Existence of Three Solutions for a Nonlinear Discrete Boundary Value Problem with ϕc-Laplacian
Abstract
:1. Introduction
- ()
- ()
- for each the functional is coercive.
2. Preliminaries
3. Main Results
- (i)
- for each and ;
- (ii)
- (iii)
- .
- (i)
- for each and ;
- (ii)
- (iii)
- .
- ()
- for each and ;
- ()
- ()
- there exist a positive constant β such thatfor each
4. Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elaydi, S. An Introduction to Difference Equations; Springer Science & Business Media: Heidelberg, Germany, 2005. [Google Scholar]
- Yu, J.; Zheng, B. Modeling Wolbachia infection in mosquito population via discrete dynamical models. J. Differ. Equ. Appl. 2019, 25, 1549–1567. [Google Scholar] [CrossRef]
- Long, Y.; Wang, L. Global dynamics of a delayed two-patch discrete SIR disease model. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105117. [Google Scholar] [CrossRef]
- Agarwal, R.P. Difference Equations and Inequalities: Theory, Methods, and Applications; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
- Jiang, D.; Oregan, D.; Agarwal, R.P. A generalized upper and lower solution method for singular discrete boundary value problems for the one-dimensional p-Laplacian. J. Appl. Anal. 2005, 11, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Bereanu, C.; Mawhin, J. Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions. Math. Bohem. 2006, 131, 145–160. [Google Scholar] [CrossRef]
- Long, Y.; Wang, S. Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow. J. Differ. Equ. Appl. 2019, 25, 1768–1789. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, J. Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A Math. 2003, 46, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Bereanu, C.; Jebelean, P.; Şerban, C. Periodic and Neumann problems for discrete p(·)-Laplacian. J. Math. Anal. Appl. 2013, 399, 75–87. [Google Scholar] [CrossRef]
- Shi, H. Periodic and subharmonic solutions for second-order nonlinear difference equations. J. Appl. Math. Comput. 2015, 48, 157–171. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, H. Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 2010, 361, 411–419. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, Y. Existence of breathers for discrete nonlinear Schrödinger equations. Appl. Math. Lett. 2015, 50, 111–118. [Google Scholar] [CrossRef]
- Lin, G.; Zhou, Z. Homoclinic solutions in non-periodic discrete ϕ-Laplacian equations with mixed nonlinearities. Appl. Math. Lett. 2017, 64, 15–20. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, J. On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J. Differ. Equ. 2010, 249, 1199–1212. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Ma, D. Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials. Sci. China Math. 2015, 58, 781–790. [Google Scholar] [CrossRef]
- Nastasi, A.; Vetro, C. A note on homoclinic solutions of (p,q)-Laplacian difference equations. J. Differ. Equ. Appl. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Galewski, M.; Smejda, J. On variational methods for nonlinear difference equations. J. Comput. Appl. Math. 2010, 233, 2985–2993. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Zhou, Z. Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations. Adv. Differ. Equ. 2007, 2008, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Chen, J. Existence of multiple solutions to second-order discrete Neumann boundary value problems. Appl. Math. Lett. 2018, 83, 7–14. [Google Scholar] [CrossRef]
- Bonanno, G.; Bella, B.D. A fourth-order boundary value problem for a Sturm–Liouville type equation. Appl. Math. Comput. 2010, 217, 3635–3640. [Google Scholar] [CrossRef]
- Bonanno, G.; Jebelean, P.; Şerban, C. Superlinear discrete problems. Appl. Mathe. Lett. 2016, 52, 162–168. [Google Scholar] [CrossRef]
- Bonanno, G.; Candito, P.; D’Aguí, G. Variational methods on finite dimensional Banach spaces and discrete problems. Adv. Nonlinear Stud. 2014, 14, 915–939. [Google Scholar] [CrossRef]
- Bonanno, G.; D’Agui, G. Two non-zero solutions for elliptic Dirichlet problems. Z. Anal. Anwend. 2016, 35, 449–465. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Perera, K.; O’Regan, D. Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Anal. Theory Methods Appl. 2004, 58, 69–73. [Google Scholar] [CrossRef]
- Bonanno, G. A critical points theorem and nonlinear differential problems. J. Glob. Optim. 2004, 28, 249–258. [Google Scholar] [CrossRef]
- Bonanno, G.; Candito, P. Nonlinear difference equations investigated via critical point methods. Nonlinear Anal. 2009, 70, 3180–3186. [Google Scholar] [CrossRef]
- Nastasi, A.; Vetro, C.; Vetro, F. Positive solutions of discrete boundary value problems with the (p,q)-Laplacian operator. Electron. J. Differ. Equ. 2017, 2017, 1–12. [Google Scholar]
- Bonanno, G.; Livrea, R.; Mawhin, J. Existence results for parametric boundary value problems involving the mean curvature operator. Nonlinear Differ. Equ. Appl. NoDEA 2015, 22, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Bonheure, D.; Habets, P.; Obersnel, F.; Omari, P. Classical and non-classical solutions of a prescribed curvature equation. J. Differ. Equ. 2007, 243, 208–237. [Google Scholar] [CrossRef]
- Corsato, C.; Obersnel, F.; Omari, P.; Rivetti, S. Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl. 2013, 405, 227–239. [Google Scholar] [CrossRef]
- Dai, G. Global bifurcation for problem with mean curvature operator on general domain. Nonlinear Differ. Equ. Appl. NoDEA 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Mawhin, J. Periodic solutions of second order nonlinear difference systems with ϕ-Laplacian: A variational approach. Nonlinear Anal. 2012, 75, 4672–4687. [Google Scholar] [CrossRef]
- Zhou, Z.; Ling, J. Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian. Appl. Math. Lett. 2019, 91, 28–34. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhou, Z. Existence of Three Solutions for a Nonlinear Discrete Boundary Value Problem with ϕc-Laplacian. Symmetry 2020, 12, 1839. https://doi.org/10.3390/sym12111839
Chen Y, Zhou Z. Existence of Three Solutions for a Nonlinear Discrete Boundary Value Problem with ϕc-Laplacian. Symmetry. 2020; 12(11):1839. https://doi.org/10.3390/sym12111839
Chicago/Turabian StyleChen, Yanshan, and Zhan Zhou. 2020. "Existence of Three Solutions for a Nonlinear Discrete Boundary Value Problem with ϕc-Laplacian" Symmetry 12, no. 11: 1839. https://doi.org/10.3390/sym12111839
APA StyleChen, Y., & Zhou, Z. (2020). Existence of Three Solutions for a Nonlinear Discrete Boundary Value Problem with ϕc-Laplacian. Symmetry, 12(11), 1839. https://doi.org/10.3390/sym12111839