by Ding and Chen for solving (1), (2) and (4).
After that, there are many iterative methods for solving (1)–(4) based on gradients and hierarchical
identification principle, e.g., [15–17]. Convergence analyses of such methods are often relied on the
Frobenius norm ‖ · ‖F and the spectral norm ‖ · ‖2, defined for each matrix A by

‖A‖F = (tr AT A)
1
2 and ‖A‖2 = (λmax(AT A))

1
2 .

Method 1 ([15]). Assume that the matrix Equation (1) has a unique solution X. Construct

Xi(k) = X(k− 1) + τAT
i [F−

p

∑
j=1

AjX(k− 1)Bj]BT
i , i = 1, 2, . . . , p,

X(k) =
1
p

p

∑
i=1

Xi(k).

If we choose τ = [∑
p
i=1 ‖Ai‖2

2‖Bi‖2
2]
−1, then the sequence {X(k)}∞

k=0 converges to the exact solution X
for any given initial matrices X1(0), X2(0), ..., Xp(0).

A least-squares based iterative method for solving (1) was introduced as follows:

Method 2 ([15]). Assume that the matrix Equation (1) has a unique solution X. For each i =

1, 2, . . . , p, construct,

Xi(k) = X(k− 1) + τ
p

∑
i=1

(AT
i Ai)

−1 AT
i [F−

p

∑
j=1

AjX(k− 1)Bj]BT
i (BiBT

i )
−1.

Compute

X(k) =
1
p

p

∑
i=1

Xi(k).

If we choose 0 < τ < 2p, then the sequence {X(k)}∞
k=0 converges to the exact solution X for any given

initial matrices X1(0), X2(0), . . . , Xp(0).
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In this paper, we propose a gradient-based iterative method with an optimal convergent factor (GIO)
for solving the generalized Sylvester matrix Equation (1). This method is derived from least-squares
optimization and hierarchical identification principle (see Section 2). Convergence analysis (see Section 3)
reveals that the sequence of approximated solutions converges to the exact solution for any initial
value if and only if the convergent factor is chosen properly. Then we discuss the convergent rate
and error estimates for the method. Moreover, the convergent factor will be determined so that the
convergent rate is fastest, or equivalently, the spectral radius of associated iteration matrix is minimized.
In particular, the GIO method can solve the Sylvester Equation (2) (see Section 4). To illustrate the
efficiency of the proposed method, we provide numerical experiments in Section 5. We compare the
efficiency of our method for solving (2) with other iterative methods such as gradient based iterative
method (GI) [15], least-squares iterative method (LS) [17], relaxed gradient based iterative method
(RGI) [18], modified gradient based iterative method (MGI) [19], Jacobi-gradient based iterative method
(JGI) [20,21] and accelerated Jacobi-gradient based iterative method AJGI [22]. In Section 6, we apply
the GIO method to the convection–diffusion and the diffusion equation. Finally, we conclude the
overall work in Section 7.

2. Introducing a Gradient Iterative Method

Let us denote by Rr×s the set of r × s real matrices. Let m, n, p, q ∈ N be such that mq = np.
Consider the matrix Equation (1) where Ai ∈ Rm×n, Bi ∈ Rp×q, F ∈ Rm×q are given constant matrices
and X ∈ Rn×p is an unknown matrix to be found. Suppose that (1) has a unique solution, i.e.,
the matrix P is invertible. Now, we discuss how to solve (1) indirectly using an effective iterative
method. According to the hierarchical identification principle, the system (1) is decomposed into
p subsystems. For each i ∈ {1, 2, ..., p}, set

Mi := F−
p

∑
j=1
j 6=i

AjXBj. (5)

Our aim is to approximate the solution of p subsystems:

Mi = AiXBi, i ∈ {1, 2, ..., p}, (6)

so that the following least-squares error is minimized:

Li(X) :=
1
2
‖AiXBi −Mi‖2

F. (7)

The gradient of each Li can be computed as follows:

∂

∂x
Li(X) =

1
2

∂

∂x
tr[(AiXBi −Mi)

T(AiXBi −Mi)]

=
1
2
(

∂

∂x
tr[BT

i XT AT
i AiXBi]− 2

∂

∂x
tr[MT

i AiXBi])

=
1
2
(AT

i AiXBiBT
i + AT

i AiXBiBT
i ) +

1
2
(2Bi MT

i Ai)
T

= AT
i (F−

p

∑
j=1

AjXBj)BT
i . (8)

Let Xi(k) be the estimate or iterative solution at iteration k, associated with the subsystem (6).
From the gradient formula (8), the iterative scheme for Xi(k) is given by the following equation:



Symmetry 2020, 12, 1732 4 of 14

Xi(k) = X(k− 1) + τAT
i [F−

p

∑
j=1

AjXBj]BT
i , i = 1, 2, ..., p, (9)

where τ is a convergent factor. According to the hierarchical identification principle, the unknown
parameter X in (9) is replaced by its estimate X(k − 1). After taking the arithmetic mean of Xi(k),
we obtain the following process:

Method 3. Gradient-based iterative method with optimal convergent factor
Initializing step: For i = 1, 2, . . . , p, set A′i = AT

i and B′i = BT
i . Choose τ ∈ R. Set k := 0. Choose initial

matrix X(0).
Updating step: For k = 1 to end, do:

E(k− 1) = F−
p

∑
j=1

AjX(k− 1)Bj,

X(k) =
1
p

p

∑
i=1

(X(k− 1) + τA′iE(k− 1)B′i).

Note that the terms E(k), A′i, B′i were introduced in order to eliminate duplicated computations.
To stop the process, one may impose a stopping rule such as the relative error ‖E(k)‖F/‖F‖F is less
than a tolerance error ε. The convergence property of this method depends on the convergent factor τ.
A discussion of possible/optimal values of τ will be presented in the next section.

3. Convergence Analysis

In this section, we show that the approximated solutions derived from Method 3 converge to
the exact solution. First, we transform a recursive equation of the error of approximated solutions
into a first-order linear iterative system x(k) = Tx(k− 1) where x(k) is a vector and T is an iteration
matrix. Then, we investigate the iteration matrix T to obtain the convergence rate and error estimations.
Finally we discuss the fastest convergent factor and find the number of iterations corresponding to a
given satisfactory error.

Theorem 1. Assume that the matrix Equation (1) has a unique solution X. Let τ ∈ R. Then the approximate
solutions derived from (9) converge to the exact solution for any initial value X(0) if and only if

0 < τ <
2
‖P‖2

2
. (10)

In this case, the spectral radius of the associated iteration matrix T = Inp − τPT P is given by

ρ[T] = max{|1− τλmax(PT P)|, |1− τλmin(PT P)|}. (11)

Proof. At each k-th iteration, consider the error matrix X̃(k) = X(k)− X. We have

X̃(k) = X(k− 1) + τ
p

∑
i=1

AT
i Ei(k− 1)BT

i − X

= X̃(k− 1)− τ
p

∑
i=1

AT
i Ei(k− 1)BT

i .

We shall show that X(k)→ X by showing that X̃(k)→ 0 or vec[X̃(k)]→ 0. By taking the vector
operator to the above equation, we get
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vec X̃(k) = vec X̃(k− 1)−
p

∑
i=1

τ vec AT
i Ei(k− 1)BT

i

= vec X̃(k− 1)−
p

∑
i=1

τ(Bi ⊗ AT
i ) vec

p

∑
i=1

AiX̃(k− 1)Bi

= vec X̃(k− 1)−
p

∑
i=1

τ(BT
i ⊗ Ai)

T(
p

∑
j=1

BT
j ⊗ Aj) vec X̃(k− 1)

= T vec X̃(k− 1). (12)

We see that (12) is a first-order linear iterative system in the form x(k) = Tx(k − 1). Thus,
vec X̃(k)→ 0 for any initial values Xi(0) if and only if the iteration matrix T has spectral radius less
than 1. Since T is symmetric, all its eigenvalues are real. Note that any eigenvalue of T is of the form
1− τλ where λ is an eigenvalue of PT P. Thus, its spectral radius is given by (11). It follows that
ρ[T] < 1 if and only if

0 < τλmax(PT P) < 2 and 0 < τλmin(PT P) < 2. (13)

Since P is invertible, the matrix PT P is positive definite. Thus, λmax(PT P) > 0. The condition (13)
now becomes

0 < τ <
2

λmax(PT P)
=

2
‖P‖2

2
.

Hence, we arrive at (10).

Theorem 2. Assume the hypothesis of Theorem 1, so that the sequence {Xk} converges to the exact solution X
for any initial value X(0).

(1). We have the following error estimates

‖X(k)− X‖F ≤ ρ[T] ‖X(k− 1)− X‖F, (14)

‖X(k)− X‖F ≤ ρk[T] ‖X(0)− X‖F. (15)

Moreover, the asymptotic convergence rate of Method 3 is governed by ρ[T] in (11).
(2). Let ε > 0 be a satisfactory error. We have ‖X(k)− X‖F < ε after the k-th iteration for any k ∈ N

that satisfies

k >
log ε− log ‖X(0)− X‖F

log ρ(T)
. (16)

Proof. According to (12), we have

‖X(k)− X‖F = ‖X̃(k)‖F = ‖ vec X̃(k)‖F

= ‖T vec X̃(k− 1)‖F ≤ ‖T‖2‖ vec X̃(k− 1)‖F.

Since T is symmetric, we have ‖T‖2 = ρ[T]. Thus for each k ∈ N, the approximation (14) holds.
By induction, we obtain the estimation (15). The estimate (15) implies that the asymptotic convergence
rate of the method depends on ρ[T]. To prove the assertion, we have by taking logarithms that the
condition (16) is equivalent to

ρk(T)‖X(0)− X‖F < ε.

Thus if (16) holds, then ‖X(k)− X‖F < ε.

The convergence rate exhibits how fast of the approximated solutions converge to the exact
solution. Theorem 2 reveals that the smaller the spectral radius ρ[T], the faster the approximated
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solutions go to the exact solution. Moreover, by taking ε = 0.5× 10−n in (16), we have that X(k) has
an accuracy of n decimal digits if k satisfies

k >
log 0.5− log ‖X(0)− X‖F − n

log ρ(T)
.

Recall that the condition number of a matrix A (relative to the spectral norm) is defined by

κ(A) =

(
λmax(AT A)

λmin(AT A)

) 1
2

.

Theorem 3. Assume the hypothesis of Theorem 1. Then the optimal value of τ > 0 for which Method 3 has the
fastest asymptotic convergence rate is determined by

τopt =
2

λmax(PT P) + λmin(PT P)
. (17)

In this case, the spectral radius of the iteration matrix is given by

ρ[T] =
λmax(PT P)− λmin(PT P)
λmax(PT P) + λmin(PT P)

=
κ2(P)− 1
κ2(P) + 1

. (18)

Proof. The convergence of Method 3 implies that (10) holds. Then, Method 3 has the convergence
rate as the same to the linear iteration (12), and thus, it is governed by the spectral radius ρ[T]
in (11). The fastest convergence rate is equivalent to the smallest of ρ[T]. Thus, we make the
following minimization:

Minimize ρ[T] = max{|1− τλmin(PT P)|, |1− τλmax(PT P)|}

subject to 0 < τ <
2

λmax(PT P)
.

Thus, the optimal value is reached at (17) so that the minimum is given by (18).

We see that if the condition number of P is closer to 1 then the approximate solutions converge
faster to the exact solution. Note that the condition number of P is close to 1 if and only if the maximum
eigenvalue of PT P is close to the minimum eigenvalue of PT P.

4. The GIO Method for the Sylvester Equation

In this section, we discuss the gradient-based iterative method with optimal convergent factor
for solving Sylvester matrix equation. Moreover we discover convergence criteria, convergence rate,
error estimate and optimal factor.

Let m, n, p, q ∈ N be such that m = n and p = q. Consider the Sylvester matrix Equation (2)
where A ∈ Rm×n, B ∈ Rp×q, F ∈ Rm×q are given constant matrices and X ∈ Rn×p is an unknown
matrix to be found. Suppose that (2) has a unique solution, i.e., Q := Ip ⊗ A + BT ⊗ In is invertible,
or equivalently, A and −B have no common eigenvalues.

Method 4. Initializing step: Set A′ = AT , B′ = BT . Choose τ ∈ R. Set k := 0. Choose initial matrix X(0).
Updating step: For k = 1 to end, do:

E(k− 1) = F− AX(k− 1)− X(k− 1)B,

X(k) = X(k− 1) + τ[A′E(k− 1)B′].
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Corollary 1. Assume that the Sylvester matrix Equation (2) has a unique solution X. Let τ ∈ R. Then the
following hold:

(i) The approximate solutions generated by Method 4 converge to the exact solution for any initial value
X(0) if and only if

0 < τ <
2
‖Q‖2

2
. (19)

In this case, the spectral radius of the associated iteration matrix S = Inp − τQTQ is given by

ρ[S] = max{|1− τλmax(QTQ)|, |1− τλmin(QTQ)|}. (20)

(ii) The asymptotic convergence rate of Method 4 is governed by ρ[S] in (20).
(iii) The optimal value of τ > 0 for which Method 4 has the fastest asymptotic convergence rate is

determined by

τopt =
2

λmax(QTQ) + λmin(QTQ)
. (21)

Remark 1. Note that Q is the Kronecker sum of A and BT . Thus, if A and B are positive semidefinite, then

‖Q‖2
2 = λmax(QTQ) = λ2

max(Q) = (λmax(A) + λmax(B))2,

λmin(QTQ) = λ2
min(Q) = (λmin(A) + λmin(B))2.

5. Numerical Examples for Generalized Sylvester Matrix Equation

In this section, we show the capability and efficiency of the proposed method by illustrating
some numerical examples. To compare the performance of any algorithms, we must use the same PC
environment, and consider informed errors together with iteration numbers (IT) and computational
times (CT: in seconds). Our iterations have been carried out by MATLAB R2013a, Intel(R) Core(TM)
i5-760 CPU @ 2.80 GHz, RAM 8.00 GB PC environment. We measure the computational time taken for
an iterative process by the MATLAB functions tic and toc. In Example 1, we show that our method is
also efficient although matrices are non-square and we discuss the effect of changing the convergent
factor τ. In Example 2, we consider a larger square matrix system and show that our method is still
efficient. In Example 3, we compare the efficiency of our method to another recent iterative methods.
The matrix equation considered in this example is the Sylvester equation with square coefficient
matrices since it fits with all of the recent methods. In all illustrated examples, we compare the
efficiency of iterative methods to the direct method x = P−1b mentioned in Introduction. Let us denote
by tridiag(u, v, w) the tridiagonal matrix with main diagonal u, v and w.

Example 1. Consider the matrix equation A1XB1 + A2XB2 + A3XB3 = F when A1, A2, A3 ∈ R40×60,
B1, B2, B3 ∈ R20×30 and F ∈ R40×30 are tridiagonal matrices given by

A1 = tridiag(−2, 2,−2), A2 = tridiag(2,−2, 5), A3 = tridiag(2,−1, 2),

B1 = tridiag(4, 3,−1), B2 = tridiag(1,−2,−1), B3 = tridiag(3, 1, 3).

Here, the exact solution is given by X = tridiag(1,−1, 1). We apply Method 3 to compute the sequence
X(k) of approximated solutions. Take initial point

X(0) = 10−6 × tridiag(1, 1, 1).

The optimal convergent factor can be computed as follows:

τopt =
2

λmin(PT P) + λmax(PT P)
≈ 2

4.15× 10−13 + 1009.74
≈ 0.0019806.
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The effect of changing convergent factors τ is illustrated in Figure 1. We see that as k large enough,
the relative error ‖E(k)‖F/‖F‖F for τopt goes faster to 0 than for other convergent factors. If τ does not satisfy
the condition (10), then the approximated solutions diverge for the given initial matrices. Moreover, Table 1 shows
that the computational time of our algorithm (GIO) is significantly less than the time of the direct method. Table 1
also demonstrates that, when we fix the error ‖E(k)‖F to be less than 5× 10−3, the GIO algorithm outperforms
another GI algorithms with different convergent factors in both iteration numbers and computational times.

Figure 1. Relative error for Example 1.

Table 1. Iteration numbers and computational times for Example 1.

Method IT CT

Direct - 3.1380

GIO 161 0.0413

GI (τ = 0.0001) 3061 0.2508

GI (τ = 0.00003) 10,204 0.8994

Example 2. Consider the matrix equation A1XB1 + A2XB2 + A3XB3 = F where all matrices are 100× 100
tridiagonal matrices given by

A1 = tridiag(1, 2, 1), A2 = tridiag(−1,−2,−1), A3 = tridiag(−1, 3,−1),

B1 = tridiag(2, 2, 3), B2 = tridiag(1, 2,−2), B3 = tridiag(3, 2,−1).

Here, the exact solution is X = tridiag(1, 1, 1). To apply Method 3, we take initial matrix

X(0) = 10−6 × tridiag(0, 2, 0).

We can compute τopt ≈ 0.002553. Figure 2 shows that the relative error ‖E(k)‖F / ‖F‖F for τopt goes faster
to 0 than for other convergent factors. If τ does not satisfy (10), then the approximate solutions diverge for the
given initial matrices. From Table 2, we see that the computational time of our algorithm is significantly less than
the time of the direct method. Furthermore, when the satisfactory error ‖E(k)‖F is less than ε = 0.5, the GIO
algorithm has more efficiency than another GI algorithms in both iteration numbers and computational times.
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Figure 2. Relative errors for Example 2.

Table 2. Iteration numbers and computational times for Example 2.

Method IT CT

Direct - 53.4063

GIO 389 0.5439

GI (τ = 0.00005) 19,314 28.0245

GI (τ = 0.000001) 96,557 148.4039

Example 3. Consider the Sylvester equation AX + XB = F, where A, X, B, F ∈ R10×10 are given by
A = tridiag(−1, 3, 1), B = tridiag(−3, 2, 3), X = tridiag(−3, 1, 4). We compare the efficiency of our
method (GIO) with another iterative methods such as GI, LS, RGI, MGI, JGI and AJGI. We choose the same
convergent factor τ = 0.01836 and the same initial matrix X(0) = tridiag(0, 10−6, 0). To compare the
efficiency of these methods, we fix the iteration number to be 50 and consider the relative errors ‖E(k)‖F/‖F‖F.
The results are displayed in Figure 3. The iteration numbers and the computational times when we fix the error
‖E(k)‖F to be less than 5× 10−3 are illustrated in Table 3. We see that our method is outperform to the direct
method and another iterative methods with less iteration number and lower computational time. In particular,
the approximated solutions generated from JGI method diverge.

Figure 3. Relative errors for Example 3.
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Table 3. Iteration numbers and computational times for Example 3.

Method GIO GI LS RGI MGI JGI AJGI Direct

IT 18 33 167 70 25 - 51 -

CT 0.000273 0.000589 0.0114 0.0012 0.000789 - 0.0014 0.1704

6. An Application to Discretization of the Convection-Diffusion Equation

In this section, we apply the GIO method to a discretization of convection–diffusion equation in
the form

∂u
∂t

+ µ
∂u
∂x

= α
∂2u
∂x2 for c ≤ x ≤ d and 0 ≤ t ≤ L (22)

where µ and α are the convection and diffusion coefficients, respectively. Equation (22) is accompanied
by the initial condition u(x, 0) = f (x) and boundary conditions u(c, t) = g(t), u(d, t) = h(t) where
f , g, h are given functions. To make a discretization of Equation (22), we divide [c, d] into M subintervals,
each of equal length h = (d− c)/M. In the same manner, we define a grid for the N subintervals
l = L/N. Then we make discretization at the grid point un

m = u(xm, tn) where

xm = c + mh and tn = nl (23)

for 1 ≤ m ≤ M and 1 ≤ n ≤ N. By applying the forward time central space method, we have

(
un+1

m − un
m

l
) + µ(

un
m+1 − un

m−1
2h

) = α(
un

m−1 − 2un
m + un

m+1
h2 ).

Rearranging the above equation leads to

un+1
m = (p +

1
2

r)un
m−1 + (1− 2p)un

m + (p− 1
2

r)un
m+1

where r = µl/n and p = αl/h2 are the convection and diffusion numbers, respectively. We can
transform (22) into a linear system of MN unknowns u11, ..., uMN in the form

PCD vec(U) = b, (24)

where U = [un
m], PCD ∈ RM×N has N × N blocks of the form IM on its diagonal and tridiag(−p−

1
2 r,−1 + 2p,−p + 1

2 r) under its diagonal. The vector b is partitioned in M blocks as [bT
1 bT

2 . . . bT
N ]

T

where b1 =
[
φ(1) φ(2) · · · φ(m− 1)

]T
and

bj =


(p + 1

2 r)g(t + (i− 1)l)
0
...
0

(p− 1
2 r)h(t + (i− 1)l)

 , j = 2, . . . , N (25)

here φ(i) = (p + 1
2 r) f (c + (i− 1)h) + (1− 2p) f (c + ih) + (p− 1

2 r) f (c + (i + 1)h)
We can see that Equation (24) is the generalized Sylvester equation where p = 1, A = PCD,

X = vec(U), B = I and F = b. From Method 3, we obtain the following:

Method 5. Input M, N ∈ N as number of partition. Set P′CD = PT
CD.
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Initializing step: Choose u(0) ∈ RMN . For each m = 1, 2, . . . , M and n = 1, 2, . . . , N, compute xm, tn as
in Equation (23) and

τopt =
2

λmax(PT
CDPCD) + λmin(PT

CDPCD)
.

Updating step: For k = 1 to end, do:

E(k− 1) = b− PCDu(k− 1),

u(k) =
1
p

p

∑
i=1

(u(k− 1) + τoptP′CDE(k− 1)).

To stop the method, one may impose a stopping rule such as ‖E(k)‖F/‖b‖F < ε where ε is a tolerance error.

Now, we provide a numerical experiment for a convection-diffusion equation.

Example 4. Consider the convection–diffusion equation

∂u
∂t

+ 0.1
∂u
∂x

= 0.01
∂2u
∂x2 for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 10 (26)

with the initial and boundary conditions given as:

u(x, 0) = 100x and u(0, t) = u(1, t) = 0.

Let M = 5, N = 10, so that PCD is of dimension 50× 50. In this case, we have h = 0.2, l = 1, r = 0.5
and p = 0.25. We choose u(0) = 10−6

[
1 · · · 1

]
∈ R50.

After compiling Method 5 for 100 iterations, we see from Figure 4 that the relative error ‖E(k)‖F goes faster
to 0 than for other methods such as GI, LS, RGI, MGI, JGI and AJGI. Moreover, Table 4 displays comparison of
numerical and direct solutions for the convection–diffusion equation.

Figure 4. Relative errors for Example 4.
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Table 4. Iteration numbers, computational times and errors for Example 4.

Method IT CT Error

Direct - 2.085 0

GIO 100 0.0113 0.0199

GI 100 0.0281 0.0648

LS 100 0.0469 1.6574

RGI 100 0.0324 0.1417

MGI 100 0.0313 0.0397

JGI 100 0.2813 0.7698

AJGI 100 0.0938 0.0307

A particular case µ = 0 of Equation (22) is called the diffusion equation. In this case, the formulas
of PCD and b1, . . . , bN are reduced as r = 0.

Example 5. Consider the diffusion equation

∂u
∂t

=
∂2u
∂x2 for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 10

with the initial and boundary conditions given as:

u(x, 0) = 6 sin(πx) and u(0, t) = u(1, t) = 0. (27)

The exact solution is
u∗(x, t) = 6e−π2t sin(πx).

Let M = 10, l = 0.01 In this case, we have h = 0.1, and p = 1. We choose initial matrix u(0) =

10−6
[
1 · · · 1

]
∈ R100.

After compiling Method 5 for 200 iterations (Figure 5), we see that our method is outperform to another
iterative methods with less iteration number and lower computational time. The 3D-plot in Figure 6 shows that
the iterative solution is well approximated to the exact solution.

Figure 5. Relative errors for Example 5.
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Figure 6. The exact (left) and the iterative (right) solutions for Example 5.

7. Conclusions

We propose a gradient-based iterative method with an optimal convergent factor for solving
a generalized Sylvester matrix equation. The convergence analysis reveals that the sequence of
approximated solutions converge to the exact solution for any initial value if and only if the convergent
factor is chosen properly. The convergent rate and error estimations depend on the spectral radius
of the associated iteration matrix. Moreover, we obtain the fastest convergent factor so that the
associated iteration matrix has the smallest spectral radius. Furthermore, the proposed algorithm
is applicable for the discretization of the diffusion equations. The numerical experiments illustrate
that our method is applicable for any conformable square/rectangular matrices of small/large sizes.
Moreover, they reveal that our method performs well comparing to recent iterative methods.
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