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Abstract: In this paper, we generalize the orthogonal double covers (ODC) of Kn,n as follows.

The circular intensely orthogonal double cover design (CIODCD) of X =
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A technique to construct ODCs for Cayley graphs has been introduced by Scapellato et al., [11]. It
has been shown that for all (T, H) where T is a 3-regular Cayley graph on an abelian group there is
an ODC, a few well known exceptions apart. Sampathkumar et al. [12] have constructed the cyclic
ODCs of 4-regular circulant graphs. El-Shanawany and El-Mesady [13] have introduced a technique to
construct the CODCs of circulant graphs by several graph classes such as tripartite graphs, complete
bipartite graphs, and disjoint union of K1,2n−10 and butterfly. In [14], a technique for orthogonal labeling
is produced for the corona product of two finite or infinite graph classes such as path, cycle, and star
graphs. In addition, the nonexistence of the orthogonal L-labeling is proved for the corona product of
K2 and an infinite cycle.

For many years, the researchers have interested in the decompositions of graphs into Hamilton
paths, or into Hamilton cycles. Bryant et al., [15] proved that a complete multipartite graph K with n > 1
vertices and m edges can be decomposed into edge-disjoint Hamilton paths if and only if m/(n− 1)
is an integer and the maximum degree of K is at most 2m/(n − 1). In [16], surveys results on cycle
decompositions of complete multipartite graphs were introduced. The authors in [17] reduced the
problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree into
r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one. All the
previous results motivate us to the results of this paper. In this paper, we generalize the ODC of Kn,n to
the circular intensely orthogonal double cover design (CIODCD) of X = Kn, n, . . . , n︸     ︷︷     ︸

m

. Since, the ODCs

are very important in solving many problems in the statistical design and Armstrong databases, then
the generalization of the ODCs to the CIODCD has a very important role in the statistical design theory
and the relational databases. Now, the ODC can be considered as a special case of our generalization.
Then the CIODCD can be utilized to model more general relational databases.

The paper is organized as follows. Section 2 introduces the basic definitions and terminologies
that will be used throughout. Sections 3 and 4 deal with the half and symmetric symmetric starters
matrices, respectively.

2. Basic Definitions and Terminologies

Definition 1. The complete multipartite graph Ka1,...,am is the simple graph on n =
∑m

i=1 ai vertices. The set of
vertices is partitioned into m parts of cardinalities a1, a2, . . . , am; an edge joins two vertices if and only if they
belong to different parts. Thus K1,1,...,1 is the complete graph Kn. The labeling of the vertices of

X � Kn, n, . . . , n︸     ︷︷     ︸
m

is shown in Figure 1. Let us decompose X into

λKn,n,λ =

(
m
2

)
,

where the vertices of the ith Kn,n are labeled by Zn × {s} and

Zn × {t}, i =
{

t i f s = 0,
sm + t mod(s + 1) i f s > 0.

is defined as a
collection T =

{
G00 , G10 , . . . , G(n−1)0

}
∪

{
G01 , G11 , . . . , G(n−1)1

}
of isomorphic spanning subgraphs of X

such that every edge of X appears twice in the collection T,
∣∣∣E(Gi0)∩ E(G j0)

∣∣∣ =
∣∣∣E(Gi1)∩ E(G j1)

∣∣∣ =
0, i , jand

∣∣∣E(Gi0)∩ E(G j1)
∣∣∣ = λ =

(
m
2

)
, i, j ∈ Zn. We define the half starters and the symmetric starters

matrices as constructing methods for the CIODCD of X. Then, we introduce some results as a direct
application to the construction of CIODCD of X by the symmetric starters matrices.

Keywords: multipartite graph; graph decomposition; symmetric starter; covering

1. Introduction

In this paper, we are concerned with the finite, undirected, and simple graphs. Let V(G) and E(G)

denote the sets of vertices and edges of G, respectively. Many situations in various practically motivated
problems and in mathematics and theoretical computer science can be captured by a graph. This simple
structure has very widespread applications. It has several useful applications in operational research,
such as, minimum cost path, and scheduling problems. It is also used in sociology. For example,
to explore rumor spreading using social network analysis software.

An orthogonal double covers (ODC) of Kn,n is a collection H = {G0, G1, . . . , Gn−1, F0, F1, . . . , Fn−1}
of 2n spanning isomorphic subgraphs (called pages) of Kn,n such that:

(i) double cover property: Every edge of Kn,n is in exactly one page of {G0, G1, . . . , Gn−1} and in
exactly one page of {F0, F1, . . . , Fn−1};

(ii) orthogonality property: For i, j ∈ {0, 1, . . . , n− 1} and i , j,
∣∣∣E(Gi)∩ E(G j)

∣∣∣ =
∣∣∣E(Fi)∩ E(F j)

∣∣∣ = 0;
and

∣∣∣E(Gi)∩ E(F j)
∣∣∣ = 1 for all i, j ∈ {0, 1, . . . , n− 1}.

Some problems in statistical design theory [1] and the theory of Armstrong databases [2] are the
motivation of studying the ODCs. ODCs have been investigated for more than 40 years. There is an
extensive literature on the ODCs. The authors in [2,3] introduced the motivation and an overview of
results and problems concerned with the ODCs. In [4,5], the authors have generalized the notion of an
ODC to orthogonal decompositions of complete digraphs. Also, the ODC has been generalized to the
suborthogonal double covers [5,6], and symmetric graph designs [7–10].
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A technique to construct ODCs for Cayley graphs has been introduced by Scapellato et al. [11].
It has been shown that for all (T, H) where T is a 3-regular Cayley graph on an abelian group there is
an ODC, a few well known exceptions apart. Sampathkumar et al. [12] have constructed the cyclic
ODCs of 4-regular circulant graphs. El-Shanawany and El-Mesady [13] have introduced a technique to
construct the CODCs of circulant graphs by several graph classes such as tripartite graphs, complete
bipartite graphs, and disjoint union of K1,2n−10 and butterfly. In [14], a technique for orthogonal labeling
is produced for the corona product of two finite or infinite graph classes such as path, cycle, and star
graphs. In addition, the nonexistence of the orthogonal L-labeling is proved for the corona product of
K2 and an infinite cycle.

For many years, the researchers have interested in the decompositions of graphs into Hamilton
paths, or into Hamilton cycles. Bryant et al., [15] proved that a complete multipartite graph K with n > 1
vertices and m edges can be decomposed into edge-disjoint Hamilton paths if and only if m/(n− 1)
is an integer and the maximum degree of K is at most 2m/(n − 1). In [16], surveys results on cycle
decompositions of complete multipartite graphs were introduced. The authors in [17] reduced the
problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree
into r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one.
All the previous results motivate us to the results of this paper. In this paper, we generalize the
ODC of Kn,n to the circular intensely orthogonal double cover design (CIODCD) of X = Kn, n, . . . , n︸     ︷︷     ︸

m

.

Since, the ODCs are very important in solving many problems in the statistical design and Armstrong
databases, then the generalization of the ODCs to the CIODCD has a very important role in the
statistical design theory and the relational databases. Now, the ODC can be considered as a special case
of our generalization. Then the CIODCD can be utilized to model more general relational databases.

The paper is organized as follows. Section 2 introduces the basic definitions and terminologies
that will be used throughout. Sections 3 and 4 deal with the half and symmetric symmetric starters
matrices, respectively.

2. Basic Definitions and Terminologies

Definition 1. The complete multipartite graph Ka1,...,am is the simple graph on n =
∑m

i=1 ai vertices. The set of
vertices is partitioned into m parts of cardinalities a1, a2, . . . , am; an edge joins two vertices if and only if they
belong to different parts. Thus K1,1,...,1 is the complete graph Kn. The labeling of the vertices of

X � Kn, n, . . . , n︸     ︷︷     ︸
m

is shown in Figure 1. Let us decompose X into

λKn,n,λ =

(
m
2

)
,

where the vertices of the ith Kn,n are labeled by Zn × {s} and

Zn × {t}, i =
{

t i f s = 0,
sm + t mod(s + 1) i f s > 0.

Now, we will generalize the ODC of Kn,n as follows. The circular intensely orthogonal double
cover design (CIODCD) of X is defined as a collection

T =
{
G00 , G10 , . . . , G(n−1)0

}
∪

{
G01 , G11 , . . . , G(n−1)1

}

of isomorphic spanning subgraphs of X that satisfy the following:
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(1) double cover property: every edge of X appears twice in the collection T.
(2) intensely orthogonality property:

∣∣∣E(Gi0)∩ E(G j0)
∣∣∣ =

∣∣∣E(Gi1)∩ E(G j1)
∣∣∣ = 0, i , jand

∣∣∣E(Gi0)∩ E(G j1)
∣∣∣ = λ =

(
m
2

)
, i, j ∈ Zn.

where

E(Gi0)∩ E(G j1) =

{
∪
s,t
(is, jt)

}
=

{
(i0, j1), . . . , (i0, jm−1), (i1, j2), (i1, j3) . . . , (i1, jm−1), . . . , (im−2, jm−1)

}
.

Figure 1. Complete m-partite graph X =
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A technique to construct ODCs for Cayley graphs has been introduced by Scapellato et al., [11]. It
has been shown that for all (T, H) where T is a 3-regular Cayley graph on an abelian group there is
an ODC, a few well known exceptions apart. Sampathkumar et al. [12] have constructed the cyclic
ODCs of 4-regular circulant graphs. El-Shanawany and El-Mesady [13] have introduced a technique to
construct the CODCs of circulant graphs by several graph classes such as tripartite graphs, complete
bipartite graphs, and disjoint union of K1,2n−10 and butterfly. In [14], a technique for orthogonal labeling
is produced for the corona product of two finite or infinite graph classes such as path, cycle, and star
graphs. In addition, the nonexistence of the orthogonal L-labeling is proved for the corona product of
K2 and an infinite cycle.

For many years, the researchers have interested in the decompositions of graphs into Hamilton
paths, or into Hamilton cycles. Bryant et al., [15] proved that a complete multipartite graph K with n > 1
vertices and m edges can be decomposed into edge-disjoint Hamilton paths if and only if m/(n− 1)
is an integer and the maximum degree of K is at most 2m/(n − 1). In [16], surveys results on cycle
decompositions of complete multipartite graphs were introduced. The authors in [17] reduced the
problem of finding an edge-decomposition of a balanced r-partite graph of large minimum degree into
r-cliques to the problem of finding a fractional r-clique decomposition or an approximate one. All the
previous results motivate us to the results of this paper. In this paper, we generalize the ODC of Kn,n to
the circular intensely orthogonal double cover design (CIODCD) of X = Kn, n, . . . , n︸     ︷︷     ︸

m

. Since, the ODCs

are very important in solving many problems in the statistical design and Armstrong databases, then
the generalization of the ODCs to the CIODCD has a very important role in the statistical design theory
and the relational databases. Now, the ODC can be considered as a special case of our generalization.
Then the CIODCD can be utilized to model more general relational databases.

The paper is organized as follows. Section 2 introduces the basic definitions and terminologies
that will be used throughout. Sections 3 and 4 deal with the half and symmetric symmetric starters
matrices, respectively.

2. Basic Definitions and Terminologies

Definition 1. The complete multipartite graph Ka1,...,am is the simple graph on n =
∑m

i=1 ai vertices. The set of
vertices is partitioned into m parts of cardinalities a1, a2, . . . , am; an edge joins two vertices if and only if they
belong to different parts. Thus K1,1,...,1 is the complete graph Kn. The labeling of the vertices of

X � Kn, n, . . . , n︸     ︷︷     ︸
m

is shown in Figure 1. Let us decompose X into

λKn,n,λ =

(
m
2

)
,

where the vertices of the ith Kn,n are labeled by Zn × {s} and

Zn × {t}, i =
{

t i f s = 0,
sm + t mod(s + 1) i f s > 0.

.

Note that

Gxk � G0,1
xk
∪G0,2

xk
∪G0,3

xk
∪ . . .∪G0,m−1

xk
∪G1,2

xk
∪G1,3

xk
∪ . . .∪G1,m−1

xk
∪ . . .∪Gm−2,m−1

xk
, x ∈ Zn, k ∈ Z2,

where the graphs:

G0,1
xk

, G0,2
xk

, G0,3
xk

, . . . , G0,m−1
xk

, G1,2
xk

, G1,3
xk

, . . . , G1,m−1
xk

, . . . , Gm−2,m−1
xk

share some vertices mutually. In Figure 2, a CIODCD of K3,3,3 by G � K0,1
1,3 ∪ P0,2

4 ∪K1,2
1,3 is exhibited.
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Figure 2. CIODCD of K3,3,3 by G � K0,1
1,3 ∪ P

0,2

4 ∪K1,2
1,3 .

3. CIODCDs by Half Starters Matrices

In this section, we will use two half starters matrices to construct CIODCDs of X by two given
graphs G, F ∈ T. These two graphs allow us to introduce later two matrices represent them. That is,
we often consider these two matrices instead of G and F respectively.

Definition 2. Let G be a spanning subgraph of X and a ∈ Zn. Then the graph G + a with

E(G + a) =
{
(us + a, vt + a) : (us, vt) ∈ E(G)

}

is called the a-translate of G. Note that sums and differences are calculated in Zn (i.e., sums and differences are
calculated modulo n).

Definition 3. Let G be a spanning subgraph of X. The length of an edge e = (us, vt) ∈ E(G) is defined by
d(e) = (v− u)i−1 for all u, v ∈ Zn. Note that X has λ classes of edge lengths; one different class for each part
of X.

Definition 4. A spanning subgraph G of X is called a half starter graph with respect to Zn if

(i)
∣∣∣E(G)

∣∣∣ = λn,
(ii) The lengths of all edges in G are mutually different, i.e.,

{
d(e) : e ∈ E(G)

}
= Zn ×Zλ.

As an immediate consequence of the Definition 2 and the Definition 3, the following result can
be introduced.

Lemma 1. If G is a half starter, then the union of all translates of G forms an edge decomposition of

X, i.e.∪a∈Zn E(G + a) = E(X).

Proof. We want to prove that

E(G + a)∩ E(G + b) = ϕ, for all a, b ∈ Zn.

Using contradiction method, let
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E(G + a)∩ E(G + b) ≥ 1 for all a , b ∈ Zn.

Assume (xs, yt) is an edge with length li−1 belongs to the intersection graph

E(G + a)∩ E(G + b).

Then
(xs − a, yt − a) and (xs − b, yt − b)

are two distinct edges in G, both of them have length li−1. This leads to contradiction because G is half
starter. �

In what follows, we will represent a half starter G by λ× n matrix H(G) whose rows are arranged
as follows,

R0,1, R0,2, . . . , R0,m−1, R1,2, R1,3, . . . , R1,m−1, R2,3, R2,4, . . . , R2,m−1, . . . , Rm−2,m−1.

The half starter G can be decomposed into λ bipartite graphs, each one can be generated by a row
in the matrix H, where the bipartite graph between the two sets Zn × {s} and Zn × {t} is generated by
the row Rs,t, the edge set of the bipartite graph between the two sets Zn × {s} and Zn × {t} is

{
((H(i, j + 1))s, (H(i, j + 1) + j)t); j ∈ Zn

}
, i =

{
t i f s = 0,

sm + t mod(s + 1) i f s > 0.

Note that the lengths of the edges of the bipartite graph between the two sets Zn × {s} and Zn × {t}
are indexed by i− 1.

The CIODCD of K3,3,3 in Figure 2 can be represented by the following matrices.

H(G00) =




0 0 0
0 1 1
0 0 0



, H(G10) =




1 1 1
1 2 2
1 1 1



, H(G20) =




2 2 2
2 0 0
2 2 2



,

H(G01) =




0 2 1
0 0 2
0 2 1



, H(G11) =




1 0 2
1 1 0
1 0 2



, H(G21) =




2 1 0
2 2 1
2 1 0



.

Definition 5. Two half starter matrices H(G0) and H(G1) are said to be intensely orthogonal if the elements of
any row in the difference matrix H(G0) −H(G1) are all distinct and equal to Zn.

Theorem 1. If the two half starter matrices H(G0) and H(G1) are intensely orthogonal, then T ={
Gai : a ∈ Zn, i ∈ Z2

}
with Gai = (Gi + a) is a CIODCDs of X.

Proof. Take into account the relation between the ith row of the half starter matrix H(G) and the order
(s, t) that denotes the bipartite subgraph of X between part s and part t. Firstly, from Lemma 1, all edges
(as, bt) ∈ E(X) appear exactly in two subgraphs Gx0 and Gy1 thus the double cover property is done
for all edges of X. Now, let x, y ∈ Zn, and k, l ∈ Z2. Since the ith row in H(G) represents the bipartite
subgraph of X between part s and part t. Then the intensely orthogonality property will be satisfied if

we prove that
∣∣∣∣E(Gxk)∩ E(Gyl

)
∣∣∣∣ = 0 if k = l and x , y, and

∣∣∣∣E(Gxk)∩ E(Gyl
)
∣∣∣∣ = λ if k , l.

First case is satisfied directly from the definition of the construction. But if k , l, let

Gxk = G0,1
xk
∪G0,2

xk
∪G0,3

xk
∪ . . .∪G0,m−1

xk
∪G1,2

xk
∪G1,3

xk
∪ . . .∪G1,m−1

xk
∪ . . .∪Gm−2,m−1

xk
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and
Gyl

= G0,1
yl
∪G0,2

yl
∪G0,3

yl
∪ . . .∪G0,m−1

yl
∪G1,2

yl
∪G1,3

yl
∪ . . .∪G1,m−1

yl
∪ . . .∪Gm−2,m−1

yl
,

then for the first row of A = H(G0) and B = H(G1) we can find exactly one element j where
A(1, j) − B(1, j) = y− x.

Thus
A(1, j) + x = B(1, j) + y,

but this means that there is exactly one edge e where

e = ((A(1, j) + x)0, (A(1, j) + x + j)1) = ((B(1, j) + y)0, (B(1, j) + y + j)1).

Then
e ∈ E(G0,1

0k
+ x) = E(G0,1

xk
).

Also
e ∈ E(G0,1

0l
+ y) = E(G0,1

yl
),

this is verified for the other rows of H(G0) and H(G1), then the intensely orthogonality property is

satisfied and
∣∣∣∣E(Gxk)∩ E(Gyl

)
∣∣∣∣ = λ for more illustration, see (1), (2). �

G00 ≡




G0,1
00

G0,2
00
...

G(m−2),(m−1)
00




, G10 ≡




G0,1
10

G0,2
10
...

G(m−2),(m−1)
10




, . . . , G(n−1)0
≡




G0,1
(n−1)0

G0,2
(n−1)0

...

G(m−2),(m−1)
(n−1)0




(1)

G01 ≡




G0,1
01

G0,2
01
...

G(m−2),(m−1)
01




, G11 ≡




G0,1
11

G0,2
11
...

G(m−2),(m−1)
11




, . . . , G(n−1)1
≡




G0,1
(n−1)1

G0,2
(n−1)1

...

G(m−2),(m−1)
(n−1)1




(2)

4. CIODCDs by Symmetric Starters Matrices

In this section, we will study symmetric starter matrix of CIODCDs of X by a given graph G.
That is, we shall reduce two half starters matrices to one half starter matrix under certain conditions to
construct a symmetric starter matrix.

Definition 6. Let G be a spanning subgraph of X, the subgraph Gu of X with

E(Gu) =
{
((b, a) : (a, b) ∈ E(G)

}

is called symmetric graph of G.

Remark 1. If G is a half starter, then Gu is also a half starter.

Definition 7. A half starter G is called a symmetric starter with respect to Zn if H(G) and H(Gu) are intensely
orthogonal.

Theorem 2. Let n be a positive integer and let G be a half starter of X represented by the matrix H(G). Then G
is a symmetric starter if and only if, for each row Rs,t of H(G),
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{
Rs,t( ji−1) −Rs,t(− ji−1) + ji−1 : ji−1 ∈ Zn

}
= Zn.

Proof. We know that Gu is a half starter and represented by H(Gu). Since (Ru
s,t( ji−1), Ru

s,t( ji−1) +

ji−1) is an edge in E(Gu) we have (Ru
s,t( ji−1) + ji−1, Ru

s,t( ji−1)) is an edge in E(G)

of length − ji−1. Therefore, Rs,t(− ji−1) = Ru
s,t( ji−1) + ji−1 and thus Ru

s,t( ji−1) =

Rs,t(− ji−1) − ji−1. Consequently, H(G) and H(Gu) are intensely orthogonal if and only if{
Rs,t( ji−1) −Ru

s,t( ji−1) = Rs,t( ji−1) − (Rs,t(− ji−1) − ji−1) = Rs,t( ji−1) −Rs,t(− ji−1) + ji−1 : ji−1 ∈ Zn
}

=

Zn. Hence, the double cover and the intensely orthogonality properties are verified, and the CIODCD
of X is constructed. �

For all the following results, the value of

λ =

(
m
2

)
.

Theorem 3. Let m, n ≥ 2 be integers. Then the matrix M(i + 1, j + 1) = i, i ∈ Zλ, j ∈ Zn is a symmetric
starter matrix of a CIODCD of X by

F1 � K0,1
1,n ∪K0,2

1,n ∪ . . .∪Km−2,m−1
1,n︸                             ︷︷                             ︸

λ

.

Proof. Since
M(i + 1, j + 1) = i, i ∈ Zλ, j ∈ Zn,

then for each row of M we have

{
Rs,t( j) −Rs,t(− j) + j : j ∈ Zn

}
=

{
(i) − (i) + j : j ∈ Zn

}
= Zn,

and hence, M is a symmetric starter matrix. The edge set of F1 is

E(F1) =
{
((M(i + 1, j + 1))s, (M(i + 1, j + 1) + j)t), i ∈ Zλ, j ∈ Zn

}
=

{
((i)s, (i + j)t),

where i ∈ Zλ, j ∈ Zn
}
.�

Theorem 4. Let m ≥ 2 be an integer and n ≡ 1mod6 or n ≡ 5mod6. Then the matrix M(i + 1, j + 1) = j, i ∈
Zλ, j ∈ Zn is a symmetric starter matrix of a CIODCD of X by F2 � nK0,1

2 ∪ nK0,2
2 ∪ . . .∪ nKm−2,m−1

2︸                                  ︷︷                                  ︸
λ

.

Proof. Since
M(i + 1, j + 1) = j, i ∈ Zλ, j ∈ Zn,

then for each row of M, we have

{
Rs,t( j) −Rs,t(− j) + j : j ∈ Zn

}
=

{
( j) − (n− j) + j : j ∈ Zn

}
=

{
3 j : j ∈ Zn

}
= Zn,

where gcd(n, 3) = 1, and hence, M is a symmetric starter matrix. The edge set of F2 is

E(F2) =
{
((M(i + 1, j + 1))s, (M(i + 1, j + 1) + j)t), i ∈ Zλ, j ∈ Zn

}
=

{
(( j)s, (2 j)t),

where i ∈ Zλ, j ∈ Zn
}
.�
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Theorem 5. Let m ≥ 2 be an integer and n be a positive integer. Then there is a CIODCD of X by

F3 � nC0,1
4 ∪ nC0,2

4 ∪ . . .∪ nCm−2,m−1
4︸                                  ︷︷                                  ︸

λ

.

Proof. Let the matrix

M(F3) =




0 1 . . . 2n− 1 0 1 . . . 2n− 1
0 1 . . . 2n− 1 0 1 . . . 2n− 1
...

...
...

...
...

...
...

...
0 1 . . . 2n− 1 0 1 . . . 2n− 1



λ×4n

,

then for each row of M(F3) we have

Rs,t( j) −Rs,t(− j) + j =
{

3 j− 2n i f j < 2n,
3 j + 2n i f j ≥ 2n.

Hence, for j ∈ Z4n, we have

Rs,t( j) −Rs,t(− j) + j = 3 j + 2n,

but these elements are mutually different and equal to Z4n. This leads to that M is a symmetric starter
matrix. The edge set of F3 is

E(F3) =
{
(( j)s, (2 j)t), (( j + n)s, (2( j + n))t), (( j + n)s, (2 j)t), (( j)s, (2( j + n))t), j ∈ Zn

}
.

�

For more illustration, let m = 3 and n = 1, then there is a CIODCD of K4,4,4 by C0,1
4 ∪C0,2

4 ∪C1,2
4 .

See Figure 3, where

M(C0,1
4 ∪C0,2

4 ∪C1,2
4 ) =




0 1 0 1
0 1 0 1
0 1 0 1




3×4

.

Figure 3. Symmetric starter of a CIODCD of K4,4,4 by C0,1
4 ∪C0,2

4 ∪C1,2
4 .

Theorem 6. Let q be a prime number. Then there is a CIODCD of X by
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F4 � P0,1
q+1 ∪ P0,2

q+1 ∪ . . .∪ Pm−2,m−1
q+1

︸                               ︷︷                               ︸
λ

.

Proof. Let the matrix

M(F4) =




0 q− 12 q− 22 q− 32 . . . q− (q− 1)2

0 q− 12 q− 22 q− 32 . . . q− (q− 1)2

...
...

...
...

...
...

0 q− 12 q− 22 q− 32 . . . q− (q− 1)2



λ×q

,

then for each row of M(F4) we have
{
Rs,t( j) −Rs,t(− j) + j : j ∈ Zq

}
=

{
(q− j2) − (q− (q− j)2) + j : j ∈ Zq

}
=

{
j : j ∈ Zq

}
= Zq,

and hence, M(F4) is a symmetric starter matrix. The edge set of F4 is

E(F4) =
{
((q− j2)s, (q− j2 + j)t), j ∈ Zq

}
.

�

For more illustration, let m = 3 and q = 5, then there is a CIODCD of K5,5,5 by P0,1
6 ∪ P0,2

6 ∪ P1,2
6 .

See Figure 4, where

M(P0,1
6 ∪ P0,2

6 ∪ P1,2
6 ) =




0 4 1 1 4
0 4 1 1 4
0 4 1 1 4




3×5

.

Figure 4. Symmetric starter of a CIODCD of K5,5,5 by P0,1
6 ∪ P0,2

6 ∪ P1,2
6 .

5. Conclusions

In conclusion, we have generalized the orthogonal double covers (ODCs) of the complete
bipartite graphs to the circular intensely orthogonal double cover design (CIODCD) of balanced
complete multipartite graphs. We have defined the half starters and the symmetric starters matrices as
constructing tools for the CIODCD of balanced complete multipartite graphs. Since, the ODCs are
very important in solving many problems in the statistical design and Armstrong databases, then the
generalization of the ODCs to the CIODCD has a very important role in the statistical design theory
and the relational databases. Now, the ODC can be considered as a special case of our generalization.
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Then the CIODCD can be utilized to model more general relational databases. Finally, some results
have been introduced as a direct application to this generalization.
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Nomenclature

mG m disjoint copies of G
Km The complete graph on m vertices
Pk The path graph on k vertices
Cm The cycle on m vertices

Km,n
The complete bipartite graph on m + n vertices
partitioned into an m-stable set and an n-stable set.

References

1. Hering, F. Block designs with cyclic block structure. Ann. Discrete Math. 1980, 6, 201–214.
2. Demetrovics, J.; Katona, G.O.H. Extremal combinatorial problems in relational database in: Fundamentals of

Computation Theory. Lect. Notes Comput. Sci. 1981, 117, 110–119.
3. Gronau, H.-D.O.F.; Grüttmüller, M.; Hartmann, S.; Leck, U.; Leck, V. On orthogonal double covers of graphs.

Des. Codes Cryptogr. 2002, 27, 49–91. [CrossRef]
4. Granville, A.; Gronau, H.-D.O.F.; Mullin, R.C. On a problem of Hering concerning orthogonal double covers

of Kn. J. Comb. Theory A 1995, 72, 345–350. [CrossRef]
5. Hartmann, S. Orthogonal decompositions of complete digraphs. Graphs Combin. 2002, 18, 285–302. [CrossRef]
6. Hartmann, S. Asymptotic results on suborthogonal G decompositions of complete digraphs.

Discrete Appl. Math. 1999, 95, 311–320. [CrossRef]
7. Schumacher, U. Suborthogonal double covers of complete graphs by stars. Discrete Appl. Math. 1999, 95,

439–444. [CrossRef]
8. Cameron, P.J. SGDs without doubly transitive automorphism group. J. Graph Theory 1999, 32, 229–233.

[CrossRef]
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