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Abstract: In order to solve the problem that the butterfly optimization algorithm (BOA) is prone to low
accuracy and slow convergence, the trend of study is to hybridize two or more algorithms to obtain a
superior solution in the field of optimization problems. A novel hybrid algorithm is proposed, namely
HPSOBOA, and three methods are introduced to improve the basic BOA. Therefore, the initialization
of BOA using a cubic one-dimensional map is introduced, and a nonlinear parameter control strategy
is also performed. In addition, the particle swarm optimization (PSO) algorithm is hybridized with
BOA in order to improve the basic BOA for global optimization. There are two experiments (including
26 well-known benchmark functions) that were conducted to verify the effectiveness of the proposed
algorithm. The comparison results of experiments show that the hybrid HPSOBOA converges quickly
and has better stability in numerical optimization problems with a high dimension compared with
the PSO, BOA, and other kinds of well-known swarm optimization algorithms.

Keywords: butterfly optimization algorithm (BOA); particle swarm optimization (PSO); cubic map;
nonlinear; high dimension

1. Introduction

The butterfly optimization algorithm (BOA) was proposed by Arora and Singh in 2018 [1].
The method and concept of this algorithm was proposed [2] firstly at the 2015 International Conference
on Signal Processing, Computing and Control (2015 ISPCC). After the algorithm was proposed,
the authors have performed many studies on BOA. Arora and Singh [3] proposed an improved
butterfly optimization algorithm with ten chaotic maps for solving three engineering optimization
problems. Arora and Singh [4] proposed a new hybrid optimization algorithm which combines the
standard BOA with Artificial Bee Colony (ABC) algorithm. Arora and Singh [5] used the BOA to
solve the node localization in wireless sensor networks and compared the results with the particle
swarm optimization (PSO) algorithm and firefly algorithm (FA). Arora et al. [6] proposed a modified
butterfly optimization algorithm for solving the mechanical design optimization problems. Singh and
Anand [7] proposed a novel adaptive butterfly optimization algorithm, which a novel phenomenon
of changing the sensory modality of the basic BOA. Sharma and Saha [8] proposed a novel hybrid
algorithm (m-MBOA) to enhance the exploitation ability of BOA with the help of the mutualism phase
of symbiosis organisms search (SOS). Yuan et al. [9] proposed an improved butterfly optimization
algorithm, which is employed for optimizing the system performance that is analyzed based on annual
cost, exergy and energy efficiencies, and pollutant emission reduction. Li et al. [10] proposed an
improved BOA for engineering design problems using the cross-entropy method. A hybrid intelligent

Symmetry 2020, 12, 1800; doi:10.3390/sym12111800 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/11/1800?type=check_update&version=1
http://dx.doi.org/10.3390/sym12111800
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 1800 2 of 27

predicting model was proposed for exploring household CO2 emission mitigation strategies derived
from BOA [11]. Tan et al. [12] proposed an improved BOA to solve the wavelet neural networks problem
based on solutions for elliptic partial differential equations. Malisetti and Pamula [13] proposed a novel
BOA based on quasi opposition for the problem of cluster head selection in wireless sensor network
(WSNs). Sharma et al. [14] proposed a bidirectional butterfly optimization algorithm for solving the
engineering optimization problems. Above the studies of BOA, which are improvement research or
applied research, there is only one paper for a hybrid algorithm with ABC and BOA.

In addition, concerning the optimization algorithms that were proposed, these are mainly
divided into three categories according to their principles, and the famous meta-heuristic algorithm
mainly including evolutionary algorithms: Genetic Algorithm (GA) [15,16], Differential Evolution
(DE) [17]; swarm intelligence algorithms: Particle Swarm Optimization (PSO) [18], Ant Colony
Optimization (ACO) [19], and Artificial Bee Colony (ABC) algorithm [20]; physics-based algorithms:
Gravitational Search Algorithm (GSA) [21], Sine Cosine Algorithm (SCA) [22], and Henry Gas Solubility
Optimization (HGSO) algorithm [23]. In the past ten years, scholars have proposed many new swarm
intelligence optimization algorithms, which are based on the behavior of animals in nature and also
named nature-inspired heuristic algorithms, such as Bat-Inspired Algorithm (BA) [24], Krill herd
(KH) [25], Fruit Fly Optimization Algorithm (FOA) [26], Grey Wolf Optimizer (GWO) [27], Moth-flame
optimization (MFO) algorithm [28], Whale Optimization Algorithm (WOA) [29], Salp Swarm Algorithm
(SSA) [30], Grasshopper Optimization Algorithm (GOA) [31], and Marine Predators Algorithm
(MPA) [32]. For more details, the reader can refer to the papers [33–35], where the recent and popular
algorithms are well reviewed.

The research status of the hybrid algorithm of different intelligent optimization algorithms
and PSO algorithm are introduced. Zhen et al. [36] proposed a new memetic algorithm called
shuffled particle swarm optimization (SPSO), which combines the PSO with the shuffled frog leaping
algorithm (SFLA). Niu and Li [37] proposed a new hybrid global optimization algorithm PSODE
combining PSO with DE. Lai and Zhang [38] proposed a novel hybrid algorithm, which combines
PSO and GA, and the experiment for 23 benchmark problems was also presented. Mirjalili and
Hashim [39] proposed a new hybrid PSOGSA algorithm for function optimization. Wang et al. [40]
proposed a hybrid algorithm based on krill herd and quantum-behaved particle swarm optimization
(QPSO) for benchmark and engineering optimization. Trivedi et al. [41] proposed a novel hybrid
PSO-DA algorithm, which combined the PSO algorithm with the dragonfly algorithm (DA) for global
numerical optimization. Trivedi et al. [42] proposed a novel PSOWOA for the global numerical
optimization problems. Laskar et al. [43] proposed a new hybrid HWPSO algorithm for electronic
design optimization problems according to the studies of hybrid algorithms with PSO and other
meta-heuristic algorithms. In addition, the structure of PSO algorithm and BOA has certain similarities,
and it is meaningful for a novel hybrid algorithm of PSO with BOA to be studied.

For the research of chaotic theory and chaotic attractors of nonlinear control systems, a general
polynomial function was derived for Hopf controlling bifurcations using nonlinear state feedback by
Xu and Chen [44]. Xu et al. [45] analyzed the n-scroll chaotic attractors of modified Chua’s circuit
and proved the chaos of the Chua system. Yu and Lü [46] studied three-dimensional chaotic systems
for Hopf controlling bifurcations in detail. In addition, Yu et al. [47] used the inverse trigonometric
function, tan−1(x), to obtain one-, two-, and three-directional multiscroll integer and fractional order
chaotic attractors, and they analyzed stabilization of the chaotic system with the application of chaos
theory in the improvement of swarm intelligent optimization algorithms [48,49], and it has been
recognized by scholars in the field.

In order to improve the ability of the algorithm for high-dimensional optimization problems that
we proposed, the method for hybrid the meta-heuristic algorithms, which combines the basic PSO and
BOA, and the chaotic theory, is also used in the improved method. In addition, the control parameter
of the power exponent a in BOA is also analyzed in detail, and a nonlinear control strategy is proposed
for adjusting the ability of the global search and local search capabilities of the improved algorithm.
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The rest of this paper is organized as follows: Section 2 presents the basic BOA model. The basic
PSO model is presented in Section 3. In Section 4, a novel HPSOBOA algorithm is proposed, and three
improved strategies are also introduced in detail. Section 5 illustrates the experimental results on
26 high-dimensional optimization problems and the comparison results of two experiments are also
introduced in detail. Finally, conclusion and future studies are summarized in Section 6.

2. The Basic Butterfly Optimization Algorithm (BOA)

The nature-inspired meta-heuristic algorithm is proposed, named BOA [1,2], which simulates the
foraging and mating behavior of the butterfly. One of the main characteristics of BOA different from
other meta-heuristics is that each butterfly has its own unique scent. The fragrance can be formulated
as follows:

fi = cIa (1)

where fi is the perceived magnitude of fragrance, c represents the sensory modality, and I is the
stimulus intensity, and a represents the power exponent based on the degree of fragrance absorption.

Theoretically any value of the sensory morphology coefficient c in the range [0,∞] can be taken.
However, its value is determined by the particularity of the optimization problem in the iterative
process of the BOA. The sensory modality c in the optimal search phase of the algorithm can be
formulated as follows:

ct+1 = ct + [0.025/(ct·Tmax)] (2)

where Tmax is the maximum number of iterations of the algorithm, and the initial value of parameter c
is set to 0.01.

In addition, there are two key steps in the algorithm, they are, respectively, global search phase
and local search phase. The mathematical model of the butterflies’ global search movements can be
formulated as follows:

xt+1
i = xt

i +
(
r2
× gbest − xt

i

)
× fi (3)

where xt
i denotes the solution vector xi of the ith butterfly in t iteration and r means a random number

in [0,1]. Here, gbest is the current best solution found among all the solutions in the current stage.
Particularly, fi represents the fragrance of the ith butterfly. The local search phase can be formulated
as follows:

xt+1
i = xt

i +
(
r2
× xk

i − xt
j

)
× fi (4)

where xt
j and xk

i are jth and kth butterflies chosen randomly from the solution space. If xt
j and xk

i belong
to the same iteration, it means that the butterfly becomes a local random walk. If not, this kind of
random movement will diversify the solution.

Both global and local searches for food and a mating partner by the butterfly in nature can occur.
Therefore, a switch probability p is set to convert the normal global search and the intensive local
search. In each iteration, the BOA randomly generates a number in [0,1], which is compared with
switch probability p to decide whether to conduct a global search or local search.

3. The Basic Particle Swarm Optimization (PSO) Model

PSO algorithm [18] is based on the swarm of birds moving for searching food in a multidimensional
search space. The position and velocity are the important characteristics of PSO, which are used to find
the optimal value.

Each individual is called a particle, and each particle is first initialized with random position and
velocity within the search space. The position of the best global particle in the optimal solution is
as follows:

vt+1
i = w·vt

i + c1·rand1 ×
(
pbest − xt

i

)
+ c2·rand2 ×

(
gbest − xt

i

)
(5)

xt+1
i = xt

i + vt+1 (6)
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where vt+1
i and vt+1 represent the velocity of ith particle at iteration number (t) and (t + 1). Usually,

c1 = c2 = 2, rand1, and rand2 are the random numbers in (0, 1). The w can be calculated as:

w(t) = wmax
−

(
wmax

−wmin
)
·Ti

Tmax
(7)

where wmax = 0.9, and wmin = 0.2, and Tmax represents the maximum number of iterations.

4. The Proposed Algorithm

In this section, a novel hybrid algorithm is proposed, and the initialization of BOA by a cubic
one-dimensional map is introduced, and a nonlinear parameter control strategy is also performed.
In addition, the PSO algorithm is hybridized with BOA in order to improve the basic BOA for
global optimization.

4.1. Cubic Map

Chaos is a relatively common phenomenon in nonlinear systems. The basic cubic map [50] can be
calculated as follows:

zn+1 = αz3
n − βzn (8)

where α and β represent the chaos factors, and when β in (2.3, 3), the cubic map is chaotic. When α = 1,
the cubic map is in the interval (−2, 2), and the sequence in (−1, 1) with α = 4. The cubic map can also be:

zn+1 = ρzn
(
1− z2

n

)
(9)

where the ρ is control parameter. In Equation (8), the sequence of the cubic map is in (0, 1), and when
ρ = 2.595, the chaotic variable zn generated at this time has better ergodicity. A graphical presentation
of the cubic map for 1000 iterations is in Figure 1.
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Figure 1. Visualization of implemented cubic map with ρ in (1.5, 3) and ρ = 2.595, respectively.

In Figure 1, it can be seen that the chaotic map can distribute the population of butterflies to the
random value in the interval (0, 1) during the search phase.

We propose the cubic map to initialize the position of the algorithm, and in order to ensure that
the initialized interval is in (0, 1), the z (0) of cubic map is set to 0.315 in the proposed algorithm.

4.2. Nonlinear Parameter Control Strategy

From Equations (1), (3), and (4), we can see that the power exponent a plays an important role in
BOA’s ability to find the best optimization. When a = 1, it means that no scent is absorbed—that is,
the scent emitted by a specific butterfly is perceived by other butterflies—which means that the search
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range will be narrowed and the local exploration ability of the algorithm will be improved. When a = 0,
it means that the fragrance emitted by any butterfly cannot be perceived by other butterflies, so the
group will expand the search range—that is, improve the global exploration ability of the algorithm.
However, a = 0.1 in basic BOA, and taking a as a fixed value cannot effectively balance the global and
local search capabilities. Therefore, we propose a nonlinear parameter control strategy as:

a(t) = a f irst −
(
a f irst − a f inal

)
· sin (

π
µ
(

t
Tmax

)
2
) (10)

where a f irst and a f inal represent the initial value and final value of parameter a, µ is tuning parameter,
and Tmax represents the maximum number of iterations. In this paper, µ = 2, Tmax = 500, a f irst = 0.1,
and a f inal = 0.3.

It can be seen from Figure 2a that for the intensity indicator coefficient a, the nonlinear control
strategy based on the sine function proposed in this paper has a larger slope in the early stage, which can
speed up the algorithm’s global search ability. The mid-term slope is reduced, which is convenient for
entering a local search. The later slope is gentle to allow the algorithm to search for the optimal solution.
Therefore, it can effectively balance the global search and local search capabilities of the algorithm.
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Figure 2. Variation curve of different intensity coefficients and convergence curve of test function.
(a) Two control parameter strategies, (b) Convergence curve of Schwefel 1.2, (c) Convergence curve of
Schwefel 1.2 with Dim = 100 for different parameter values setting.

From Figure 2, It can be seen from (b) that the convergence curve of improved BOA with the
nonlinear parameter control strategy is better than the basic BOA in the optimal test of Schwefel 1.2
function. The curve has many turning points, indicating that the improved algorithm has the ability to
jump out of the global optimum from Figure 2b.
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The results of the main controlling parameter µ values of parameter a are shown in Figure 2c.
As the value of parameter µ increases, the effect of the improvement strategy gradually worsens.
It can be seen from (c) that the convergence curve of improved BOA with µ = 2 is best in the seven
convergence curves. When µ ≥ 4, the convergence curve is worse than the original BOA.

4.3. Hybrid BOA with PSO

In this section, a novel hybrid PSOBOA is proposed, which is a combination of separate PSO
and BOA. The major difference between PSO and BOA is how new individuals are generated.
The drawback of the PSO algorithm is the limitation to cover a small space for solving high-dimensional
optimization problems.

In order to combine the advantages of the two algorithms, we combine the functionality of both
algorithms and do not use both algorithm one after another. In other words, it is heterogeneous because
of the method involved to produce the final results of the two algorithms. The hybrid is proposed
as follow:

Vt+1
i = w·Vt

i + C1·r1 ×
(
pbest −Xt

i

)
+ C2·r2 ×

(
gbest −Xt

i

)
(11)

where C1 = C2 = 0.5, and w can be also calculated by Equation (7), r1 and r2 are the random number
in (0, 1).

Xt+1
i = Xt

i + Vt+1 (12)

In addition, the mathematical model of the global search phase and local search phase in the basic
BOA, which can be calculated by Equations (3) and (4). However, the global search phase of the hybrid
PSOBOA can be formulated as follows:

Xt+1
i = w·Xt

i +
(
r2
× gbest −w·Xt

i

)
× fi (13)

The local search phase of the hybrid PSOBOA can be formulated as follows:

Xt+1
i = w·Xt

i +
(
r2
×Xk

i −w·Xt
j

)
× fi (14)

where Xk
i and Xt

j are jth and kth butterflies chosen randomly from the solution space, respectively.
The pseudo-code of hybrid PSOBOA is shown in Algorithm 1.

Algorithm 1. Pseudo-code of hybrid PSO with BOA (PSOBOA)

1. Generate the initialize population of the butterflies Xi (i = 1, 2, . . . , n) randomly
2. Initialize the parameter r1, r2, C1 and C2
3. Define senser modality c, power exponent a and switch probability p
4. Calculate the fitness value of each butterflies
5. While t = 1: the max iterations
6. For each search agent
7. Update the fragrance of current search agent by Equation (1)
8. End for
9. Find the best f
10. For each search agent
11. Set a random number r in [0,1]
12. If r < p then
13. Move towards best position by Equation (13)
14. Else
15. Move randomly by Equation (14)
16. End if
17. End for
18. Update the velocity using Equation (11)
19. Calculate the new fitness value of each butterflies
20. If fnew < best f



Symmetry 2020, 12, 1800 7 of 27

21. Update the position of best f using Equation (12)
22. End if
23. Update the value of power exponent a
24. t = t + 1
25. End while
26. Return the best solution and its fitness value

4.4. The Proposed HPSOBOA

In order to combine the advantages of the three improvement strategies proposed in this paper,
a novel hybrid HPSOBOA is proposed in this section, which is a combination of the cubic map for the
initial population, nonlinear parameter control strategy of power exponent a, PSO algorithm, and BOA.

The pseudo-code of novel HPSOBOA is shown in Algorithm 2.

Algorithm 2. Pseudo-code of novel HPSOBOA

1. Generate the initialize population of the butterflies Xi (i = 1, 2, . . . , n) using cubic map
2. Initialize the parameter r1, r2, C1 and C2 and switch probability p
3. Define senser modality c and the initial value of power exponent a
4. Calculate the fitness value of each butterflies
5. While t = 1: the max iterations
6. For each search agent
7. Update the fragrance of current search agent by Equation (1)
8. End for
9. Find the best f
10. For each search agent
11. Set a random number r in [0,1]
12. If r < p then
13. Move towards best position by Equation (13)
14. Else
15. Move randomly by Equation (14)
16. End if
17. End for
18. Update the velocity using Equation (11)
19. Calculate the new fitness value of each butterflies
20. If fnew < best f
21. Update the position of best f using Equation (12)
22. End if
23. Update the value of power exponent a using Equation (10)
24. t = t + 1
25. End while
26. Output the best solution

5. Experiments and Comparison Results

In this section, we choose the 26 high-dimensional test functions from CEC benchmark functions,
and the name, range, type, and theoretical optimal value of the test functions are shown in Table 1.
Then, two experiments are performed with ten algorithms, including improved BOA, novel BOAs
in this paper, and other swarm algorithms or natural science-based algorithms. The performance of
experiment 1 was compared through experimental data, which were compared with six algorithms by
six benchmark functions in dimensions 100 and 300, respectively. Then, the performance of experiment
2 was, respectively, compared with the ten algorithms by 26 high-dimensional test functions in Dim = 30.
Finally, the statistical methods were conducted, and the boxplots for the 30 times fitness of 26 test
functions were also compared.
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Table 1. High-dimensional test functions.

Name Formula of Functions Dim Range Type f min

Sphere F1(x) =
Dim∑
i=1

x2
i 30 [−100,100] U 0

Schwefel 2.22 F2(x) =
Dim∑
i=1
|xi|+

Dim∏
i=1
|xi| 30 [−10,10] U 0

Schwefel 1.2 F3(x) =
Dim∑
i=1

 i∑
j=i

x j

2

30 [−100,100] U 0

Schwefel 2.21 F4 = max{|xi|, 1 ≤ i ≤ Dim} 30 [−10,10] U 0

Step F5 =
Dim∑
i=1

(xi + 0.5)2 30 [−10,10] U 0

Quartic F6(x) =
Dim∑
i=1

Dim·x2
i + rand(0, 1) 30 [−1.28,1.28] U 0

Exponential F7 = exp
(
0.5

Dim∑
i=1

xi

)
30 [−10,10] U 0

Sum power F8 =
Dim∑
i=1
|xi|

(i+1) 30 [−1,1] U 0

Sum square F9(x) =
Dim∑
i=1

(
Dim·x2

i

)
30 [−10,10] U 0

Rosenbrock F10(x) =
Dim∑
i=1

(
100

(
xi+1 − x2

i

)
+ (xi − 1)2

)
30 [−5,10] U 0

Zakharov F11(x) =
Dim∑
i=1

x2
i +

(
Dim∑
i=1

0.5ixi

)2

+

(
Dim∑
i=1

0.5ixi

)4
30 [−5,10] U 0

Trid F12(x) = (xi − 1)2 +
Dim∑
i=1

i·
(
2x2

i − xi−1
)2

30 [−10,10] U 0

Elliptic F13(x) =
Dim∑
i=1

(
106

)(i−1)/(Dim−1)
·x2

i 30 [−100,100] U 0

Cigar F14(x) = x2
1 + 106

Dim∑
i=2

x2
i 30 [−100,100] U 0

Rastrigin F15(x) =
Dim∑
i=1

[
x2

i − 10 cos(2πxi) + 10
]

30 [−5.12,5.12] M 0

NCRastrigin
F16(x) =

Dim∑
i=1

[
y2

i − 10 cos(2πyi) + 10
]
,

yi =

{
xi, , |xi| < 0.5

round(2xi)/2, |xi| > 0.5

30 [−5.12,5.12] M 0
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Table 1. Cont.

Name Formula of Functions Dim Range Type f min

Ackley F17(x) = −20 exp

−0.2

√
1

Dim

Dim∑
i=1

x2
i

+ exp
(

1
Dim

Dim∑
i=1

cos(2πxi)

)
+ 20 + exp(1) 30 [−50,50] M 0

Griewank F18(x) = 1
4000

Dim∑
i=1

x2
i −

Dim∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600,600] M 0

Alpine F19(x) =
Dim∑
i=1

∣∣∣xi· sin(xi) + 0.1xi
∣∣∣ 30 [−10,10] M 0

Penalized 1

F20(x) = π
Dim

{
Dim−1∑

i=1
(yi − 1)2

[
1 + 10sin2(πyi+1)

]
+ (yDim−1)

2 + 10sin2(πy1)

}
+

Dim∑
i=1

u(xi, 10, 100, 4)

yi = 1 + (xi + 1)/4, uyi,a,k,m =


k(xi − a)m, xi > a

0,−a ≤ xi ≤ a
k(−xi − a)m, xi < a

30 [−100,100] M 0

Penalized 2
F21(x) = 1

10

{
sin2(πx1) +

Dim−1∑
i=1

(xi − 1)2
[
1 + sin2(3πxi+1)

]
+ (xDim−1)

2
(
1 + sin2(2πxi+1)

)}
+

Dim∑
i=1

u(xi, 5, 100, 4)
30 [−100,100] M 0

Schwefel F22(x) =
Dim∑
i=1

∣∣∣∣xi· sin
(√
|xi|

)∣∣∣∣ 30 [−100,100] M 0

Levy F23(x) = sin2(3πxi) +
Dim−1∑

i=1
(xi − 1)2

[
1 + sin2(3πxi+1)

]
+ |xDim − 1|·

[
1 + sin2(2πxDim)

]
30 [−10,10] M 0

Weierstrass F24(x) =
Dim∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(xi + 0.5)

)])
−Dim·

kmax∑
k=0

[
ak cos

(
2πbk
·0.5

)]
, a = 0.5, b = 3, kmax = 20 30 [−1,1] M 0

Solomon F25(x) = 1− cos

2π

√
Dim∑
i=1

x2
i

+ 0.1

√
Dim∑
i=1

x2
i

30 [−100,100] M 0

Bohachevsky F26(x) =
Dim∑
i=1

[
x2

i + 2x2
i+1 − 0.3·cos(3πxi)

]
30 [−10,10] M 0

where U represents unimodal, and M represents multimodal.
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5.1. Numerical Optimization Funtions and Experiments

The experiments were carried out on the same experimental platform. The results of all the
algorithms were compared using MATLAB 2018a installed over Windows 10 (64 bit), Intel (R) Core
(TM) i5-10210U, and @2.11G with 16.0GB of RAM.

5.1.1. The 26 Test Functions

The properties of unimodal and multimodal benchmark functions for numerical optimization,
which are also high-dimensional test functions, are listed in Table 1, where Dim indicates the dimension
of the function, and Range is the boundary of the function’s search space. These functions are used to
test the performance of the algorithms.

5.1.2. Experiment 1: Comparison with BOA, CBOA, PSOBOA, HPSOBOA, LBOA, and IBOA

In order to analyze the effectiveness of the improvement strategies proposed in this paper,
the comparison experiment for BOA [1], CBOA, PSOBOA, HPSOBOA, LBOA [5], and IBOA [9] was
designed for six high-dimensional functions from Table 1 with Dim = 100 and Dim = 100 as experiment 1.
Additionally, there are three unimodal problems and three multimodal problems. The CBOA combines
the basic BOA with the cubic map and nonlinear control strategy of the power exponent a. The hybrid
PSOBOA just combines the basic BOA with PSO algorithm, the novel HPSOBOA is a combination of
three improvement strategies in Section 4. In addition, two improved BOAs are also compared in this
experiment; LBOA [5] was proposed by Arora and Singh, which was used in the improved algorithm
to solve the node localization in wireless sensor networks in 2017. The IBOA [9] was proposed by
Yuan et al., which was employed for optimizing the system performance that was analyzed based on
annual cost, exergy and energy efficiencies, and pollutant emission reduction in 2019.

5.1.3. Experiment 2: Comparison with Other Swarm Algorithms

In order to prove the novel hybrid algorithm superior to other swarm algorithms, the experiment 2
was designed for 26 benchmark functions with Dim = 30. There are ten algorithms in this experiment,
and we chose four swarm intelligence optimization algorithms besides the six algorithms in the
experimental one. The four swarm algorithms including PSO [18], GWO [27], SCA [22], and MAP [32]
were proposed in different years, and their principles are also different. The PSO and GWO algorithms
simulate the behavior of animals in nature. The SCA is a physics-based algorithm, which moves
towards the best solution using a mathematical model based on sine and cosine functions. The MPA is
based on the widespread foraging strategy, namely Lévy and Brownian movements in ocean predators
along with optimal encounter rate policy in the bio-logical interaction between predator and prey.

5.1.4. Performance Measures

In order to analyze the performances of the algorithms, three criteria of different swarm algorithms
are considered, including the Mean (Avg), the Standard deviation (Std), and the Success Rate (SR).
Here, we will use the Mean which is defined as:

Avg =
1
m

m∑
i=1

Fi (15)

where m is the number of optimization test runs, and Fi is the best fitness value.
The Standard deviation (Std) is defined as follows:

Std =

√√
1
m

m∑
i=1

(Fi −Avg)2 (16)
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The Success Rate (SR) is defined as follows:

SR =
msu

mall
× 100% (17)

where mall is the total number of optimization test runs, and msu is the times of the algorithm successfully
reached to the specified value that ε < 10−15 is called the specified value.

5.2. Comparison of the Parameter Settings of Ten Algorithms

In the experiments, ten comparison algorithms were selected, namely, BOA [1], CBOA, PSOBOA,
HPSOBOA, LBOA [5], IBOA [9], PSO [18], GWO [27], SCA [22], and MPA [32]. The parameter settings
of the ten algorithms are shown in Table 2. In addition, the population number of each algorithm is
set to 30, and the max iteration is set to 500. Each algorithm is run for 30 times, and the Mean (Avg),
Standard deviation (Std), Success Rate (SR), and Friedman rank [51] of the results are all taken in the
two experiments.

Table 2. Parameter settings for algorithms.

NO. Algorithms Population Size Parameter Settings

1
Butterfly

Optimization
Algorithm (BOA)

30 a = 0.1, c(0) = 0.01, p = 0.6

2

Butterfly
Optimization

Algorithm with
Cubic map (CBOA)

30 afirst = 0.1, afinal = 0.3, c(0) = 0.01, p = 0.6,
x(0) = 0.315, ρ = 0.295

3 PSOBOA 30 a = 0.1, c(0) = 0.01, p = 0.6, c1 = c2 = 0.5

4
Hybrid PSO with

BOA and Cubic map
(HPSOBOA)

30 afirst = 0.1, afinal = 0.3, c(0) = 0.01, p = 0.6,
x(0) = 0.315, ρ = 0.295, c1 = c2 = 0.5

5

Butterfly
Optimization

Algorithm with Lévy
flights (LBOA)

30 a = 0.1, c(0) = 0.01, p = 0.6, λ = 1.5

6
Improved Butterfly

Optimization
Algorithm (IBOA)

30 a(0) = 0.1, c(0) = 0.01, p = 0.6, r(0) = 0.33,
µ = 4

7 Particle Swarm
Optimization (PSO) 30 c1 = c2 = 2, Vmax = 1, Vmin = −1,

ωmax = 0.9, ωmin = 0.2

8 Grey Wolf Optimizer
(GWO) 30 afirst = 2, afinal = 0

9 Sine Cosine
Algorithm (SCA) 30 a = 2, r1(0) = 2

10 Marine Predators
Algorithm (MPA) 30 a = 0.1, c(0) = 0.01, p = 0.6

5.3. Results of Experiment 1

For the results of experiment 1, in order to analyze the robustness of the hybrid algorithm by three
improved control strategies with other swarm intelligence algorithms, the convergence curves for six
benchmark functions (Dim = 100) plots are shown in Figure 3.

It can be verified from the convergence curve that the proposed HPSOBOA converges faster
than the other algorithms from Figure 3. The results show that the improved algorithm based on
the three improvement strategies in this paper can effectively improve the convergence trend of the
basic BOA when Dim = 100. From Figures 3 and 4a–f, it can be seen that the proposed HPSOBOA for
those functions has a better convergence than the original BOA except the Schwefel 1.2 function when
Dim = 300.
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Figure 3. Convergence curve for six algorithms with Dim = 100; the six test functions’ names are
Schwefel 1.2, Sumsquare, Zakharov, Rastrigin, Ackley, and Alpine, respectively.

In order to analyze the robustness of the hybrid HPSOBOA by three improved control strategies
with other five algorithms, the dimension of the six optimization problems is set to 300, and the
convergence curves for six benchmark functions plots are shown in Figure 4.
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Figure 4. Convergence curve for six algorithms with Dim = 300; the six test functions’ names are
Schwefel 1.2, Sumsquare, Zakharov, Rastrigin, Ackley, and Alpine, respectively. (a) Schwefel 1.2,
(b) Sumsquare, (c) Zakharov, (d) Rastrigin, (e) Ackley, (f) Alpine.

Figure 5 shows the box plots of optimization results of six high-dimensional problems by the six
algorithms. The optimization result of the hybrid HPSOBOA is better than other algorithms from
Figures 3–5.
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Figure 5. Boxplot for the 30 times fitness of six test functions with Dim = 100 and Dim = 300. (a) the three
functions’ names are Schwefel 1.2, Sumsquare and Zakharov with Dim = 100; (b) the three functions’
names are Rastrigin, Ackley, and Alpine Dim = 100; (c) the three functions’ names are Schwefel
1.2, Sumsquare, and Zakharov with Dim = 300; (d) the three functions’ names are Rastrigin, Ackley,
and Alpine Dim = 300.

In addition, statistical tests are essential to check significant improvements by novel algorithms
over others, which were proposed. The Friedman rank test [51] was applied on the mean solutions,
we used this method to compare the improved algorithms by different control strategies. The Avg-rank
and overall rank are shown in Table 3. From the Friedman rank, the HPSOBOA outperforms all the
comparison algorithms on six numerical optimization problems (Schwefel 1.2, Sumsquare, Zakharov,
Rastrigin, Ackley, and Alpine), and the order of six algorithms with Dim = 100 is HPSOBOA > PSOBOA
> IBOA > LBOA > CABOA > BOA. However, when the Dim = 300, the order of six algorithms is that
HPSOBOA > PSOBOA > IBOA > CABOA > LBOA > BOA.

From the results of the analysis, we can see that although the order of HPSOBOA is better than
others, the IBOA with chaotic theory for improving the control parameters also performed well.
Thus, different one-dimensional chaotic maps can also have a good performance for improving the
basic BOA.

5.4. Results of Experiment 2

In experiment 2, the performance of the proposed algorithm was compared with the other
optimization algorithms using the 26 test functions with Dim = 30. The statistical results include the
Mean (Avg), the Standard deviation (Std), the Success Rate (SR), Friedman rank test [51], and Wilcoxon
rank-sum test [52] because the statistical test is a significance method to analyze the improved algorithm,
and these comparison results are presented in Tables 4–8.
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Table 3. Optimization comparison results for 100-dimensional and 300-dimensional functions.

Functions
BOA CABOA PSOBOA HBOAPSO LBOA IBOA BOA CABOA PSOBOA HBOAPSO LBOA IBOA

Dim = 100 Dim = 300

Schwefel 1.2

Worst 8.23 ×
10−11

3.16 ×
10−18

6.40 ×
10−9

2.89 ×
10−207

1.67 ×
10−11

9.22 ×
10−29

9.21 ×
10−11

3.95 ×
10−27

4.06 ×
10−9

2.65 ×
10−76

2.56 ×
10−11

4.53 ×
10−29

Best 5.68 ×
10−11

1.48 ×
10−30

4.03 ×
10−287

7.12 ×
10−218

6.56 ×
10−14

9.39 ×
10−34

6.14 ×
10−11

6.44 ×
10−41

4.93 ×
10−285

4.57 ×
10−274

3.27 ×
10−13

2.82 ×
10−32

Avg 6.95 ×
10−11

1.12 ×
10−19

2.13 ×
10−10

2.32 ×
10−207

4.43 ×
10−12

4.34 ×
10−30

7.49 ×
10−11

1.32 ×
10−28

1.35 ×
10−10

8.85 ×
10−78

3.46 ×
10−12

2.73 ×
10−30

Std 6.15 ×
10−12

5.76 ×
10−19

1.17 ×
10−9 0.00 × 100 4.29 ×

10−12
1.68 ×
10−29

7.44 ×
10−12

7.20 ×
10−28

7.41 ×
10−10

4.85 ×
10−77

4.86 ×
10−12

8.16 ×
10−30

rank 5.97 3.97 1.97 1.17 4.97 2.97 5.97 2.80 1.87 1.63 4.97 3.77

SR/% 0.00 100.00 96.67 100.00 0.00 100.00 0.00 100.00 96.67 100.00 0.00 100.00

Sumsquare

Worst 1.07 ×
10−10

2.33 ×
10−12

2.98 ×
10−9

5.82 ×
10−20

1.16 ×
10−11

1.35 ×
10−29

1.06 ×
10−10

2.50 ×
10−12

5.21 ×
10−9

8.92 ×
10−24

1.18 ×
10−11

4.98 ×
10−30

Best 6.71 ×
10−11

4.45 ×
10−19

3.42 ×
10−294

3.47 ×
10−294

1.34 ×
10−14

9.55 ×
10−34

7.33 ×
10−11

1.00 ×
10−16

9.50 ×
10−272

1.35 ×
10−292

2.87 ×
10−15

5.72 ×
10−33

Avg 8.63 ×
10−11

2.14 ×
10−13

1.01 ×
10−10

1.94 ×
10−21

3.20 ×
10−12

1.35 ×
10−30

8.95 ×
10−11

1.93 ×
10−13

1.98 ×
10−10

2.97 ×
10−25

3.03 ×
10−12

1.01 ×
10−30

Std 8.78 ×
10−12

4.62 ×
10−13

5.43 ×
10−10

1.06 ×
10−20

2.80 ×
10−12

2.71 ×
10−30

8.84 ×
10−12

4.82 ×
10−13

9.56 ×
10−10

1.63 ×
10−24

3.64 ×
10−12

1.20 ×
10−30

rank 5.97 3.93 1.90 1.43 4.93 2.83 5.93 3.90 1.70 1.77 4.90 2.80

SR/% 0.00 43.33 93.33 100.00 0.00 100.00 0.00 46.67 90.00 100.00 3.33 100.00

Zakharov

Worst 1.11 ×
10−10

5.43 ×
10−12

2.38 ×
10−5

2.28 ×
10−71

1.95 ×
10−11

2.64 ×
10−29

1.03 ×
10−10

6.45 ×
10−13

2.45 ×
10−7

2.74 ×
10−72

2.04 ×
10−11

2.84 ×
10−29

Best 5.70 ×
10−11

3.06 ×
10−17

2.14 ×
10−294

4.25 ×
10−289

7.01 ×
10−15

4.38 ×
10−33

6.88 ×
10−11

4.94 ×
10−16

7.09 ×
10−293

4.43 ×
10−287

4.80 ×
10−14

8.50 ×
10−33

Avg 8.18 ×
10−11

5.01 ×
10−13

7.95 ×
10−7

7.59 ×
10−73

4.42 ×
10−12

1.57 ×
10−30

8.41 ×
10−11

9.96 ×
10−14

1.60 ×
10−8

9.12 ×
10−74

4.75 ×
10−12

3.43 ×
10−30
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Table 3. Cont.

Functions
BOA CABOA PSOBOA HBOAPSO LBOA IBOA BOA CABOA PSOBOA HBOAPSO LBOA IBOA

Dim = 100 Dim = 300

Std 1.13 ×
10−11

1.21 ×
10−12

4.35 ×
10−6

4.16 ×
10−72

4.89 ×
10−12

4.85 ×
10−30

8.57 ×
10−12

1.61 ×
10−13

6.11 ×
10−8

5.00 ×
10−73

5.45 ×
10−12

6.09 ×
10−30

rank 5.97 3.93 2.30 1.07 4.93 2.80 5.93 3.93 2.07 1.47 4.93 2.67

SR/% 0.00 43.33 86.67 100.00 3.33 100.00 0.00 36.67 86.67 100.00 0.00 100.00

Rastrigin

Worst 4.44 ×
10−7

0.00 ×
100

1.39 ×
10−9 0.00 × 100 0.00 ×

100
0.00 ×

100
2.36 ×
10−7

0.00 ×
100

3.65 ×
10−9 0.00 × 100 0.00 ×

100
0.00 ×

100

Best 0.00 ×
100

0.00 ×
100

0.00 ×
100 0.00 × 100 0.00 ×

100
0.00 ×

100
0.00 ×

100
0.00 ×

100
0.00 ×

100 0.00 × 100 0.00 ×
100

0.00 ×
100

Avg 1.48 ×
10−8

0.00 ×
100

4.65 ×
10−11 0.00 × 100 0.00 ×

100
0.00 ×

100
7.88 ×
10−9

0.00 ×
100

1.22 ×
10−10 0.00 × 100 0.00 ×

100
0.00 ×

100

Std 8.11 ×
10−8

0.00 ×
100

2.55 ×
10−10 0.00 × 100 0.00 ×

100
0.00 ×

100
4.32 ×
10−8

0.00 ×
100

6.67 ×
10−10 0.00 × 100 0.00 ×

100
0.00 ×

100

rank 3.92 3.40 3.48 3.40 3.40 3.40 3.58 3.47 3.55 3.47 3.47 3.47

SR/% 83.33 100.00 96.67 100.00 100.00 100.00 96.67 100.00 96.67 100.00 100.00 100.00

Ackley

Worst 3.23 ×
10−8

1.62 ×
10−8

1.58 ×
10−6 1.85 × 10−8 5.46 ×

10−10
8.88 ×
10−16

4.86 ×
10−8

6.44 ×
10−9

2.67 ×
10−9

2.51 ×
10−12

7.15 ×
10−9

8.88 ×
10−16

Best 1.59 ×
10−9

3.02 ×
10−10

8.88 ×
10−16

8.88 ×
10−16

4.44 ×
10−15

8.88 ×
10−16

2.30 ×
10−8

1.80 ×
10−10

8.88 ×
10−16

8.88 ×
10−16

4.49 ×
10−13

8.88 ×
10−16

Avg 1.34 ×
10−8

3.17 ×
10−9

5.26 ×
10−8

6.38 ×
10−10

4.02 ×
10−11

8.88 ×
10−16

3.38 ×
10−8

2.09 ×
10−9

1.75 ×
10−10

1.33 ×
10−13

5.19 ×
10−10

8.88 ×
10−16

Std 8.14 ×
10−9

3.96 ×
10−9

2.88 ×
10−7 3.38 × 10−9 1.20 ×

10−10
0.00 ×

100
5.63 ×
10−9

1.97 ×
10−9

6.66 ×
10−10

5.21 ×
10−13

1.33 ×
10−9

0.00 ×
100

rank 5.97 4.93 2.10 2.20 3.90 1.90 6.00 4.97 2.08 2.05 4.00 1.90

SR/% 0.00 0.00 96.67 86.67 13.33 100.00 0.00 0.00 90.00 93.33 0.00 100.00
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Table 3. Cont.

Functions
BOA CABOA PSOBOA HBOAPSO LBOA IBOA BOA CABOA PSOBOA HBOAPSO LBOA IBOA

Dim = 100 Dim = 300

Alpine

Worst 1.30 ×
10−10

6.56 ×
10−7

1.80 ×
10−12

9.13 ×
10−41

9.60 ×
10−12

4.41 ×
10−19

7.31 ×
10−10

1.80 ×
10−6

1.04 ×
10−11

8.54 ×
10−23

6.14 ×
10−11

4.97 ×
10−19

Best 2.31 ×
10−11

3.36 ×
10−11

3.11 ×
10−146

9.85 ×
10−136

2.17 ×
10−17

3.81 ×
10−21

5.21 ×
10−11

5.68 ×
10−12

8.46 ×
10−147

3.37 ×
10−131

9.80 ×
10−18

4.96 ×
10−21

Avg 6.94 ×
10−11

2.57 ×
10−8

6.01 ×
10−14

3.18 ×
10−42

9.82 ×
10−13

7.90 ×
10−20

2.67 ×
10−10

6.34 ×
10−8

3.46 ×
10−13

3.00 ×
10−24

7.53 ×
10−12

1.33 ×
10−19

Std 3.01 ×
10−11

1.20 ×
10−7

3.29 ×
10−13

1.67 ×
10−41

2.21 ×
10−12

9.09 ×
10−20

1.76 ×
10−10

3.28 ×
10−7

1.89 ×
10−12

1.56 ×
10−23

1.22 ×
10−11

1.48 ×
10−19

rank 5.00 6.00 1.73 1.37 4.00 2.90 5.77 5.23 1.43 1.73 4.00 2.83

SR/% 0.00 0.00 96.67 100.00 43.33 100.00 0.00 0.00 96.67 100.00 10.00 100.00

Avg.rank 5.464 4.361 2.247 1.772 4.356 2.800 5.531 4.050 2.117 2.019 4.378 2.906

Final rank 6 5 2 1 4 3 6 4 2 1 5 3
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Table 4. Comparison results for 26 test functions with Dim = 30 for ten algorithms.

Functions BOA CABOA PSOBOA HBOAPSO LBOA IBOA PSO GWO SCA MPA

F1
Avg 7.78 × 10−11 1.01 × 10−13 1.68 × 10−10 3.74 × 10−104 3.92 × 10−12 1.61 × 10−30 1.11 × 10−5 6.20 × 10−28 1.39 × 101 4.93 × 10−23

Std 7.67 × 10−12 2.11 × 10−13 9.17 × 10−10 2.05 × 10−103 4.46 × 10−12 3.90 × 10−30 2.12 × 10−5 7.68 × 10−28 2.88 × 101 7.29 × 10−23

F2
Avg 2.23 × 10−8 1.25 × 10−14 4.14 × 10−10 2.63 × 10−22 1.38 × 10−9 5.11 × 10−19 3.35 × 10−3 1.04 × 10−16 1.87 × 10−2 2.99 × 10−13

Std 7.12 × 10−9 2.15 × 10−14 2.27 × 10−9 1.44 × 10−21 2.08 × 10−9 1.73 × 10−18 2.18 × 10−3 8.66 × 10−17 3.66 × 10−2 2.56 × 10−13

F3
Avg 6.34 × 10−11 6.30 × 10−13 8.05 × 10−17 3.04 × 10−71 2.74 × 10−12 6.15 × 10−31 1.23 × 102 7.24 × 10−6 8.03 × 103 1.52 × 10−4

Std 5.70 × 10−12 1.37 × 10−12 4.41 × 10−16 1.67 × 10−70 2.44 × 10−12 1.16 × 10−30 5.98 × 102 1.51 × 10−5 6.30 × 103 3.15 × 10−4

F4
Avg 2.59 × 10−8 2.77 × 10−10 9.39 × 10−8 3.61 × 10−46 2.30 × 10−9 1.36 × 10−19 1.85 × 10−1 8.57 × 10−8 3.77 × 100 3.29 × 10−10

Std 2.58 × 10−9 2.96 × 10−10 5.14 × 10−7 1.97 × 10−45 2.36 × 10−9 1.97 × 10−19 4.62 × 10−2 8.56 × 10−8 1.30 × 100 2.23 × 10−10

F5
Avg 5.17 × 100 8.50 × 10−6 6.47 × 100 4.17 × 10−2 3.52 × 100 4.44 × 100 3.69 × 10−6 6.84 × 10−1 4.85 × 100 1.25 × 10−7

Std 6.09 × 10−1 1.06 × 10−5 3.90 × 10−1 6.41 × 10−2 8.50 × 10−1 8.70 × 10−1 4.74 × 10−6 4.38 × 10−1 7.32 × 10−1 4.78 × 10−7

F6
Avg 2.03 × 10−3 2.00 × 10−3 2.53 × 10−4 2.55 × 10−4 2.10 × 10−3 1.22 × 10−4 7.98 × 10−2 1.69 × 10−3 1.19 × 10−1 1.31 × 10−3

Std 8.70 × 10−4 7.89 × 10−4 3.21 × 10−4 4.00 × 10−4 9.63 × 10−4 8.06 × 10−5 3.14 × 10−2 8.21 × 10−4 1.04 × 10−1 5.47 × 10−4

F7
Avg 1.05 × 10−11 1.48 × 10−62 8.41 × 10−11 1.48 × 10−62 5.23 × 10−20 1.19 × 10−19 0.00 × 100 5.10 × 10−58 1.38 × 10−40 7.18 × 10−66

Std 4.21 × 10−11 6.67 × 10−63 2.94 × 10−10 6.70 × 10−63 1.41 × 10−19 5.94 × 10−19 0.00 × 100 1.71 × 10−57 7.24 × 10−40 7.74 × 10−70

F8
Avg 6.33 × 10−14 6.58 × 10−15 1.42 × 10−17 3.19 × 10−118 7.51 × 10−16 1.32 × 10−36 1.37 × 10−14 2.21 × 10−95 7.27 × 10−5 1.41 × 10−60

Std 3.60 × 10−14 1.19 × 10−14 7.78 × 10−17 1.68 × 10−117 9.49 × 10−16 4.59 × 10−36 4.69 × 10−14 1.20 × 10−94 2.25 × 10−4 5.28 × 10−60

F9
Avg 7.01 × 10−11 2.91 × 10−13 1.87 × 10−16 2.72 × 10−99 2.36 × 10−12 5.60 × 10−31 1.67 × 10−4 1.50 × 10−28 7.67 × 10−1 1.07 × 10−23

Std 7.91 × 10−12 7.08 × 10−13 1.02 × 10−15 1.31 × 10−98 2.76 × 10−12 1.87 × 10−30 3.97 × 10−4 1.96 × 10−28 1.13 × 100 1.36 × 10−23

F10
Avg 2.89 × 101 2.87 × 101 2.90 × 101 2.89 × 101 2.88 × 101 2.89 × 101 2.67 × 101 2.68 × 101 4.19 × 101 2.53 × 101

Std 2.54 × 10−2 1.39 × 10−5 2.16 × 10−2 8.18 × 10−2 3.18 × 10−2 3.40 × 10−2 1.34 × 100 7.02 × 10−1 4.32 × 101 3.86 × 10−1

F11
Avg 6.72 × 10−11 2.37 × 10−14 1.32 × 10−8 3.64 × 10−78 2.78 × 10−12 1.10 × 10−30 9.02 × 10−5 2.24 × 10−28 8.79 × 100 1.09 × 10−23

Std 6.90 × 10−12 4.24 × 10−14 6.84 × 10−8 1.99 × 10−77 2.63 × 10−12 2.90 × 10−30 1.05 × 10−4 3.10 × 10−28 1.74 × 101 2.38 × 10−23

F12
Avg 9.72 × 10−1 4.77 × 10−1 9.91 × 10−1 9.75 × 10−1 9.34 × 10−1 9.71 × 10−1 7.66 × 10−1 6.67 × 10−1 5.86 × 102 6.67 × 10−1

Std 1.14 × 10−2 3.45 × 10−1 5.24 × 10−3 8.45 × 10−2 2.11 × 10−2 7.36 × 10−3 3.39 × 10−1 2.62 × 10−6 2.29 × 103 5.38 × 10−8

F13
Avg 1.16 × 10−20 4.17 × 10−30 6.44 × 10−24 5.73 × 10−92 1.20 × 10−24 3.03 × 10−35 7.70 × 10−77 0.00 × 100 2.43 × 10−96 1.97 × 10−162

Std 6.14 × 10−20 2.18 × 10−29 3.00 × 10−23 3.14 × 10−91 5.29 × 10−24 6.42 × 10−35 3.27 × 10−76 0.00 × 100 1.31 × 10−95 1.09 × 10−161

F14
Avg 6.51 × 10−17 2.24 × 10−23 7.15 × 10−15 1.28 × 10−63 4.71 × 10−18 8.45 × 10−31 7.38 × 10−61 8.59 × 10−201 6.47 × 10−67 1.07 × 10−63

Std 1.39 × 10−16 7.51 × 10−23 3.92 × 10−14 7.04 × 10−63 7.50 × 10−18 2.52 × 10−30 3.81 × 10−60 0.00 × 100 3.37 × 10−66 5.84 × 10−63

F15
Avg 2.51 × 101 0.00 × 100 1.10 × 101 0.00 × 100 0.00 × 100 0.00 × 100 4.56 × 101 3.36 × 100 4.42 × 101 0.00 × 100

Std 6.52 × 101 0.00 × 100 4.22 × 101 0.00 × 100 0.00 × 100 0.00 × 100 1.11 × 101 4.42 × 100 3.71 × 101 0.00 × 100

F16
Avg 9.36 × 101 0.00 × 100 2.00 × 101 0.00 × 100 0.00 × 100 0.00 × 100 4.48 × 101 8.20 × 100 7.08 × 101 1.01 × 10−8

Std 8.04 × 101 0.00 × 100 5.23 × 101 0.00 × 100 0.00 × 100 0.00 × 100 9.04 × 100 5.18 × 100 4.45 × 101 4.72 × 10−8

F17
Avg 1.09 × 10−9 1.84 × 10−9 5.63 × 10−8 8.96 × 10−11 2.34 × 10−12 8.88 × 10−16 1.69 × 10−3 2.79 × 100 2.03 × 101 1.06 × 10−3

Std 8.16 × 10−10 1.76 × 10−9 3.06 × 10−7 4.73 × 10−10 7.87 × 10−12 0.00 × 100 1.32 × 10−3 7.22 × 100 5.27 × 10−2 5.83 × 10−3
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Table 4. Cont.

Functions BOA CABOA PSOBOA HBOAPSO LBOA IBOA PSO GWO SCA MPA

F18
Avg 7.64 × 10−12 1.70 × 10−14 2.61 × 10−8 0.00 × 100 3.48 × 10−13 0.00 × 100 5.33 × 10−3 1.31 × 10−3 2.17 × 10−1 0.00 × 100

Std 6.94 × 10−12 1.82 × 10−14 1.35 × 10−7 0.00 × 100 8.78 × 10−13 0.00 × 100 7.48 × 10−3 4.99 × 10−3 2.13 × 10−1 0.00 × 100

F19
Avg 1.90 × 10−10 6.76 × 10−6 4.77 × 10−7 2.54 × 10−45 6.32 × 10−14 8.93 × 10−20 1.15 × 10−3 5.15 × 10−4 3.02 × 10−1 2.12 × 10−14

Std 1.00 × 10−10 3.13 × 10−5 1.78 × 10−6 1.39 × 10−44 1.73 × 10−13 1.19 × 10−19 9.36 × 10−4 7.29 × 10−4 5.38 × 10−1 1.52 × 10−14

F20
Avg 5.56 × 10−1 1.90 × 10−4 8.75 × 10−1 2.84 × 10−3 3.06 × 10−1 4.97 × 10−1 4.44 × 100 4.74 × 10−2 1.17 × 106 5.79 × 10−5

Std 1.40 × 10−1 4.90 × 10−4 2.11 × 10−1 3.79 × 10−3 9.96 × 10−2 1.37 × 10−1 2.62 × 100 2.27 × 10−2 2.83 × 106 3.17 × 10−4

F21
Avg 3.52 × 100 1.36 × 10−2 4.42 × 100 3.93 × 10−2 2.41 × 100 3.15 × 100 1.89 × 10−6 9.27 × 10−1 3.48 × 106 1.38 × 10−2

Std 5.92 × 10−1 4.57 × 10−2 7.32 × 10−1 4.57 × 10−2 5.15 × 10−1 4.40 × 10−1 3.64 × 10−6 2.80 × 10−1 6.37 × 106 3.69 × 10−2

F22
Avg 9.76 × 100 5.52 × 10−16 3.42 × 10−7 8.38 × 10−77 1.56 × 10−3 3.56 × 10−26 6.71 × 10−4 5.34 × 10−1 1.42 × 101 1.11 × 10−1

Std 7.84 × 100 4.56 × 10−16 1.88 × 10−6 4.30 × 10−76 8.54 × 10−3 7.84 × 10−26 2.74 × 10−3 4.25 × 10−1 1.87 × 100 1.72 × 10−1

F23
Avg 1.17 × 101 4.35 × 10−4 1.75 × 101 7.28 × 10−2 8.42 × 100 9.83 × 100 4.77 × 10−2 1.42 × 100 1.74 × 101 1.35 × 10−1

Std 2.66 × 100 4.66 × 10−4 3.79 × 100 1.87 × 10−1 2.56 × 100 2.47 × 100 6.58 × 10−2 1.13 × 100 3.58 × 100 1.13 × 10−1

F24
Avg 6.21 × 10−1 0.00 × 100 3.36 × 10−11 0.00 × 100 0.00 × 100 0.00 × 100 9.15 × 10−1 5.05 × 100 9.91 × 100 0.00 × 100

Std 1.95 × 100 0.00 × 100 1.84 × 10−10 0.00 × 100 0.00 × 100 0.00 × 100 1.40 × 100 2.35 × 100 2.00 × 100 0.00 × 100

F25
Avg 7.65 × 10−1 7.30 × 10−2 1.41 × 10−1 2.53 × 10−8 3.65 × 10−2 2.25 × 10−32 1.15 × 100 3.48 × 10−1 1.66 × 100 9.95 × 10−2

Std 2.21 × 10−1 4.47 × 10−2 1.21 × 10−1 1.38 × 10−7 4.88 × 10−2 5.88 × 10−32 3.41 × 10−1 1.13 × 10−1 2.15 × 100 8.20 × 10−17

F26
Avg 7.96 × 10−11 6.54 × 10−15 6.50 × 10−12 0.00 × 100 3.22 × 10−12 0.00 × 100 1.00 × 10−1 0.00 × 100 7.60 × 10−1 0.00 × 100

Std 8.77 × 10−12 1.52 × 10−14 3.54 × 10−11 0.00 × 100 2.68 × 10−12 0.00 × 100 3.29 × 10−1 0.00 × 100 1.27 × 100 0.00 × 100
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Table 5. The Success Rate for 26 benchmark functions.

Functions BOA CABOA PSOBOA HBOAPSO LBOA IBOA PSO GWO SCA MPA

F1 0.00 43.33 93.33 100.00 0.00 100.00 0.00 100.00 0.00 100.00
F2 0.00 76.67 86.67 100.00 0.00 100.00 0.00 100.00 0.00 0.00
F3 0.00 30.00 100.00 100.00 3.33 100.00 0.00 0.00 0.00 0.00
F4 0.00 0.00 90.00 100.00 0.00 100.00 0.00 0.00 0.00 0.00
F5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F7 0.00 100.00 56.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F8 0.00 80.00 100.00 100.00 100.00 100.00 80.00 100.00 0.00 100.00
F9 0.00 56.67 100.00 100.00 3.33 100.00 0.00 100.00 0.00 100.00
F10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F11 0.00 63.33 90.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00
F12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F14 100.00 100.00 96.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F15 50.00 100.00 86.67 100.00 100.00 100.00 0.00 0.00 0.00 100.00
F16 3.33 100.00 90.00 100.00 100.00 100.00 0.00 0.00 0.00 50.00
F17 0.00 0.00 83.33 93.33 30.00 100.00 0.00 0.00 0.00 0.00
F18 0.00 46.67 93.33 100.00 23.33 100.00 0.00 93.33 0.00 100.00
F19 0.00 0.00 86.67 100.00 56.67 100.00 0.00 33.33 0.00 23.33
F20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F22 16.67 100.00 90.00 100.00 96.67 100.00 0.00 0.00 0.00 13.33
F23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F24 23.33 100.00 96.67 100.00 100.00 100.00 0.00 0.00 0.00 100.00
F25 0.00 0.00 10.00 100.00 30.00 100.00 0.00 0.00 0.00 0.00
F26 0.00 86.67 93.33 100.00 3.33 100.00 0.00 100.00 0.00 100.00

times 2 7 4 18 7 19 3 9 3 11
SR rank 8 5 6 2 5 1 7 4 7 3

Table 6. The rank test for 26 benchmark functions.

Rank BOA CABOA PSOBOA HBOAPSO LBOA IBOA PSO GWO SCA MPA

F1 7.97 5.93 2.10 1.53 6.97 2.83 9.00 3.83 10.00 4.83
F2 8.00 4.87 1.93 1.63 6.97 2.83 9.03 3.87 9.97 5.90
F3 6.00 4.00 1.70 1.33 5.00 2.97 9.00 7.03 10.00 7.97
F4 7.17 4.07 1.83 1.47 5.97 2.87 9.00 7.77 10.00 4.87
F5 8.83 2.93 10.00 4.07 6.00 7.13 2.07 4.93 8.03 1.00
F6 6.87 6.67 2.43 1.77 7.07 1.80 9.47 5.27 9.53 4.13
F7 9.53 3.68 9.43 3.65 8.00 7.03 1.00 4.53 6.00 2.13
F8 8.97 6.97 1.90 1.60 6.20 4.93 7.87 2.73 10.00 3.83
F9 8.00 6.00 1.90 1.30 7.00 2.93 9.00 3.93 10.00 4.93
F10 7.70 3.90 9.13 6.97 5.30 6.30 2.97 2.63 9.07 1.03
F11 7.90 5.90 2.67 1.03 6.90 2.87 9.00 3.87 10.00 4.87
F12 6.23 2.97 7.83 8.60 4.70 6.17 4.00 2.77 10.00 1.73
F13 10.00 7.20 5.03 3.13 8.93 7.40 5.70 1.00 4.57 2.03
F14 9.97 7.57 3.83 2.07 8.97 7.30 5.67 1.50 4.33 3.80
F15 5.90 3.68 4.28 3.68 3.68 3.68 9.47 7.80 9.13 3.68
F16 8.90 3.18 4.02 3.18 3.18 3.18 8.53 7.13 9.07 4.62
F17 6.60 7.57 2.47 2.12 3.57 1.98 8.83 6.10 9.87 5.90
F18 7.87 5.82 3.30 2.97 6.75 2.97 9.00 3.37 10.00 2.97
F19 6.33 7.33 2.23 1.37 4.17 2.80 9.00 6.77 10.00 5.00
F20 7.03 2.00 8.03 3.00 5.03 6.03 8.87 4.00 10.00 1.00
F21 8.00 2.83 9.00 3.97 6.00 7.00 1.50 5.00 10.00 1.70
F22 8.40 4.93 2.30 1.03 4.03 2.87 6.53 8.33 9.73 6.83
F23 8.00 1.10 9.70 2.27 6.07 6.93 2.80 4.97 9.30 3.87
F24 6.43 3.58 3.68 3.58 3.58 3.58 7.97 9.00 10.00 3.58
F25 8.77 4.80 5.90 1.07 3.47 2.00 9.03 6.77 9.20 4.00
F26 7.97 4.60 3.53 3.23 6.97 3.23 9.00 3.23 10.00 3.23

Avg-rank 7.82 4.77 4.62 2.75 5.79 4.29 7.05 4.93 9.15 3.83
Final rank 9 5 4 1 7 3 8 6 10 2
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Table 7. The p-value of Wilcoxon rank-sum (WRS) test for 26 benchmark functions.

Ranksum BOA CABOA PSOBOA LBOA IBOA PSO GWO SCA MPA

F1
3.02 ×
10−11

3.02 ×
10−11 0.035137 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F2
3.02 ×
10−11

3.02 ×
10−11 0.325527 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F3
3.02 ×
10−11

3.02 ×
10−11 0.001597 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F4
3.02 ×
10−11

3.02 ×
10−11 0.014412 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F5
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

1.31 ×
10−8

3.02 ×
10−11

3.02 ×
10−11

F6
4.20 ×
10−10

2.15 ×
10−10 0.200949 1.33 ×

10−10 0.520145 3.02 ×
10−11

7.38 ×
10−10

3.02 ×
10−11

2.44 ×
10−9

F7
5.18 ×
10−12

1.00 ×
100

5.18 ×
10−12

5.18 ×
10−12

5.16 ×
10−12

1.19 ×
10−13 0.009689 5.18 ×

10−12
9.85 ×
10−11

F8
3.02 ×
10−11

3.02 ×
10−11 0.122353 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F9
3.02 ×
10−11

3.02 ×
10−11 0.001302 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F10 0.340288 3.02 ×
10−11

3.16 ×
10−5 0.003671 0.200949 2.20 ×

10−7
4.50 ×
10−11

1.34 ×
10−5

3.02 ×
10−11

F11 0.340288 3.02 ×
10−11

3.16 ×
10−5 0.003671 0.200949 2.20 ×

10−7
4.50 ×
10−11

1.34 ×
10−5

3.02 ×
10−11

F12
8.48 ×
10−9

4.69 ×
10−8

4.12 ×
10−6

8.48 ×
10−9

8.48 ×
10−9

1.43 ×
10−8

5.57 ×
10−10

3.02 ×
10−11

5.57 ×
10−10

F13
3.02 ×
10−11

3.02 ×
10−11 0.00557 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

1.21 ×
10−12

1.29 ×
10−9

2.53 ×
10−4

F14
3.02 ×
10−11

3.02 ×
10−11 0.001953 3.02 ×

10−11
3.02 ×
10−11

4.62 ×
10−10 0.09049 7.69 ×

10−8
9.06 ×
10−8

F15
1.27 ×
10−5 NaN 0.041926 NaN NaN 1.21 ×

10−12
1.19 ×
10−12

1.21 ×
10−12 NaN

F16
1.21 ×
10−12 NaN 0.041926 NaN NaN 1.21 ×

10−12
1.21 ×
10−12

1.21 ×
10−12

1.27 ×
10−5

F17
6.03 ×
10−11

2.89 ×
10−11 0.248673 5.93 ×

10−7 0.160802 2.37 ×
10−12

2.80 ×
10−10

2.37 ×
10−12

6.24 ×
10−10

F18
1.21 ×
10−12

4.57 ×
10−12 0.160802 4.57 ×

10−12 NaN 1.21 ×
10−12 0.160802 1.21 ×

10−12 NaN

F19
3.02 ×
10−11

3.02 ×
10−11 0.003671 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F20
3.02 ×
10−11

3.08 ×
10−8

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.34 ×
10−11

3.02 ×
10−11

1.09 ×
10−10

F21
3.02 ×
10−11

9.51 ×
10−6

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

4.12 ×
10−6

F22
3.02 ×
10−11

3.02 ×
10−11

1.58 ×
10−4

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F23
3.02 ×
10−11

1.39 ×
10−6

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

1.11 ×
10−4

2.37 ×
10−10

3.02 ×
10−11

1.86 ×
10−6

F24
1.95 ×
10−9 NaN 0.333711 NaN NaN 1.21 ×

10−12
1.21 ×
10−12

1.21 ×
10−12 NaN

F25
3.02 ×
10−11

5.49 ×
10−11

1.09 ×
10−10

8.89 ×
10−10

8.48 ×
10−9

1.90 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

1.55 ×
10−11

F26
1.21 ×
10−12

2.93 ×
10−5 0.160802 1.21 ×

10−12 NaN 1.21 ×
10−12 NaN 1.21 ×

10−12 NaN
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Table 8. The hypothesis (H) of WSR test for 26 benchmark functions.

H BOA CABOA PSOBOA LBOA IBOA PSO GWO SCA MPA

F1 1 1 1 1 1 1 1 1 1
F2 1 1 0 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1 1
F5 1 1 1 1 0 1 1 1 1
F6 1 0 0 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1 1
F8 1 1 0 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1 1
F10 0 1 1 1 0 1 1 1 1
F11 0 1 1 1 0 1 1 1 1
F12 1 1 1 1 1 1 1 1 1
F13 1 1 1 1 1 1 1 1 1
F14 1 1 1 1 1 1 0 1 1
F15 1 0 1 0 0 1 1 1 0
F16 1 0 1 0 0 1 1 1 1
F17 1 1 0 1 0 1 1 1 1
F18 1 1 0 1 0 1 0 1 0
F19 1 1 1 1 1 1 1 1 1
F20 1 1 1 1 1 1 1 1 1
F21 1 1 1 1 1 1 1 1 1
F22 1 1 1 1 1 1 1 1 1
F23 1 1 1 1 1 1 1 1 1
F24 1 0 0 0 0 1 1 1 0
F25 1 1 1 1 1 1 1 1 1
F26 1 1 0 1 0 1 0 1 0

The alpha is set to 0.05 in the Wilcoxon rank-sum (WRS) test and Friedman rank test, and there
are two hypotheses called the null and alternative. The null hypothesis is a significant difference from
the proposed algorithm and the others. According to the statistical value, the null is accepted if this
statistical value is greater than the value of alpha; otherwise, the alternative is accepted. The p-value
and the Friedman rank depicted that this supremacy is statistically significant. Note, the last row in
Table 4, Table 5, Table 6 represents the rank of each algorithm with the number of the best solutions.
The p-value and the Friedman rank depicted that this supremacy is statistically significant.

From the comparison results of Table 4, it is proved that the HPSOBOA yields the best results
on the 26 test functions with Dim = 30 except F6, F7, F10, F12, F13, F14, F17, F20, F21, F23, and F25.
For functions F6, F7, F10, F12, and F23, the hybrid HPSOBOA can obtain the optimal fitness value,
which is close to other algorithms but slightly worse. However, for F13, F14, F17, F20, F21, and F25,
the best solutions of these functions are searched by the other algorithms, such as GWO, PSO, MPA,
and IBOA, and MPA obtains the best solution twice. Additionally, the IBOA also obtains the best
solution twice, which is improved by the logistic map for the control parameters. Combining the
comparison results in Tables 5 and 6, we can see that the IBOA is better than others in the SR rank,
which is set to ε < 10−15, and is called the specified value, and the order of ten algorithms is IBOA
> HPSOBOA > MPA > GWO > CABOA = LBOA > PSOBOA > PSO = SCA > BOA. The order of
HPSOBOA and IBOA is only different once on the function F17, and the SR of HPSOBOA is 93.33%,
but the SR of IBOA is 100% for searching the global optimization value, which is set to ε < 10−15, and is
accepted in this paper. Therefore, the performance of the proposed algorithm needs to be improved in
future work.

In addition, the comparison results of the Friedman rank test are shown in Table 6; from the
Avg-rank, we can obtain that the final order of the rank means of the Friedman rank test—the ten
swarm algorithms—is HPSOBOA > MPA > IBOA > PSOBOA > CABOA > GWO > LBOA > PSO >

BOA > SCA. The WRS test values are given in Tables 7 and 8 for the 26 high-dimensional test functions
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of HPSOBOA vs. the others, respectively, where N/A means not applicable in Table 7. It can be seen
from these tables that there is a significance different between the proposed hybrid HPSOBOA and the
other algorithms for the 26 test functions with Dim = 30. In Table 8, if H=1, this indicates rejection
of the null hypothesis at the 5% significance level. If H=0, this indicates a failure to reject the null
hypothesis at the 5% significance level. In addition, Table 9 shows the comparison results of t-test for
26 benchmark functions of the proposed HPSOBOA with the other algorithms.

Table 9. The t-test for 26 benchmark functions.

t-tset BOA CABOA PSOBOA LBOA IBOA PSO GWO SCA MPA

F1 6.6456 6.6456 2.1068 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F2 6.6456 6.6456 0.9832 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F3 6.6456 6.6456 3.1565 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F4 6.6456 6.6456 2.4468 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F5 6.6456 −6.6456 6.6456 6.6456 6.6456 −6.6456 5.6846 6.6456 −6.6456
F6 6.2464 6.3499 1.2789 6.4238 0.6431 6.6456 6.1577 6.6456 5.9655
F7 6.9005 0.0000 6.9005 6.9005 6.9010 −7.4180 2.5867 6.9005 −6.4692
F8 6.6456 6.6456 1.5450 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F9 6.6456 6.6456 3.2156 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F10 0.9536 −6.6456 4.1618 −2.9051 −1.2789 −5.1819 −6.5865 4.3540 −6.6456
F11 6.6456 6.6456 3.7183 6.6456 6.6456 6.6456 −6.5865 6.6456 6.6456
F12 −5.7585 −5.4628 −4.6053 −5.7585 −5.7585 −5.6698 −6.2021 6.6456 −6.2021
F13 6.6456 6.6456 2.7721 6.6456 6.6456 6.6456 −7.1040 6.0690 −3.6591
F14 6.6456 6.6456 3.0973 6.6456 6.6456 6.2316 −1.6928 5.3741 5.3446
F15 4.3649 NaN 2.0343 NaN NaN 7.1040 7.1063 7.1040 NaN
F16 7.1040 NaN 2.0343 NaN NaN 7.1040 7.1040 7.1040 4.3650
F17 6.5431 6.6523 1.1536 4.9936 −1.4024 7.0110 6.3094 7.0110 6.1844
F18 7.1040 6.9183 1.4024 6.9182 NaN 7.1040 1.4024 7.1040 NaN
F19 6.6456 6.6456 2.9051 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F20 6.6456 −5.5368 6.6456 6.6456 6.6456 6.6456 6.6308 6.6456 −6.4534
F21 6.6456 −4.4279 6.6456 6.6456 6.6456 −6.6456 6.6456 6.6456 −4.6053
F22 6.6456 6.6456 3.7774 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F23 6.6456 −4.8271 6.6456 6.6456 6.6456 3.8661 6.3351 6.6456 4.7680
F24 6.0023 NaN 0.9667 NaN NaN 7.1040 7.1040 7.1040 NaN
F25 6.6456 6.5569 6.4534 6.1281 5.7585 6.7136 6.6456 6.6456 6.7434
F26 7.1040 4.1785 1.4024 7.1040 NaN 7.1040 NaN 7.1040 NaN

Figure 6 shows the box plots of the optimization results of 26 high-dimensional problems by the
ten algorithms. It is clear from Figure 6 that the outcomes of the average of the fitness function are not
normally distributed, in which each algorithm is run for 30 times for the 26 test functions. The values
of SCA are relatively poor in the ten algorithms.
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6. Conclusions and Future Work

In this paper, we proposed three improvement strategies, and they are as follows: (1) the
initialization of BOA by cubic map; (2) a nonlinear parameter control strategy for the power exponent
a; (3) hybrid PSO algorithm with BOA. These strategies all aim to improve the ability for global
optimization of the basic BOA.
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In order to analyze the effectiveness of the improvement strategies, a novel hybrid algorithm
was compared with other swarm algorithms, and two experiments were designed. To deal with
26 high-dimensional optimization problems, a cubic map was employed for the initial population of
HPSOBOA, and the experimental results show that the initial fitness value is superior to the BOA and
other algorithms. In addition, the experimental results show that the one-dimensional chaotic maps
may also have a good performance for improving the basic BOA. The MPA proposed in 2020 will be
applied in more fields.

In future work, the performance of the proposed algorithm needs to be improved, and the improved
BOA includes adjusting its control parameters to optimize algorithm performance. The two-dimensional
and three-dimensional chaotic systems can also improve the BOA or other swarm intelligence algorithms
in theory. The improved algorithm can also solve real-world problems, such as engineering problems,
wireless sensor network (WSNs) deployment problems, proportional-integral-derivative (PID) control
problems, and analysis of regional economic activity [53].
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