
symmetryS S

Article

Computing Nearest Correlation Matrix via Low-Rank
ODE’s Based Technique

Mutti-Ur Rehman 1,2 , Jehad Alzabut 3 and Kamaleldin Abodayeh 3,*
1 Department of Mathematics, Sukkur IBA University, Sukkur 65200, Pakistan;

muttiur@mit.edu or mutti.rehman@iba-suk.edu.pk
2 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia;

jalzabut@psu.edu.sa
* Correspondence: kamal@psu.edu.sa

Received: 16 October 2020; Accepted: 2 November 2020; Published: 4 November 2020
����������
�������

Abstract: For n-dimensional real-valued matrix A, the computation of nearest correlation matrix;
that is, a symmetric, positive semi-definite, unit diagonal and off-diagonal entries between −1
and 1 is a problem that arises in the finance industry where the correlations exist between the
stocks. The proposed methodology presented in this article computes the admissible perturbation
matrix and a perturbation level to shift the negative spectrum of perturbed matrix to become
non-negative or strictly positive. The solution to optimization problems constructs a gradient system
of ordinary differential equations that turn over the desired perturbation matrix. Numerical testing
provides enough evidence for the shifting of the negative spectrum and the computation of nearest
correlation matrix.

Keywords: positive semi-definiteness; gradient system of ODEs; eigenvalues

1. Introduction

The correlation matrices Ai ∈ Rn,n are real, symmetric At
i = Ai, positive semi-definite λj(Ai) ≥

0, ∀j, with λj being the spectrum of Ai and having a unit diagonal, diag(Ai) = 1. These correlation
matrices appear when one is interested in computing correlations between pairs of random variables.
For example, in the finance industry, the correlation between stocks measured over a fixed amount of
time, and the missing data can compromise the correlations and hence will direct to a non-positive
semi-definite matrix. Similarly, a practitioner can explore the effect on a portfolio that assigns the
correlations between assets differently from a certain amount of historical values, which can easily
destroy the semi-definiteness of the matrix (or matrices); for more details, refer to [1–3].

The approximation of correlation matrices has led much intention and interest in finding a nearest
correlation matrix X that minimizes the matrix Frobenius norm of ‖A−X‖ in matrix nearness problem

min{‖A− X‖F : X = Xt, X ≥ 0, diag(X) = 1},

where for X, Y being as the symmetric matrices and the quantity X−Y is positive semi-definite matrix
and ‖X‖F =

√
trace(XtX) as Rn,n represents Hilbert space with 〈X, Y〉 = trace(XtY). The constraints

in above minimization problem are closed and convex sets so that the matrix nearness problem has a
unique solution [4].

The matrix nearness problems have been extensively studied over the last thirty-two years.
Much of the literature is available about some ad hoc mathematical methods that are not guaranteed
to give the best solution to the problem. The method given by Knal and ten Burge [5] decomposes
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the matrix X as X = YtY and then minimizes the objective function over Y′s columns. Lurie and
Goldberg [6] minimize the quantity ‖A− RtR‖2

F with R being as an upper triangular matrix having
a unit 2-norm for it’s columns by using the Gauss–Newton method. In [7], Higham proposed an
alternating projection algorithm using convex analysis, which has a linear convergence towards the
solution of matrix nearness problems.

A more general matrix nearness problem than the above problem was studied in [8] by Malick,
where he had used convex set and general linear constraints to replace positive semi-definiteness and
unit diag(X). Malick had applied the quasi-Newton method to dual problem after dualize the linear
constraints on the diag(X). A quadratically convergent Newton method for solving matrix nearness
problem was studied by Qi and Sun [9], where they proposed a dual problem to matrix nearness
problem and then proposed its solution. The numerical method developed by Toh [10] demands the
solution of dense linear systems with dimension n2

2 , mathematical construction of preconditioners and
then apply them to compute the nearest correlation matrix X to solve the matrix nearness problem.
A globally convergent Newton’s method proposed by Qi and Sun [9] computes the nearest correlation
matrix X for the above matrix nearness problem.

In this work, we propose a low-rank ODE’s based method to compute a nearest correlation matrix
X for a given n-dimensional matrix A. Our method works in two ways: first, it allows us to shift the
smallest negative eigenvalue λ1 of the perturbed matrix A + εE, such that it becomes non-negative,
that is, λ1 ≥ 0. We compute the perturbation matrix E with diag(E) = 0 by constructing and then
solving an associated optimization problem. Secondly, the construction and solution to optimization
problem allow to shift all negative eigenvalues λi, ∀ i = n− 1 of given matrix A such that its spectrum
becomes non-negative, that is, λi ≥ 0, ∀ i = 1 : n− 1.

Overview of the Article

In Section 2, we provide the preliminaries of our article. We give the definitions of symmetric,
positive semi-definite matrix, a correlation matrix, and nearest correlation matrix.

Section 3 of our article is devoted to the problem under consideration. We briefly discuss the
aim of matrix nearness problem. Section 4 of our article is dedicated to the computation of a gradient
system of ordinary differential equations to localize the smallest negative eigenvalue λ1 from the
spectrum of an admissible perturbed matrix (A + εE(t))) for given A ∈ Rn,n.

The localization of eigenvalues λ1, λ2 simultaneously from the spectrum of admissible
perturbation matrix is addressed in Section 5. Finally, numerical experimentation and conclusion are
presented in Sections 6 and 7, respectively.

2. Preliminaries

Definition 1. A matrix A ∈ Rn,n is called symmetric if At = A.

Definition 2. A matrix A ∈ Rn,n is called positive semi-definite if λi(A) ≥ 0, ∀i = 1 : n, λi(A) denotes the
spectrum of matrix A.

Definition 3. A square symmetric matrix A ∈ Rn,n is called correlation matrix if (i, j)-entry is the correlation
between the columns i and j of A.

Definition 4. A matrix A ∈ Rn,n is called a nearest correlation matrix if : At = A, λi(A) ≥ 0, diag(A) = 1,
and aij ∈ [−1, 1], ∀i 6= j.

3. Matrix Nearness Problem

The matrix nearness problem aims the computation of a matrix X, which is symmetric,
positive semi-definite, unit diagonal and having off diagonal entries between −1 and 1 for a given
matrix A ∈ Rn,n. The matrix A is not necessary to have it’s entries belonging to interval [−1, 1]. In fact,
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it can have real random entries. It is possible that all the eigenvalues of A are negative, or some
of them are negative while others are positive. The negative eigenvalues are the basic hindrance to
make A a nearest correlation matrix. Moreover, one must remain careful about the structure of A.
The structure of A must have all properties, as defined in the preliminaries Section. For this purpose,
we aim to compute the perturbation matrix E = E(t), ∀t having zero diagonal and a Frobenius norm
bounded above by 1. In the very next Section, we present our methodology to compute the matrix E,
which allows us to shift all negative eigenvalues of given A to make them non-negative.

4. Localization of Smallest Negative Eigenvalue λ1

In this section, we aim to localize the smallest negative eigenvalue λ1 of given matrix A ∈ Rn,n.
This involves shifting the smallest negative eigenvalue of perturbation matrix (A + εE) with ε > 0,
a small positive parameter. The matrix E has structure with diag(E) = 0. Moreover,

‖E(t)‖F =
√

∑
ij

e2
i,j ≤ 1, ∀t.

4.1. Construction of Perturbation Matrix

We compute the perturbation matrix E(t) and then determine the direction Z = Ė(t).
The computation of Ė(t) indicates that how fast the smallest negative eigenvalue λ1(t) grows, that is,
d
dt (λi(t)) > 0. We need to compute the perturbed matrix εE(t) with ε > 0. For this purpose, we make
use of eigenvalue problem

(A + εE(t))η(t) = λ(t)η(t), (1)

with η(t) being an eigenvector for smallest negative eigenvalue λ(t). Furthermore, ‖η(t)‖2 ≤ 1.
In turn this implies

(η(t)∗(A + εE(t)) = λ(t)η(t)∗. (2)

By differentiating Equation (1) w.r.t. t, we have

(A + εE(t))
d
dt

η(t) + ε
d
dt
(E(t))η(t) =

d
dt
(λ(t))η(t) + λ(t)

d
dt
(η(t)).

Multiplying both sides with η(t)∗(t) gives us

η(t)∗(A + εE(t))
d
dt

η(t) + εη(t)∗
d
dt
(E(t))η(t) =

d
dt
(λ(t))η(t)∗η(t) + λ(t)η(t)∗

d
dt
(η(t)).

As we know that,
η(t)∗η(t) = 〈η(t), η(t)〉 = ‖η(t)‖2

2 = 1,

This further implies that,

η(t)∗(A + εE(t))
d
dt

η(t) + εη(t)∗
d
dt
(E(t))η(t) =

d
dt
(λ(t)) + λ(t)η(t)∗ +

d
dt
(η(t)).

Thus, we have

λ(t)η(t)∗
d
dt
(η(t)) + εη(t)∗

d
dt
(E(t)η(t)) =

d
dt
(λ(t)) + λ(t)η(t)∗)

d
dt
(η(t)). (3)

Using Equation (2), we have that

λ(t)η(t)∗ = η(t)∗(A + εE(t)).
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Thus, Equation (3) becomes as

d
dt
(λ(t)) = εη(t)∗

d
dt
(E(t))η(t). (4)

We take η(t)∗ d
dt (η(t)) = 0 in Equation (3), and Z = d

dt (E(t)) = Ė(t), results in the following
optimization problem.

4.2. Formulation of Optimization Problem

The optimization problem given below allows one to determine the direction Z = Ė(t) so
that the solution of the system of ODE’s indicates the maximum growth of the smallest negative
eigenvalue λ(t).

max(η∗1 Zη1)

Subject to

〈Z, E(t)〉 = 0

diag(Z) = 0,

(5)

with η1 ∈ Rn,1 is eigenvector corresponding to smallest negative eigenvalue λ1. The notation ∗
represents complex conjugate transpose. The solution of the maximization problem addressed in
Equation (5) is given as the following.

4.3. Lemma 4.2.1.

Consider that E(t) is a non-zero matrix with an admissible perturbation matrix

‖E(t)‖F ≤
√

∑
i,j

e2
ij ≤ 1.

Let η1, η∗1 are non-zero eigen vectors associated with smallest negative eigenvalue λ1(t).
Then solution Z to maximization problem in Equation (5) is of the form

Z = Proj(η1η∗1 )− 〈Proj(η1η∗1 , E(t)〉E(t), (6)

having Proj(·) as projection of direction matrix Z onto manifold of matrices E(t).
Proof. The proof is based on the idea of computation of orthogonal projection on manifold of matrices,
and for this we refer to [11].

4.4. A Gradient System of ODE’s

The solution matrix
Z = Proj(η1η∗1 )− 〈Proj(η1η∗1 , E(t)〉E(t),

of the maximization problem addressed in Equation (5) allows following gradient system of ODEs on
manifold of matrices E(t),

Ė(t) = Proj(η1η∗1 )− 〈Proj(η1η∗1 , E(t)〉. (7)

4.5. Characterization of Gradient System of ODE’s

The solution of gradient system of ODE’s addressed in Equation (7) possesses the following
characteristic properties:
(i)

d
dt
(λ1(t)) > 0,
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(ii)

Ė(t) = 0 ⇐⇒ d
dt
(λ1(t)) = 0,

(iii)
d
dt
(λ1(t)) = 0 ⇐⇒ E(t) ∝ Proj(η1η∗1 ).

5. Localization of λ1(t), λ2(t)

Our goal in this Section is to transfer simultaneously the smallest negative eigenvalue λ1(t) and
the negative eigenvalue λ2(t) which is next to λ1(t) from spectrum of perturbation matrix (A + εE(t))
so that λ1(t), λ2(t) becomes strictly positive.

5.1. Optimization Problem

The following maximization problem allows one to determine direction matrix Z = Ė(t) so that a
solution associated with gradient system of ODEs obtained after solving the problem, which indicates
maximum growth for λ1(t) and λ2(t) respectively. The maximization problem, in order to have a
simultaneous maximum growth for both λ1(t) and λ2(t), is given as

max(η∗1 Zη1)

Subject to

η∗2 Zη2 = η∗1 Zη1

〈Z, E(t)〉 = 0

diag(Z) = 0.

(8)

Now, our aim is to give the solution corresponding to maximization problem addressed
in Equation (8).

5.2. A Gradient System of ODE’s

The optimal solution to maximization addressed in Equation (8) is given by gradient system of
ODE’s as

Ė(t) = (1− µ)η∗1 η1 + µη∗2 η2 − µ{〈η∗1 η1 − η∗2 η2, E(t)〉 − 〈η∗1 η1, E(t)〉}. (9)

The gradient system of ODEs addressed in Equation (9) as a function K(t) with

K(t) =



1−a11
ε 0 . . . . . . 0

e21(t)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

en1(t) . . . . . . enn(t) 1−ann
ε


.

The choice of parameter ε could be sufficiently large enough so that diag(A + εE(t)) = 1
and having

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .
...

an1 an2 . . . ann

 ; E(t) =


e11(t) e12(t) . . . e1n(t)
e21(t) e22(t) . . . e2n(t)

...
. . .

...
en1(t) en2(t) . . . enn(t)

 .
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For parameter ε0 ≤ ε, we have that ε0 = ‖diag(A− I)‖ ≤ ε. Next, we fix e11(t), e12(t), . . . , enn(t)
and for parameter ε >> ε0, we obtain

A + εE(0) =


a11 + εe11(t) a12 + εe12(t) . . . a1n + εe1n(t)
a21 + εe21(t) a22 + εe22(t) . . . a2n + εe2n(t)

...
. . .

...
an1 + εen1(t) an2 + εen2(t) . . . ann + εenn(t)

 .

The admissible perturbation matrix A + εE(0)) takes the form

A + εE(0) =



1 a12 + εe12(t) . . . . . . a1n + εe1n(t)

a21 + εe21(t) 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . ann + εenn(t)

an1 + εen1(t) . . . . . . ann + εenn(t) 1


As, e11(t) =

1−a11
ε , e12(t) =

1−a22
ε , . . . , enn(t) = 1−ann

ε .
The initial perturbation matrix E(0) is given as

E(0) =



1−a11
ε e12(t) . . . . . . e1n(t)

e21(t)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . enn(t)

en1(t) . . . . . . enn(t) 1−ann
ε


.

The initial perturbation matrix E(0) is decomposed into KT(0) and K(0), the upper and lower
triangular matrices respectively as,

KT(0) =



1−a11
ε e12(t) . . . . . . e1n(t)

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . enn(t)

0 . . . . . . 0 1−ann
ε


; K(0) =



1−a11
ε 0 . . . . . . 0

e21(t)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

en1(t) . . . . . . enn(t) 1−ann
ε


.

Also,

2‖K(0)‖2
2 + ∑

i

(1− aii)
2

ε2 = 1. (10)

In a similar manner, the perturbation matrix E(t) has the structure

E(t) =



1−a11
ε e12(t) . . . . . . e1n(t)

e21(t)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . enn(t)

en1(t) . . . . . . enn(t) 1−ann
ε


,
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and

‖K(t)‖ = 1√
2

(
1−∑

i

(1− aii)
2

ε2

) 1
2

. (11)

The maximization of eigenvalues λ1(t) and λ2(t) demands the computation of the perturbation
matrix Ė(t) and projection of Z onto manifold of family of matrices E(t). The change in the admissible
perturbation matrix E(t) is given as

Ė(t) =



0 ė12(t) . . . . . . ė1n(t)

ė21(t)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . ėnn(t)

ėn1(t) . . . . . . ėnn(t) 0


.

Both K̇(t) and K̇T(t) are computed as

K̇(t) =



0 ė12(t) . . . . . . ė1n(t)

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . ėnn(t)

0 . . . . . . 0 0


; K̇T(t) =



0 0 . . . . . . 0

ė12(t)
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

ė1n(t) . . . . . . ėnn(t) 0


.

The computation K̇(t) cause maximum growth of λmin(t) in the maximization problem as,

d
dt
(λmin(t)) = max(η∗Ė(t)η)

subject to

〈E(t), Ė(t)〉 = 0

diag(Z) = 0.

(12)

The solution to maximization problem addressed in Equation (12) is given by ODE Ė(t) as,

Ė(t) = Proj(ηη∗)− 〈Proj(ηη∗, E(t)〉E(t),

having
Proj(ηη∗) = η − diag(η2

1 , . . . η2
n)

and has the form

Proj(ηη∗) =



0 η1η2 . . . . . . η1ηn

η2η1
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . ηnηn

ηnη1 . . . . . . ηnηn 0


.
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The matrix Proj(ηη∗) is decomposed into U(t), an upper triangular matrix and lower triangular
matrix LT(t) as

U(t) =



0 η1η2 . . . . . . η1ηn

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . ηnηn

0 . . . . . . 0 0


,

LT(t) =



0 0 . . . . . . 0

η2η1
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

ηnη1 . . . . . . ηnηn 0


.

Remark 1. The upper triangular matrix U(t) = (A + εE(t)). The optimal solution to maximization problem
addressed in Equation (8) has the form

Ė(t) = (1− µ)Proj(η1η∗1 ) + µProj(η2η∗2 )− γE(t). (13)

The solution Ė(t) addressed in Equation (13) is determined with the help of Euler’s method, that is,

En+1 = En + hĖn.

Finally, the eigenvalue problem

X = (A + εE(t))η(t) = λ(t)η(t)

computes the non-negative spectrum for the perturbed system and it show that the matrix X is a nearest
correlation matrix as it is symmetric, positive semi-definite, unit diagonal and off diagonal entries lies in the
interval −1 and 1.

6. Numerical Experimentation

This section presents numerical experimentation for the computation of nearest correlation
matrices for a given matrix A. For simplicity, we take A ∈ Rn,n.

Example 1. We consider a ten-dimensional matrix A as

A =



1 0 0 0 0 0 0 0 0 1
0 1 −4 0 0 1 0 1 0 0
0 −4 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 −4 0 0
0 0 0 0 0 0 1 0 0 −3
0 1 1 0 0 −4 0 1 0 4
0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 −3 4 0 1


.
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The eigenvalues of A are {−5.7249,−2.8009,−0.7529, 0, 1, 1, 2, 2.9796, 5.0768, 7.2223} which clearly
contains the negative eigenvalues. The perturbation matrix E has a zero diagonal and help us to shift the negative
eigenvalues of perturbed matrix (A + εE). The perturbation matrix E is computed as

E =



0 0.005 −0.002 −0.006 −0.006 0.011 0.009 −0.009 −0.001 −0.093
0.005 0 0.353 0.006 0.008 −0.092 −0.003 −0.074 0.007 0.014
−0.002 0.353 0 −0.005 −0.005 0.008 0.011 −0.098 −0.008 −0.010
−0.006 0.006 −0.005 0 −0.007 0.005 0.009 −0.004 −0.086 −0.005
−0.006 0.008 −0.005 −0.007 0 0.013 0.002 −0.009 −0.003 −0.002
0.011 −0.092 0.008 0.005 0.013 0 −0.008 0.359 0.008 0.008
0.009 −0.003 0.011 0.009 0.002 −0.008 0 0.011 0.003 0.272
−0.009 −0.074 −0.098 −0.004 −0.009 0.359 0.011 0 −0.011 −0.360
−0.001 0.007 −0.008 −0.086 −0.003 0.008 0.003 −0.011 0 −0.009
−0.093 0.014 −0.010 −0.005 −0.002 0.008 0.272 −0.360 −0.009 0


.

We compute matrix B1, which alters the eigenvalues of given matrix A; at the initial stage, this matrix also
has three negative eigenvalues but different from those corresponding to A. The matrix B1 and its eigenvalues
are computed as

B1 =



1 −0.025 0.012 1.089 6.736 −0.018 0.1993 −0.154 0.826 0.792
−0.025 1 −2.901 −0.017 0.072 0.918 0.048 0.893 −0.014 −0.080
0.012 −2.901 1 0.013 0.362 0.194 0.068 0.963 0.001 0.026
1.089 −0.017 0.013 1 −2.888 0.095 0.312 0.004 0.017 0.074
6.736 0.072 0.362 −2.888 1 0.665 1.759 −0.982 −2.213 0.104
−0.018 0.918 0.194 0.095 0.665 1 0.360 −3.120 0.034 0.153
0.199 0.048 0.068 0.312 1.759 0.360 1 0.096 0.205 −2.209
−0.154 0.893 0.963 0.004 −0.982 −3.120 0.096 1 −0.011 3.360
0.826 −0.014 0.001 0.017 −2.213 0.034 0.205 −0.011 1 0.039
0.792 −0.080 0.026 0.074 0.104 0.153 −2.209 3.360 0.039 1


.

The eigenvalues of B1 are {−7.524,−4.678,−1.812, 0.231, 0.985, 2.185, 2.239, 3.928, 5.834, 8.609} and
clearly is not a nearest correlation matrix. Matrix B2 is also not a nearest correlation matrix but it has shifted
the eigenvalues of A + εE such that only one eigenvalue is negative from the spectrum. The matrix B2 and its
spectrum are given as

B2 =



1 −0.196 −0.354 0.640 2.478 0.038 −0.665 0.460 0.721 −0.296
−0.196 1 −0.276 0.159 0.263 0.243 −0.237 0.271 0.193 −0.294
−0.354 −0.276 1 0.218 0.435 0.243 −0.312 0.326 0.277 −0.286
0.640 0.159 0.218 1 −1.215 0.052 0.574 −0.369 −0.464 0.203
2.478 0.263 0.435 −1.215 1 0.001 0.961 −0.632 −1.092 0.308
0.038 0.243 0.243 0.052 0.001 1 0.007 −0.230 0.050 0.267
−0.665 −0.237 −0.312 0.574 0.961 0.007 1 0.285 0.471 −0.106
0.460 0.271 0.326 −0.369 −0.632 −0.230 0.285 1 −0.344 0.264
0.721 0.193 0.277 −0.464 −1.092 0.050 0.471 −0.344 1 0.128
−0.296 −0.294 −0.286 0.203 0.308 0.267 −0.106 0.264 0.128 1


.
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{−3.560, 0.289, 1.195, 1.251, 1.307, 1.335, 1.395, 1.570, 1.626} respectively. The matrix B3 is a nearest
correlation matrix, as not only does it have a unit diagonal, but its symmetric, positive semi-definite and
off diagonal entries lie within the interval [−1, 1]. The matrix B3 and its positive spectrum are given as follows.

B3 =



1 0.054 −0.111 −0.015 −0.036 0.097 0.057 −0.113 −0.069 −0.104
0.054 1 0.174 0.090 0.094 −0.125 −0.109 0.094 0.065 0.115
−0.111 0.174 1 −0.124 −0.105 0.073 0.102 −0.140 −0.033 −0.134
−0.015 0.090 −0.124 1 −0.050 0.061 0.040 −0.078 −0.079 −0.049
−0.036 0.094 −0.105 −0.050 1 0.055 0.099 −0.089 −0.034 −0.112
0.097 −0.125 0.073 0.061 0.055 1 −0.156 0.236 0.089 0.118
0.057 −0.109 0.102 0.040 0.099 −0.156 1 0.130 0.105 0.158
−0.113 0.094 −0.140 −0.078 −0.089 0.236 0.130 1 −0.096 −0.266
−0.069 0.065 −0.033 −0.079 −0.034 0.089 0.105 −0.096 1 −0.094
−0.104 0.115 −0.134 −0.049 −0.112 0.118 0.158 −0.266 −0.094 1


.

The positive spectrum of nearest correlation matrix is {0.061, 0.936, 1.004, 1.025, 1.067, 1.084, 1.131,
1.153, 1.217, 1.319}.

Example 2. We consider an eight dimensional matrix A as

A =



2 1 −3 0 2 −1 0 −2
1 2 −4 1 −3 1 −2 1
−3 −4 2 −1 −2 0 2 1
0 1 −1 2 −1 0 −4 −2
2 −3 −2 −1 2 1 −3 0
−1 1 0 0 1 2 −1 −4
0 −2 2 −4 −3 −1 2 −1
−2 1 1 −2 0 −4 −1 2


.

The perturbation matrix E has a zero diagonal and helps us to shift the negative eigenvalues of perturbed
matrix (A + εE). The perturbation matrix E is computed as

E =



0 −0.073 0.199 −0.003 −0.136 0.066 0.001 0.131
−0.073 0 0.273 −0.070 0.206 −0.066 0.130 −0.065
0.199 0.273 0 0.073 0.131 −0.001 −0.129 −0.073
−0.003 −0.070 0.073 0 0.070 −0.001 0.261 0.130
−0.136 0.206 0.131 0.070 0 −0.071 0.206 0
0.066 −0.066 −0.001 −0.001 −0.071 0 0.063 0.275
0.001 0.130 −0.129 0.261 0.206 0.063 0 0.063
0.131 −0.065 −0.073 0.130 0 0.275 0.063 0


.
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We compute matrix B1, which alters the eigenvalues of given matrix A; at the initial stage, this matrix also
has three negative eigenvalues but different from those corresponding to A. The matrix B1 and its eigenvalues
are computed as

B1 =



1 −0.846 −3.158 −0.876 0.326 −0.875 0.045 −0.8764
−0.846 1 −0.418 1.143 2.025 −1.677 1.050 −0.792
−3.158 −0.418 1 0.543 1.252 −0.826 2.071 −0.678
−0.876 1.143 0.543 1 −0.631 −0.718 −2.403 −1.686
0.326 2.025 1.252 −0.631 1 −1.631 −0.372 −1.696
−0.875 −1.677 −0.826 −0.718 −1.631 1 −1.783 −2.473
0.045 1.050 2.071 −2.403 −0.372 −1.783 1 −2.224
−0.876 −0.792 −0.678 −1.686 −1.696 −2.473 −2.224 1


.

The eigenvalues of B1 are {−5.691,−3.971,−0.152, 0.540, 3.484, 3.578, 4.002, 6.208} and clearly is not a
nearest correlation matrix. Matrix B2 is also not a nearest correlation matrix but it has shifted the eigenvalues of
A + εE, such that two eigenvalues are negative from the spectrum. The matrix B2 and its spectrum are given as

B2 =



1 −1.114 −1.683 −0.370 0.020 −0.717 0.208 −0.849
−1.114 1 −0.363 0.807 2.048 −1.146 0.921 −0.668
−1.683 −0.363 1 0.451 1.263 −0.679 1.089 −0.348
−0.370 0.807 0.451 1 −0.885 −1.044 −1.469 −1.275
0.020 2.048 1.263 −0.885 1 −1.031 −0.810 −1.2782
−0.717 −1.146 −0.679 −1.044 −1.031 1 −1.198 −1.592
0.208 0.921 1.089 −1.469 −0.810 −1.198 1 −1.573
−0.849 −0.668 −0.348 −1.275 −1.278 −1.592 −1.573 1


.

{−4.211,−2.776, 0.745, 1.701, 2.316, 2.514, 2.879, 4.832} respectively. The matrix B3 is a nearest correlation
matrix, as not only does it have a unit diagonal, but its symmetric, positive semi-definite and off diagonal entries
lie within the interval [−1, 1]. The matrix B3 and its positive spectrum are given as follows.

B3 =



1 0.013 0.142 −0.006 0.047 0.067 0.031 −0.139
0.013 1 −0.087 0.103 −0.113 −0.055 −0.011 0.150
0.142 −0.087 1 −0.099 −0.018 0.042 0.116 −0.014
−0.006 0.103 −0.099 1 0.011 −0.042 −0.116 −0.032
0.047 −0.113 −0.018 0.011 1 0.055 0.152 −0.025
0.067 −0.055 0.042 −0.042 0.055 1 −0.063 −0.071
0.031 −0.011 0.116 −0.116 0.152 −0.063 1 0.025
−0.139 0.150 −0.014 −0.032 −0.025 −0.071 0.025 1


.

The spectrum of nearest correlation matrix is obtained as {0.680, 0.790, 0.855, 0.965, 1.045, 1.081, 1.188, 1.393}.

7. Conclusions

In this article, we have presented a low-rank ordinary differential equations-based technique to
compute the nearest correlation matrix; that is, symmetric, positive semidefinite, unit diagonal and
off-diagonal entries between −1 and 1 for a given n-dimensional real-valued matrix. The proposed
methodology is based on transforming the negative spectrum of the original matrix, which involves the
computation of perturbation level and an admissible perturbation having zero diagonal. The numerical
experimentation turns over the desired perturbations for the computation of nearest correlation matrix
for randomly chosen real-valued matrices.
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