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1. Introduction

In several applications, it is desirable to have effective tools allowing one to construct solutions of
functional differential equations under various boundary conditions. Many real processes are modelled
by systems of equations with argument deviations (see, e.g., [1–3] and references therein). For delay
equations, the classical method of steps [1] allows one to construct the solution of the Cauchy problem
by extending it from the initial interval in a stepwise manner; in this way, an ordinary differential
equation is solved at every step, with every preceding part of the curve serving as a historical function
for the next one. This technique, together with the ODE solvers available in the mathematical software,
is commonly used in the practical analysis of dynamic models based on equations with retarded
argument under the initial conditions (e.g., in economical models [4–6]).

In certain cases, boundary conditions are more complicated and deviations are of mixed type
(i. e., equations involve both retarded and advanced terms [7,8] or deviations of neither type),
which in particular, makes impossible to apply the method of steps due to the absence of the Volterra
property of the corresponding operator. The aim of this paper is to show that the techniques suggested
in [9] for boundary value problems for ordinary differential equations, under certain assumptions,
can be adopted for application to functional differential equations covering, in particular, the case of
deviations of mixed type and general boundary conditions. As a result, one can formulate a scheme
for the effective finding of approximations to solutions of boundary value problems for functional
differential equations, which also theoretically allows one to establish the solvability in a rigorous
manner. Here, we consider the linear case and deal with the construction of approximate solutions only.
The techniques are rather flexible and can be used in relation to other problems. Although the approach
is not explicitly designed for partial differential equations, it still might be used in the cases where
systems of equations with one independent variable arise (e.g., equations obtained when a symmetry
reduction is possible, equations related to the inverse scattering transform or discretization [10,11]).
Unlike methods used for integrable systems (e.g., the Hirota bilinear method [12]), the technique is
aimed at getting approximate solutons without previous knowledge of the structure of the solution set.

Symmetry 2019, 12, 1740 ; doi:10.3390/sym12101740 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4265-7786
http://dx.doi.org/10.3390/sym12101740 
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/10/1740?type=check_update&version=2


Symmetry 2019, 12, 1740 2 of 19

We consider the system of n linear functional differential equations

u′(t) = (lu)(t) + q(t), t ∈ [a, b], (1)

under the linear boundary conditions
h(u) = d, (2)

where u = (ui)
n
i=1, −∞ < a < b < ∞, l : C([a, b],Rn) → L∞([a, b],Rn) is a linear bounded

operator, h : C([a, b],Rn) → Rn is a bounded linear vector-valued functional, d = col (d1, . . . , dn)

and q ∈ L∞([a, b],Rn) are fixed. System (1) can be rewritten in coordinates as

u′i(t) =
n

∑
j=1

(liju)(t) + qi(t), t ∈ [a, b] , i = 1, . . . , n, (3)

where lij : C([a, b],R)→ L∞([a, b],R) are the components of the operator l = col(l1, . . . , ln) defined by
the equalities

lijv := li(vej), i, j = 1, 2, . . . , n (4)

for v from C([a, b],R) (here, ej stands for the jth unit vector). The difference between (1) and (3) is a
matter of notation: given system (3), it can be rewritten as (1) by setting

lu =



n

∑
j=1

l1j(uj)

n

∑
j=1

l2j(uj)

. . .
n

∑
j=1

lnj(uj)


(5)

for u ∈ C([a, b],Rn). Here, we consider the case where the component operators have values in
L∞([a, b],R), i. e., the coefficients in the equation are essentially bounded, which excludes the presence
of integrable singularities (e.g., 1/

√
t, t ∈ (0, 1]).

System (3) covers, in particular, the system of differential equations with argument deviations of
the form

u′i(t) =
n

∑
j=1

pij(t)uj(τij(t)) + qi(t), t ∈ [a, b] , i = 1, . . . , n, (6)

where τij : [a, b] → [a, b], are measurable functions, pij : [a, b] → R and qi : [a, b] → R i, j = 1, . . . , n,
are from L∞([a, b],R). A particular case of (6) is, e.g., the well-known pantograph equation,
which arises independently in several applied problems of various nature (see, e.g., [13,14] and
references therein). The assumption that

⋃n
i,j=1 τij([a, b]) ⊂ [a, b] is not a restriction of generality

because the setting involving initial functions can be reduced to the present one by a suitable
transformation [15]. The retarded character of the equation is not assumed (in particular, for (6),
it is not required that τij(t) ≤ t for all i, j) and, therefore, the method of steps is inapplicable.

We use the following notation. For any vectors ξ = col(ξ1, . . . , ξn), η = col(η1, . . . , ηn), we write
|ξ| = col(|ξ1| , . . . , |ξn|) and

max{ξ, η} = col(max{ξ1, η1}, . . . , max{ξn, ηn}). (7)
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The inequalities between vectors as well as minima and maxima of vector functions are understood
likewise in the componentwise sense. r(A) denotes the spectral radius of a matrix A. For an essentially
bounded function v : [a, b]→ Rn and an interval J ⊆ [a, b], we put

δJ(v) := ess sup
t∈J

v(t)− ess inf
t∈J

v(t). (8)

2. Auxiliary Problems with Two-Point Conditions

The idea is to use a suitable parametrization. Motivated by [9], we will seek for a solution
of (1), (2) among all solutions of Equation (1) under the simplest two-point conditions

u(a) = ξ, u(b) = η (9)

with unfixed boundary values ξ and η. Under suitable assumptions, every problem (1), (9) is shown to
be uniquely solvable and its solution is constructed as the limit of certain iterations {um(·, ξ, η) : m ≥ 0}.
The vectors z = col (ξ1, ξ2, . . . , ξn) and η = col (η1, η2, . . . , ηn) are parameters the values of which
remain unknown at the moment; they should be chosen appropriately in order to satisfy condition (2).

Let us fix closed bounded connected sets D0 and D1 in Rn and focus on the solutions of problem
(1), (2) with the values at the endpoints such that

u(a) ∈ D0, u(b) ∈ D1. (10)

To treat solutions with properties (10), we carry out “freezing” at the endpoints by passing temporarily
to conditions (9). Thus, instead of (1), (2) we will consider the parametrised problem (1), (9). There are
two (or, in coordinates, 2n) degrees of freedom there and we will see that one can, in a sense, go back
to the original problem by choosing the values of the parameters appropriately.

3. Iteration Process

Let L : L∞([a, b],Rn)→ L∞([a, b],Rn) be the continuous linear operator defined by the equality

(Ly)(t) :=
∫ t

a
y(s)ds− t− a

b− a

∫ b

a
y(s)ds, t ∈ [a, b], (11)

for any y ∈ L∞([a, b],Rn). Let us fix arbitrary values of ξ and η, put

q̃ := Lq, (12)

and define the sequence of functions {um(·, ξ, η) : m ≥ 0} by setting

u0(t, ξ, η) =

(
1− t− a

b− a

)
ξ +

t− a
b− a

η, (13)

um(t, ξ, η) = u0(t, ξ, η) + q̃(t) + (Llum−1(·, ξ, η))(t), t ∈ [a, b], (14)

for m ≥ 1. When no confusion may arise, for the sake of convenience we will sometimes omit the
arguments ξ, η in um(t, ξ, η) and write simply um(t) assuming the dependence on the parameters
implicitly. The sequence is obviously related to the iterative solution of the equation

u = u0 + Llu + q̃. (15)

The reason for choosing it in this particular way is explained by the following statement, which is an
immediate consequence of (14).
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Lemma 1. Let ξ and η be fixed. If um(·, ξ, η) ⇒ u as m → +∞ on [a, b], then u satisfies the two-point
conditions (9) and the equation

u′(t) = (lu)(t) + q(t) +
1

b− a

(
η − ξ −

∫ b

a
(lu)(s)ds−

∫ b

a
q(s)ds

)
, t ∈ [a, b]. (16)

Proof. The function u satisfies the integral Equation (15) and, in particular, is absolutely continuous.
By (11) and (13), Equation (15) is rewritten as

u(t) = ξ +
t− a
b− a

(η − ξ) +
∫ t

a
(lu)(s)ds +

∫ t

a
q(s)ds− t− a

b− a

(∫ b

a
(lu)(s)ds +

∫ b

a
q(s)ds

)
, (17)

the differentiation of which yields (16). Since obviously um(a, ξ, η) = ξ and um(b, ξ, η) = η for all m,
the fulfilment of conditions (9) is verified by passing to the limit in (14).

The idea of the approach is briefly this: Equation (16) differs from (1) by a finite-dimensional term
and after its ultimate “removal” by adjusting ξ appropriately we are among the solutions of (1), (9);
then we should try to choose η so that (2) is satisfied. In order to proceed according to this scheme, it
is needed to ensure the convergence of sequence of functions (14).

4. Applicability Conditions

Let L be the matrix constituted by the norms of the components of l as operators from C([a, b],R)
to L∞([a, b],R):

L :=


‖l11‖ ‖l12‖ . . . ‖l1n‖
‖l21‖ ‖l22‖ . . . ‖l2n‖

. . . . . . . . . . . .
‖ln1‖ ‖ln2‖ . . . ‖lnn‖

 . (18)

All the components of the matrix L are well defined due to the boundedness of l as a
mapping from C([a, b],Rn) to L∞([a, b],Rn). It follows immediately from (4) and (18) that the
componentwise inequality

|(lu)(t)| ≤ L max
s∈[a,b]

|u(s)| (19)

holds for a.e. t ∈ [a, b] and arbitrary u from C([a, b],Rn).

Theorem 1. Assume that the spectral radius of L satisfies the inequality

r(L) <
2

b− a
. (20)

Then, for any fixed ξ ∈ D0, η ∈ D1, the sequence {um(·, ξ, η) : m ≥ 0} converges to a certain function
u∞(·, ξ, η) as m → +∞ uniformly on [a, b]. The function u∞(·, ξ, η) satisfies conditions (9) and the
differential equation

u′(t) = (lu)(t) + q(t) +
1

b− a
∆(ξ, η), t ∈ [a, b], (21)

where

∆(ξ, η) := η − ξ −
∫ b

a
(lu∞(·, ξ, η))(s)ds−

∫ b

a
q(s)ds. (22)

The function u∞(·, ξ, η) is the unique solution of (21) with the initial condition u(a) = ξ and also the unique
solution of Equation (17). The function u∞(·, ξ, η) satisfies the original Equation (1) if and only if ξ and η are
chosen so that

∆(ξ, η) = 0. (23)
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The form of iteration sequence (14) is chosen specifically according to the two-point separated
boundary conditions (9), so that (9) is automatically satisfied on every step. The smallness of r(L)
(assumption (20)) ensures the unique solvability of all the auxiliary initial value problems (16) and (24),

u(a) = ξ, (24)

which is also helpful in cases where the initial value problem (1), (24) for the original equation is not
uniquely solvable. It should be noted that the last mentioned issue may arise even for very simple
equations of type (6); for example, it is easy to verify that if (1) has the form

u′(t) =
u(b)
b− a

− q(t), t ∈ [a, b], (25)

then the initial value problem (25), (24) is not uniquely solvable (it has infinitely many solutions if
ξ =

∫ b
a q(s)ds and no solution for ξ 6=

∫ b
a q(s)ds) and the corresponding Picard iterations diverge.

However, the iterations defined according to equalities (13) and (14) can be used since assumption (20)
is satisfied (L = (b− a)−1 in this case).

Equation (21) clearly resembles (16) with the difference that ∆(ξ, η) appearing in (21), where the
limit function is directly involved, is not a functional term. Equation (21) can thus be regarded as a
perturbation of equation (1) with a constant forcing term,

u′(t) = (lu)(t) + q(t) + µ, t ∈ [a, b], (26)

the value of which is related to the two-point condition (9).

Theorem 2. Assume that condition (20) holds and ξ, η are fixed. Then the solution of (26) with the initial
value (24) satisfies the condition

u(b) = η (27)

if and only if

µ =
1

b− a
∆(ξ, η) (28)

with ∆ given by (22).

Proof. The proof is similar to that of ([9] Theorem 7). If µ in (26) has form (28), then the function u =

u∞(·, ξ, η), which is well defined by Theorem 1, is the unique solution of the Cauchy problem (26), (24).
By Lemma 1, this function also satisfies condition (27).

Conversely, let v be a function satisfying (26) and (24) with a certain value of µ. The integration
of (26) gives the representation

v(t) = ξ +
∫ t

a
(lv)(s)ds +

∫ t

a
q(s)ds + µ

t− a
b− a

, t ∈ [a, b], (29)

whence

(b− a)µ = v(b)− ξ −
∫ b

a
(lv)(s)ds−

∫ b

a
q(s)ds. (30)

Combining (29) and (30) and assuming that v(b) = η, we get

v(t) = ξ +
∫ t

a
(lv)(s)ds +

∫ t

a
q(s)ds +

t− a
b− a

(
η − ξ −

∫ b

a
(lv)(s)ds−

∫ b

a
q(s)ds

)
,
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or, which is the same,

v(t) = ξ +
t− a
b− a

(η − ξ) +
∫ t

a
(lv)(s)ds +

∫ t

a
q(s)ds− t− a

b− a

(∫ b

a
(lv)(s)ds +

∫ b

a
q(s)ds

)
(31)

for t ∈ [a, b]. Equation (31) coincides with (17) and thus v is a solution of (17). Since, by Theorem 1,
the function u = u∞(·, ξ, η) is the unique solution of equation (17), it follows that v = u,
v(b) = u(b) = η and, hence, by (30), µ is necessarily of form (28).

Theorem 3. Under assumption (20), the limit function u∞(·, ξ, η) of sequence (14) is a solution of the original
problem (1), (2) if and only if the vectors ξ and η satisfy the system of 2n equations

∆(ξ, η) = 0,

h(u∞(·, ξ, η)) = d.
(32)

Proof. It is sufficient to apply Theorem 1. Equations (32) bring us from the auxiliary two-point
parametrised conditions back to the given functional conditions (2).

Combining these statements, one can formulate the following theorem.

Theorem 4. Assume condition (20). If there exist (ξ, η) ∈ D0 × D1 for which equations (32) are satisfied,
then the boundary value problem (1), (2) has a solution u(·) such that u(a) = ξ and u(b) = η. Conversely, if
problem (1), (2) has a solution u(·), then the values ξ = u(a) and η = u(b) satisfy (32).

Proof. Indeed, if (ξ, η) satisfy (32) then, by Theorem 3, the function u∞(·, ξ, η) is a solution of
problem (1), (2). By Theorem 1, this function satisfies the two-point conditions (9).

Assume now that u is a solution of problem (1), (2) and put ξ = u(a), η = u(b). Then u is a
solution of the initial value problem (26), (24) with µ = 0 and, furthermore,

u = u∞(·, ξ, η) (33)

because the solution of this problem is unique (Theorem 1). By Theorem 2, it follows that (23) holds.
Since, by assumption, u satisfies (2), it is obvious from (55) that h(u∞(·, ξ, η)) = d, i. e., (32) holds.

The boundary value problem (1), (2) is thus theoretically reduced to the solution of Equation (32)
in the variables ξ and η.

5. Proof of Theorem 1

We need some technical statements.

Lemma 2. For any essentially bounded function y : [a, b]→ Rn,

|(Ly)(t)| ≤ 1
2

α1(t)δ[a,b](y), t ∈ [a, b]. (34)

This is a modified version of Lemma 3 from [16]; the proof goes the same lines. Here, notation (8)
is used and α1 is defined by

α1(t) = 2(t− a)
(

1− t− a
b− a

)
, t ∈ [a, b].

The inequality in (34) and similar relations below are componentwise.
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Lemma 3. The estimate

max
t∈[a,b]

|um+1(t, ξ, η)− um(t, ξ, η)| ≤ (b− a)m+1

2m+2 Lmδ[a,b]((lu0)(·, ξ, η)) (35)

holds for m = 0, 1, . . . .

Proof. Since maxt∈[a,b] α1(t) = 1
2 (b− a), it follows from Lemma 2 that

|u1(t)− u0(t)| = |(Llu0)(t)| ≤
1
2

α1(t)δ[a,b](lu0) ≤
b− a

4
δ[a,b](lu0)

and (35) thus holds for m = 0. Assume that the required estimate (35) holds for a certain m = m0 ≥ 1.
It is clear from (8) that

δ[a,b](lu) ≤ 2 ess sup
t∈[a,b]

|(lu)(t)| (36)

for any u. Then, by Lemma 2,

|um0+2(t)− um0+1(t)| = |(Ll(um0+1 − um0))(t)| ≤
1
2

α1(t)δ[a,b](l(um0+1 − um0))

≤ b− a
4

δ[a,b](l(um0+1 − um0)) ≤
b− a

2
ess sup

s∈[a,b]
|l(um0+1 − um0)(s)|. (37)

By virtue of (19) and (35) with m = m0, we have

ess sup
s∈[a,b]

|l(um0+1 − um0)(s)| ≤ L max
τ∈[a,b]

|um0+1(τ)− um0(τ)|

≤ L
(b− a)m0+1

2m0+2 Lm0 δ[a,b](lu0) =
(b− a)m0+1

2m0+2 Lm0+1δ[a,b](lu0)

and, therefore, (37) yields

|um0+2(t)− um0+1(t)| ≤
b− a

2
(b− a)m0+1

2m0+2 Lm0+1δ[a,b](lu0) =
(b− a)m0+2

2m0+3 Lm0+1δ[a,b](lu0). (38)

Relation (38) means that estimate (35) holds with m = m0 + 1 and hence, due to the arbitrariness of
m0, for every m ≥ 0.

To prove Theorem 1, it is sufficient to use Lemma 3. Indeed, estimate (35) implies that

|um+k(t)− um(t)| ≤
k

∑
j=1
|um+j(t)− um+j−1(t)|

≤
k

∑
j=1

(b− a)m+j

2m+j+1 Lm+j−1δ[a,b](lu0) =
(b− a)m+1

2m+2 Lm
k−1

∑
i=0

(b− a)i

2i Liδ[a,b](lu0)

≤ (b− a)m+1

2m+2 Lm
∞

∑
i=0

(b− a)i

2i Liδ[a,b](lu0) (39)

fo any k ≥ 1. The assumption imposed on l ensures that lu0 ∈ L∞([a, b],Rn) and, therefore,
δ[a,b](lu0) < +∞. Due to assumption (20), we have 2−m(b− a)mLm → 0 as m→ ∞ and the Neumann
series ∑∞

m=0 2−m(b− a)mLm converges. It then follows from (39) that {um(·, ξ, η) : m ≥ 0} is a Cauchy
sequence in C([a, b],Rn) and thus converges to u∞(·, ξ, η) uniformly on [a, b] (in fact, due to the
boundedness of D0 and D1, the convergence is also uniform with respect to (ξ, η) ∈ D0 ×D1). Passing
to the limit as m → ∞ in (14), we find that u = u∞(·, ξ, η) is a solution of (15). The proof of the
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uniqueness is standard: if (15) has another solution v, then v− u = Ll(v− u), whence, by virtue of
Lemma 2 and inequalities (19) and (36),

max
t∈[a,b]

|v(t)− u(t)| ≤ b− a
4

δ[a,b](l(v− u)) ≤ b− a
2

ess sup
t∈[a,b]

(l(v− u)(t)) ≤ b− a
2

L max
t∈[a,b]

|v(t)− u(t)|,

and therefore, in view of condition (20), v coincides with u.

6. Some Estimates

Passing to the limit in (39) when k→ ∞ gives the usual estimate

max
t∈[a,b]

|u∞(t, ξ, η)− um(t, ξ, η)| ≤ b− a
4

Qm(1n −Q)−1δ[a,b]((lu0)(·, ξ, η)), (40)

where Q is given by

Q :=
1
2
(b− a)L. (41)

Lemma 4. For all {ξ, ξ̄} ⊂ D0, {η, η̄} ⊂ D1, m ≥ 1 and t ∈ [a, b], the estimates

|um(t, ξ, η)− um(t, ξ̄, η̄)| ≤
m−1

∑
k=0

Qk|u0(t, ξ − ξ̄, η − η̄)|+ b− a
4

Qm−1δ[a,b](lu0(·, ξ − ξ̄, η − η̄)) (42)

and

|um(t, ξ, η)− um(t, ξ̄, η̄)| ≤
m

∑
k=0

Qk max{|η − η̄|, |ξ − ξ̄|} (43)

hold.

Recall that all the inequalities are understood in the componentwise sense. In (43), notation (7)
is used.

Proof. Fix ξ, ξ̄ and η, η̄ and put

w(t) := u0(t, ξ − ξ̄, η − η̄), t ∈ [a, b]. (44)

The proof is carried out by induction. It follows immediately from (13) that

u0(t, ξ, η)− u0(t, ξ̄, η̄) = u0(t, ξ − ξ̄, η − η̄),

and therefore, by virtue of (15) and Lemma 2,

|u1(t, ξ, η)− u1(t, ξ̄, η̄)| = |u0(t, ξ, η)− u0(t, ξ̄, η̄) + (Ll[u0(·, ξ, η)− u0(·, ξ̄, η̄)])(t)|
= |w(t) + (Llw(t)|

≤ |w(t)|+ b− a
4

δ[a,b](lw), (45)
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which means that (42) holds with m = 1. Assume that (42) is satisfied for some arbitrarily fixed m.
Then, by (14), (19), (36) and (41), we have

|um+1(t, ξ, η)− um+1(t, ξ̄, η̄)| = |u0(t, ξ, η)− u0(t, ξ̄, η̄) + (Ll[um(·, ξ, η)− um(·, ξ̄, η̄)])(t)|

≤ |w(t)|+ b− a
4

δ[a,b](l(um(·, ξ, η)− um(·, ξ̄, η̄)))

≤ |w(t)|+ b− a
2

ess sup
s∈[a,b]

|l(um(·, ξ, η)− um(·, ξ̄, η̄))(s)|

≤ |w(t)|+ b− a
2

L max
s∈[a,b]

|um(s, ξ, η)− um(s, ξ̄, η̄)|

≤ |w(t)|+ Q
m−1

∑
k=0

Qk|w(t)|+ b− a
4

QQm−1δ[a,b](lw)

=
m

∑
k=0

Qk|w(t)|+ b− a
4

Qmδ[a,b](lw), (46)

whence, recalling (44), we see that (42) holds for the value m + 1.
Inequality (43) is a consequence of (42). Indeed, according to (13), the graph of every component

u0,i(·, ξ, η) of u0(·, ξ, η) is a straight line segment joining the points (a, ξi) and (b, ηi), whence it
follows that

max
t∈[a,b]

|u0,i(t, ξ, η)| = max{|ξi|, |ηi|}

for all i = 1, 2, . . . , n. Using notation (7), we can rewrite this in the componentwise form

max
t∈[a,b]

|u0(t, ξ, η)| = max{|ξ|, |η|}. (47)

Then, by (44),
|w(t)| ≤ max{|η − η̄|, |ξ − ξ̄|}, t ∈ [a, b]. (48)

Using (42) and taking (19), (36), (48) into account, we get

|um(t, ξ, η)− um(t, ξ̄, η̄)| ≤
m−1

∑
k=0

Qk|w(t)|+ b− a
4

Qm−1δ[a,b](lw)

≤
m−1

∑
k=0

Qk|w(t)|+ b− a
2

Qm−1L max
s∈[a,b]

|w(s)|

≤
m−1

∑
k=0

Qk max{|η − η̄|, |ξ − ξ̄|}+ Qm max{|η − η̄|, |ξ − ξ̄|},

i.e., (43) holds.

Lemma 5. The estimate

|u∞(t, ξ, η)− um(t, ξ̄, η̄)| ≤
m−1

∑
j=0

Qj max{|η − η̄|, |ξ − ξ̄|}

+ Qm max
s∈[a,b]

|u∞(s, ξ, η)− u0(s, ξ̄, η̄)| (49)

holds for all {ξ, ξ̄} ⊂ D0, {η, η̄} ⊂ D1, m ≥ 1 and t ∈ [a, b].
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Proof. According to (14), the function um(·, ξ̄, η̄) satisfies the recurrence relation

um(t, ξ̄, η̄) = u0(t, ξ̄, η̄) + (Llum−1(·, ξ̄, η̄))(t) (50)

and furthermore, by Theorem 1, the limit function u∞(·, ξ, η) satisfies Equation (15):

u∞(t, ξ, η) = u0(t, ξ, η) + (Llu∞(·, ξ, η))(t) (51)

for t ∈ [a, b]. Define w by (44) and put

yj(t) := u∞(t, ξ, η)− uj(t, ξ̄, η̄), t ∈ [a, b], j = 0, 1, . . . , m. (52)

Then, combining (50) and (51), we notice that

ym(t) = w(t) + (Llym−1)(t), t ∈ [a, b]. (53)

The sequential application of (53) gives

ym(t) = w(t) + (Llw)(t) + · · ·+ ((Ll)m−1w)(t) + ((Ll)my0)(t), t ∈ [a, b]. (54)

By analogy to (45), (46), using (19), (36) and (48), we get

|(Llw)(t)| ≤ b− a
4

δ[a,b](lw)

|(Llw)2(t)| ≤ b− a
4

δ[a,b](lLlw) ≤ b− a
2

ess sup
s∈[a,b]

|(lLlw)(s)|

≤ b− a
2

L max
s∈[a,b]

|(Llw)(s)|

= Q max
s∈[a,b]

|(Llw)(s)| ≤ b− a
4

Qδ[a,b](lw)

and, similarly,

|(Llw)j(t)| ≤ b− a
4

Qj−1δ[a,b](lw), t ∈ [a, b], (55)

for j = 1, 2, . . . , m. In view of (48), it follows from (55) that

|(Llw)j(t)| ≤ b− a
4

Qj−1δ[a,b](lw) ≤ b− a
2

Qj−1L max
s∈[a,b]

|w(s)|

≤ Qj max{|η − η̄|, |ξ − ξ̄|}

for 1 ≤ j ≤ m, t ∈ [a, b]. Equality (54) then yields

|ym(t)| ≤
m−1

∑
j=0

Qj max{|η − η̄|, |ξ − ξ̄|}+ Qm max
s∈[a,b]

|y0(s)|,

which in view of (52), coincides with (49).

In view of assumption (20), the second term in (49) involving the unknown u∞(·, ξ, η) tends to
zero with m growing, due to condition (20) and the presence of the multiplier Qm; the difference of
values of um with respect to the parameters is mainly estimated by ∑m−1

j=0 Qj multiplied by the size of
the perturbation. The next lemma provides an alternative estimate of this type.
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Lemma 6. Let {ξ, ξ̄} ⊂ D0, {η, η̄} ⊂ D1, m ≥ 1 be fixed. Then

max
t∈[a,b]

|u∞(t, ξ, η)− um(t, ξ̄, η̄)| ≤ Qm+1(1n −Q)−1 max{|ξ|, |η|}

+
m

∑
j=0

Qj max{|η − η̄|, |ξ − ξ̄|}. (56)

Proof. In view of (19), (36), and (47), it follows from (40) that

max
t∈[a,b]

|u∞(t, ξ, η)− um(t, ξ, η)| ≤ b− a
4

Qm(1n −Q)−12 ess sup
s∈[a,b]

|lu0(·, ξ, η)|

≤ b− a
2

Qm(1n −Q)−1L max
s∈[a,b]

|u0(s, ξ, η)|

= Qm+1(1n −Q)−1 max{|ξ|, |η|}. (57)

Estimating the left-hand term of (67) as

|u∞(t, ξ, η)− um(t, ξ̄, η̄)| ≤ |u∞(t, ξ, η)− um(t, ξ, η)|+ |um(t, ξ, η)− um(t, ξ̄, η̄)|

and using (57) and inequality (43) of Lemma 4, we arrive at (56).

7. Practical Realisation

Theorems 1 and 2 suggest to replace the boundary value problem (1), (2) by the system of 2n
Equation (32). These equations are usually referred to as determining equations because their roots
determine the solutions of the original problem among the solutions of the auxiliary ones (i.e., we obtain
a solution once the values of ξ and η are found). The main difficulty here is the fact that u∞(·, ξ, η)

is known in exceptional cases only and thus system (32), in general, cannot be constructed explicitly.
This complication can be resolved by using the approximate determining systems of the form

∆m(ξ, η) = 0,

h(um(·, ξ, η)) = d,
(58)

where m ≥ 0 is fixed and the function ∆m : D0 × D1 → Rn is given by the formula

∆m(ξ, η) := η − ξ −
∫ b

a
(lum(·, ξ, η))(s)ds−

∫ b

a
q(s)ds (59)

for arbitrary ξ ∈ D0, η ∈ D1. The function ∆m is obtained after m iterations and thus, in contrast to
system (32), Equation (58) involve only functions that are constructed in a finite number of steps.

The uniform convergence of functions (14) to u∞(·, ξ, η) implies that systems (32) and (58) are
close enough to one another for m sufficiently large and, under suitable conditions, the solvability of
the mth approximate determining system (58) can be used to prove that of (32). Existence theorems can
be formulated by analogy to [17] (we do not discuss this kind of statements here). A practical scheme
of analysis of the boundary value problem (1), (2) along these lines can be described as follows.

1. Solve the zeroth approximate determining system

∆0(ξ, η) = 0,

h(u0(·, ξ, η)) = d.
(60)
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This approximate determining system has the simplest form and its root (ξ(0), η(0)) serves as a
rough approximation of the unknown values of (ξ, η). The function

U0(t) := u0(ξ
(0), η(0)), t ∈ [a, b], (61)

is the zeroth approximation of the solution we are looking for. This approximation is always
linear (this is the straight line segment joining the points (a, ξ(0)) and (b, η(0)); see (13)) and its
construction is easy because the iteration is not carried out yet.

2. Analytically construct the function u1(·, ξ, η) according to the recurrence Formula (14), keeping ξ

and η as parameters. Numerically solve the corresponding first approximate determining system

∆1(ξ, η) = 0,

h(u1(·, ξ, η)) = d
(62)

in a neighbourhood of (ξ(0), η(0)) and find its root (ξ(1), η(1)). Substitute the values (ξ(1), η(1))

into (14) for m = 1 and construct the first approximation

U1(t) := u1(ξ
(1), η(1)), t ∈ [a, b]. (63)

3. Choose a certain m0 ≥ 1 and continue by analogy to step 2 for m = 1, 2, . . . , m0 by analytically
constructing the functions um(·, ξ, η), m = 1, 2, . . . , m0. Computer algebra systems are very
helpful for this purpose. Numerically solve every mth approximate determining system in a
neighbourhood of the root of the (m− 1)th one, (ξ(m−1), η(m−1)), m = 1, 2, . . . , m0. Collect the
values (ξ(m), η(m)), m = 1, 2, . . . , m0, into a table, construct the approximations

Um(t) := um(ξ
(m), η(m)), t ∈ [a, b], (64)

for m = 1, 2, . . . , m0, and draw their graphs. By construction, we always have

Um(a) = ξ(m), Um(b) = η(m). (65)

Multiple roots of system (58) usually indicate the existence of multiple solutions of the problem.
In such cases, in order to select a particular one, we specify a suitable neighbourhood when
solving the approximate determining equations numerically.

4. Analyse the results of step 3 and decide whether the computaton should be continued.

The approach involves both the analytic part (construction of iterations with parameters according
to equalities (13) and (14)) and the numerical computation, when the approximate determining
Equation (58) are solved. We can (and, in this approach, are generally encouraged to) start with step 1
without knowing anything about the solvability of the problem, because a hint on the existence of a
solution and its localisation is likely to be obtained in the course of computation.

When analysing the results obtained at step 3, the following main scenarios may be observed:

1. Clear signs of convergence and a good degree of coincidence (Um0 satisfies the set accuracy
requirements; it remains only to check the solvability rigorously as mentioned above).

2. There are signs of convergence but the accuracy requirements are not met (continue the
computation with m = m0 + 1).

3. There are signs of divergence, usually accompanied by failure to solve some of the equations
(either there is no solution or the convergence boundary is trespassed; the scheme is inapplicable).

4. Failure to carry out symbolic computations at a certain point (software or hardware limitations;
some simplifications should be used).
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The main restriction is assumption (20), without which the presented proof fails and the procedure
may diverge. When condition (20) is not satisfied, to exclude scenario 3, the use of the interval division
technique [18] can be suggested, for which purpose the auxiliary two-point conditions of form (9) are
very suitable. In the case of difficulties with symbolic computation, polynomial approximations can be
used by analogy to [19]. We do not discuss these two issues here in more detail.

The accuracy of approximation can be checked by substituting Um into the equation and
computing the residual functions Rm = col(Rm,1, Rm,2, Rm,3) for m = 1, 2, . . . , m0, where

Rm,i(t) := U′m,i(t)− (liUm)(t)− qi(t), i = 1, 2, 3. (66)

By assumption, the operator l in Equation (1) has range among essentially bounded functions and,
hence, one may require the smallness of the values ess supt∈[a,b] |Rm,i(t)|, i = 1, 2, 3.

It follows from inequality (56) of Lemma 6 that the estimate

max
t∈[a,b]

|u∗(t)−Um(t)| ≤ Qm+1(1n −Q)−1 max{|u∗(a)|, |u∗(b)|}

+ (1n −Q)−1 max{|u∗(b)− η(m)|, |u∗(a)− ξ(m)|} (67)

holds for all m ≥ 1, where u∗ is an exact solution of problem (1), (2) (provided it exists), the values
(ξ(m), η(m)) are the roots of the mth approximate determining system (58), and Um is the corresponding
mth approximation (64). In other words, according to (67), the convergence of the roots of approximate
determining equations to the corresponding values of a particular exact solution u∗ at the points a and
b guarantees the approximation of u∗ by Um the quality of which is growing with m.

8. A Numerical Example

To show the practical realisation of the above scheme, let us consider the problem of solving the
system of differential equations with argument deviations

u′1(t) =
1
6

u1(1− t) +
2
3
(t− 1)u3(1− t) + q1(t),

u′2(t) = −βu3

( t
3

)
+ q2(t),

u′3(t) = u2(t)− 16u2(τ(t)) + q3(t), t ∈ [0, 1] ,

(68)

where q1(t) := − 11
12 −

1
72 sin 4t2, q2(t) :=

( β
144 + 8

)
t + β cos( 4

9 t2) + 1
18 , q3(t) := 4(sin 4t2)2 + 2

9 sin 4t2 +
t
6 , τ is the function τ : [0, 1]→ [0, 1] given by the formula

τ(t) :=
1
4
(t + sin 4t2), t ∈ [0, 1],

and β is a positive constant, under the non-local boundary conditions

u1(1) = −
5
12

,
∫ 1

0
u2(s)ds =

979
720

, u3(0) = 1. (69)

The given particular form of the forcing terms q1, q2 and q3 in (68) is chosen for the purpose of checking
explicitly an exact solution, which is known to be

u∗1(t) =
1

12
sin(4(1− t)2) +

t2

12
− t +

1
2

, u∗2(t) = 4t2 +
t

18
− 1

720
, u∗3(t) = cos 4t2 +

t
48

(70)

in this case.
Along with the retarded term containing the deviation t 7→ 1

3 t, the right-hand side of system (68)
involves also terms with the argument reflection t 7→ 1− t and the argument transformation τ for
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which the function t 7→ t− τ(t) has multiple sign changes. The latter two are deviations of mixed type
(i. e., of neither retarded nor advanced type).

System (68) is obviously of type (6) with n = 3, a = 0, b = 1, l12 = l21 = l22 = l31 = l33 = 0,
(l11v)(t) := 1

6 v(1− t), (l13v)(t) := 2
3 (t− 1)v(1− t), (l23v)(t) := −βv( 1

3 t), (l32v)(t) := v(t)− 16v(τ(t))
for t ∈ [0, 1], v ∈ L∞([0, 1],R), while the boundary conditions (69) can be rewritten as (2) with h(u) :=
col
(
u1(1),

∫ 1
0 u2(s)ds, u3(0)

)
and d = col

(
− 5

12 , 979
720 , 1

)
. It is easy to verify that the corresponding

operator l (see formula (5)) satisfies the componentwise inequality (19) for all u ∈ C([0, 1],R3) with
the matrix

L =

 1
6 0 2

3
0 0 β

0 17 0

 .

Since r(L) = max{ 1
6 ,
√

17β}, it follows that condition (20) holds if

β <
4

17
≈ 0.235.

Let us choose, e.g., β := 0.23 and proceed as described in Section 7 (note that condition (20) is
only sufficient; in particular, numerical experiments for larger values of β show that the convergence is
still observed for β ≈ 1.1).

We start from the zeroth approximation defined according to formula (13). The linearity of the
functional differential system (68) and of the boundary conditions (69) implies that the approximate
determining system are linear. To construct the zeroth approximate determining system (60),
one should only substitute (13) into (59) with m = 0. After some comutation we find that, in this
case, (60) has the form

η1 = − 5
12

, ξ3 = 1, ξ2 + η2 =
979
360

,

1
12

η1 −
2
9

η3 +
1
12

ξ1 −
1
9

ξ3 −
S(2)
144
− 11

12
= η1 − ξ1,

− 23
120

ξ3 −
23
600

η3 +
69 C

( 2
3
)

200
+

38941
9600

= η2 − ξ2,

2
(

ξ2 − η2 +
1

18

)
S(2)− C(2

√
2)√

2
− 27

2
ξ2 −

3
2

η2 +
25
12

= η3 − ξ3,

(71)

where S(t) :=
∫ t

0 sin s2 ds and C(t) :=
∫ t

0 cos s2 ds, t ∈ [0, 1], are the Fresnel integrals. System (71)
consists of six equations in six variables ξi, ηi, i = 1, 2, 3, which according to (65), have the meaning of
approximate values of ui(0), ui(1), i = 1, 2, 3. Solving Equation (71), we find its roots

ξ
(0)
1 ≈ 0.63083, ξ

(0)
2 ≈ −0.68261, ξ

(0)
3 = 1,

η
(0)
1 =

5
12

, η
(0)
2 ≈ 3.40206, η

(0)
3 ≈ 0.14388.

(72)

Substituting values (72) into formula (13) according to (61), we obtain the zeroth approximation
U0 = col(U0,1, U0,2, U0,3), whose components U0,i represent the straight line segments joining the

points (0, ξ
(0)
i ) and (1, η

(0)
i ), i = 1, 2, 3. Although this linear approximation is very rough, it still

provides some useful information on the localisation of the solution. On Figure 1, its graph is drawn
together with that of the known exact solution (70). In particular, we have (see also Table 1) that

ξ
(0)
1 − u∗1(0) ≈ 0.194, ξ

(0)
2 − u∗2(0) ≈ −0.681, ξ

(0)
3 − u∗3(0) = 0,

η
(0)
1 − u∗1(1) = 0, η

(0)
2 − u∗2(1) ≈ −0.652, η

(0)
2 − u∗3(1) ≈ 0.777.
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The values of ξ3 and η1 in (71) are determined directly due to the form of the boundary conditions (69).

(a) (b) (c)

Figure 1. The zeroth approximation for problems (68) and (69).

Furthermore, better approximations are obtained when we proceed to higher order iterations
according to formula (14). For problem (68), (69), by virtue of (11), this formula means that the
functions um = col(um,1, um,2, um,3), m ≥ 1, are constructed according to the recurrence relations

um,1(t, ξ, η) = u0,1(t, ξ, η) + q̃1(t) +
1
6

∫ t

0
um−1,1(1− s, ξ, η)ds +

2
3

∫ t

0
(s− 1)um−1,3(1− s, ξ, η)ds

− t
6

∫ 1

0
um−1,1(1− s, ξ, η)ds− 2t

3

∫ 1

0
(s− 1)um−1,3(1− s, ξ, η)ds,

um,2(t, ξ, η) = u0,2(t, ξ, η) + q̃2(t)− β
∫ t

0
um−1,3

( s
3

, ξ, η
)

ds− βt
∫ 1

0
um−1,3

( s
3

, ξ, η
)

ds,

um,3(t, ξ, η) = u0,3(t, ξ, η) + q̃3(t) +
∫ t

0
um−1,2(s, ξ, η)ds− 16

∫ t

0
um−1,2(τ(s), ξ, η)ds

− t
∫ 1

0
um−1,2(s, ξ, η)ds + 16t

∫ 1

0
um−1,2(τ(s), ξ, η)ds

for t ∈ [0, 1], m = 1, 2, . . . , where u0 = col(u0,1, u0,2, u0,3) is the starting approximation (13) and the
functions q̃i, i = 1, 2, 3, are computed by formula (12). A direct computation shows that, in this case, q̃i,
i = 1, 2, 3, have the form

q̃1(t) =
S(2t)− t S(2)

144
,

q̃2(t) =
115223
28800

t2 − 115223
28800

t +
69

200

(
C
(2

3
t
)
− t C

(2
3

))
,

q̃3(t) =
S(2t)− t S(2)

9
+

tC(2
√

2)− C(2
√

2t)√
2

+
t(t− 1)

12
, t ∈ [0, 1].

The values ξi and ηi, i = 1, 2, 3, are kept as parameters when passing to the next iteration. The main
computational work is to construct the functions um,i(·, ξ, η), i = 1, 2, 3, analytically, for which purpose
computer algebra systems are natural to be used.

Here, when carrying out computations according to the above recurrence relations, we use
MAPLE and additionally simplify the task by using polynomial approximations in the spirit of [19]
(more precisely, 9th order polynomials over the Chebyshev nodes; the interpolation nodes used in
the course of computation are marked on the graphs). Carried out without interpolation (i.e., literally
according to Section 7), the procedure allows achieving the required accuracy in a fewer number of
steps but is more computationally expensive.

The rough zeroth approximation is improved when we start the iteration. To obtain the first
approximation (63), we need to construct the functions u1,i(·, ξ, η), i = 1, 2, 3, and the corresponding
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first approximate determining system (62). Constructing system (62) and solving it numerically, we get
the values

ξ
(1)
1 ≈ 0.51673, ξ

(1)
2 ≈ −0.01895, ξ

(1)
3 = 1,

η
(1)
1 = − 5

12
, η

(1)
2 ≈ 4.08704, η

(1)
3 ≈ −0.41232

and, by (63), obtain the first approximation U1 = col(U1,1, U1,2, U1,3) the graph of which is shown on
Figure 2. Checking the residual function R1 corresponding to U1 (Formula (66)) in Figure 3, we see that
already the first approximation provides a reasonable degree of accuracy. Higher order approximations
are obtained by repeating these steps for more iterations.

(a) (b) (c)

Figure 2. The first approximation for problems (68) and (69).

(a) (b) (c)

Figure 3. Residual of the first approximation.

Figure 4 shows the graphs of several further approximations. We can observe that, starting
from the third one, the graphs in fact coincide with one another. The maximal value of the residual
t 7→ U′5(t)− (lU5)(t)− q(t) of the fifth approximation U5 is about 0.008 (see Figure 5). The result
is refined further when we continue the computation with more iterations. In this particular case,
when interpolation is additionally used, this depends also on the number of nodes; increasing it from
9, e.g., to 11, we get the sixth approximation U6 with the residual not exceeding 0.00025 in every
component. This is seen in Figure 6 (especially Figure 6c), where the graphs of the components of Rm,
1 ≤ m ≤ 6, are shown. The graph of U6 does not optically differ from that of U5 presented in Figure 4.

The values ξ(m), η(m) obtained by numerically solving the approximate determining Equation (58)
for 0 ≤ m ≤ 10 (with interpolation on 11 nodes) are collected in Table 1. In the last row of the table,
for the sake of comparison, we give the values u∗i (0), u∗i (1), i = 1, 2, 3, of the exact solution (70).
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The approximations (64) are constructed in an analytic form; e.g., for the above-mentioned U6,
using MAPLE we obtain the explicit formulae

U6,1(t) ≈ −4.042408471 t11 + 20.46952618 t10 − 37.43787653 t9 + 17.54308868 t8 + 38.65671249 t7

− 69.52449717 t6 + 43.70459764 t5 − 5.021255652 t4 − 6.515215520 t3 + 1.878014779 t2

− 0.5643854438 t + 0.4370323501,

U6,2(t) ≈ 0.00004217847108 t11 − 0.0003918694568 t10 + 0.001582265878 t9 − 0.003636034946 t8

+ 0.005193027536 t7 − 0.004701252907 t6 + 0.002625994458 t5 − 0.0008335495560 t4

+ 0.0001241374492 t3 + 3.999981974 t2 + 0.055555553 t− 0.001384503,

U6,3(t) ≈ 69.00767411 t11 − 297.1865115 t10 + 515.3651026 t9 − 495.0362578 t8 + 310.1738752 t7

− 122.453762 t6 + 30.80698530 t5 − 12.71224445 t4 + 0.3960898466 t3

− 0.01470825 t2 + 0.02088904869 t + 1

for all t ∈ [0, 1].
The accuracy of approximation of u∗ by U6 can be verified in Figure 7, where the graphs of the

corresponding error functions t 7→ |U6,i(t)− u∗i (t)|, i = 1, 2, 3, are shown. We can see that the maximal
value of the absolute error does not exceed 10−4.

(a) (b) (c)

Figure 4. Several further approximations for problems (68) and (69).

(a) (b) (c)

Figure 5. Residual of the fifth approximation.
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(a) (b) (c)

Figure 6. Residuals of the first six approximations (11 nodes).

Table 1. Values of the parameters computed from the approximate determining equations with
0 ≤ m ≤ 10 (11 nodes)

m ξ1 ξ2 ξ3 η1 η2 η3

0 0.630827 −0.682613 1 −0.416667 3.40206 0.143882
1 0.516729 −0.0189486 1 −0.416667 4.08704 −0.412343
2 0.486264 0.00196245 1 −0.416667 4.04751 −0.675279
3 0.425443 −0.0020287 1 −0.416667 4.05544 −0.624705
4 0.439424 −0.00126683 1 −0.416667 4.05392 −0.634359
5 0.43643 −0.00141226 1 −0.416667 4.05421 −0.632516
6 0.437032 −0.0013845 1 −0.416667 4.05416 −0.632868
7 0.436914 −0.0013898 1 −0.416667 4.05417 −0.632801
8 0.436937 −0.00138879 1 −0.416667 4.05417 −0.632813
9 0.436932 −0.00138898 1 −0.416667 4.05417 −0.632811

10 0.436933 −0.00138895 1 −0.416667 4.05417 −0.632811
...

...
...

...
...

...
...

∞ 0.436933 −0.00138889 1 −0.416667 4.05417 −0.63281

(a) (b) (c)

Figure 7. Error of the sixth approximation (11 nodes).
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