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Abstract: We show that the method developed by Gangopadhyaya, Mallow, and their coworkers
to deal with (translational) shape invariant potentials in supersymmetric quantum mechanics and
consisting in replacing the shape invariance condition, which is a difference-differential equation,
which, by an infinite set of partial differential equations, can be generalized to deformed shape
invariant potentials in deformed supersymmetric quantum mechanics. The extended method is
illustrated by several examples, corresponding both to h̄-independent superpotentials and to a
superpotential explicitly depending on h̄.
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1. Introduction

Exactly solvable (ES) Schrödinger equations (SE) allow us to understand some physical
phenomena and to test some approximation schemes. Supersymmetric quantum mechanics
(SUSYQM) [1–4] is known to be a very powerful method for generating such ES models, especially
whenever the corresponding potential is (translationally) shape invariant (SI) [5]. SUSYQM may be
considered as a modern version of the old Darboux transformation [6] and of the factorization method
used by Schrödinger [7–9] and by Infeld and Hull [10].

Some ten years ago, the list of (translational) SI potentials, whose bound-state wavefunctions
can be expressed in terms of classical orthogonal polynomials (COP) [1] has been completed (see [11]
and references quoted therein) by introducing [12–15] some rational extensions of these potentials,
connected with the novel field of exceptional orthogonal polynomials (EOP) [16]. The latter are
polynomial sets which are orthogonal and complete, but, in contrast with COP, admit a finite number
of gaps in the sequence of their degrees.

ES models for some unconventional SE are also very interesting. These unconventional
equations may be of three different kinds. They may occur whenever the standard commutation
relations are replaced by deformed ones, associated with nonzero minimal uncertainties in position
and/or momentum [17–19], as suggested by several investigations in string theory and quantum
gravity [20]. They may also appear whenever the constant mass of the conventional SE is replaced by
a position-dependent mass (PDM). The latter is an essential ingredient in the study of electronic
properties of semiconductor heterostructures [21,22], quantum wells and quantum dots [23,24],
helium clusters [25], graded crystals [26], quantum liquids [27], metal clusters [28], nuclei [29,30],
nanowire structures [31], and neutron stars [32]. A third possibility corresponds to the replacement
of the Euclidean space by a curved one. The study of the Kepler–Coulomb problem on the sphere
dates back to the work of Schrödinger [7], Infeld [33], and Stevenson [34], and was generalized to a
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hyperbolic space by Infeld and Schild [35]. Since then, many studies have been devoted to this topic
(see [36,37]).

As shown elsewhere [38], there are some intimate connections between these three types of
unconventional SE, occurring whenever a specific relation exists between the deforming function f (x),
the PDM m(x), and the (diagonal) metric tensor g(x). Such unconventional SE may then be discussed
in the framework of deformed SUSYQM (DSUSYQM), where the standard SI condition is replaced
by a deformed one (DSI) [39,40]. On starting from the known superpotentials of SI potentials [1],
a procedure has been devised in [39] to maintain the solvability of the DSI condition, thereby resulting
in a list of deformed superpotentials and deforming functions giving rise to bound-state spectra.
In such a deformed case, physically acceptable wavefunctions have not only to be square integrable
on the defining interval of the potential, but also must ensure the Hermiticity of the Hamiltonian.
More recently [41], this list of deformed superpotentials and deforming functions has been completed
by considering the case of some rationally-extended potentials, connected with one-indexed families
of EOP.

In the case of conventional SUSYQM, Gangopadhyaya, Mallow, and their coworkers proposed
an interesting approach to SI potentials, consisting in replacing the SI condition, which is a
difference-differential equation, by an infinite set of partial differential equations. The latter is obtained
by expanding the superpotential in powers of h̄ and expressing that the coefficient of each power must
separately vanish [42]. This procedure enabled them to prove that the SI superpotentials connected
with COP are those with no explicit dependence on h̄, while the new ones related to EOP have such an
explicit dependence [43]. They also showed that the list of the former given in [1] is complete [44] and
constructed a novel example of SI superpotential with an explicit h̄-dependence [45]. Furthermore,
they encountered a pathway for going from those superpotentials of [1] corresponding to SE that
can be reduced to the confluent hypergeometric equation to those related to SE connected with the
hypergeometric equation [46].

It is the purpose of the present paper to propose an extension of the approach of Gangopadhyaya,
Mallow, and their coworkers to the case of DSI potentials in DSUSYQM, both without and with
explicit dependence of the superpotential on h̄. We plan to illustrate this method by re-examining
the known pairs of deformed superpotentials and deforming functions of [39–41] along these lines.
In the present work, we restrict ourselves to unbroken DSUSYQM and only consider the discrete part
of the spectrum.

After reviewing the general formalism of DSUSYQM and obtaining the DSI condition in Section 2,
we will show in Section 3 how to convert such a condition into a set of partial differential equations
in the case where the superpotential does not contain any dependence on h̄. The case where the
superpotential has such an explicit dependence is then treated in Section 4. Finally, Section 5 contains
the conclusion.

2. Deformed Shape Invariance in Deformed Supersymmetric Quantum Mechanics

In DSUSYQM [39–41], a general Hamiltonian H− is written in terms of linear operators

A± = A±(a) = ∓h̄
√

f (x)
d

dx

√
f (x) + W(x, a), (1)

where f (x) is some positive-definite function of x, known as the deforming function, and W(x, a) is
a real function of x and a parameter a, called the superpotential. Both f (x) and W(x, a) in general
depend on some extra parameters. The Hamiltonian H− is given by

H− = A+A− = −h̄2
√

f (x)
d

dx
f (x)

d
dx

√
f (x) + V−(x, a), (2)
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where

V−(x, a) = W2(x, a)− h̄ f (x)
dW(x, a)

dx
. (3)

It may be interpreted [38] as a Hamiltonian describing a PDM system with m(x) = 1/ f 2(x),
the ordering of the latter and the differential operator d/dx being that proposed by Mustafa
and Mazharimousavi [47], or as a Hamiltonian in a curved space with a diagonal metric tensor
g(x) = 1/ f 2(x).

The product of operators A−A+ generates the so-called partner of H−,

H+ = A−A+ = −h̄2
√

f (x)
d

dx
f (x)

d
dx

√
f (x) + V+(x, a), (4)

with

V+(x, a) = W2(x, a) + h̄ f (x)
dW(x, a)

dx
. (5)

The pair of Hamiltonians intertwine with A+ and A− as

A−H− = H+A−, A+H+ = H−A+. (6)

The Hamiltonian H− is assumed to have a ground-state wavefunction ψ
(−)
0 (x, a), such that

A−ψ
(−)
0 (x, a) = 0. (7)

From (1) and (2), the latter is therefore such that E(−)
0 = 0 and

ψ
(−)
0 (x, a) =

N(−)
0√
f (x)

exp
(
−
∫ x W(x′, a)

h̄ f (x′)
dx′
)

, (8)

where N(−)
0 is the normalization coefficient.

The intertwining relations (6) then imply the following isospectrality relationships among the
eigenvalues and eigenfunctions of the two partners,

E(−)
n+1 = E(+)

n , (9)

ψ
(+)
n (x, a) =

A−√
E(+)

n

ψ
(−)
n+1(x, a), ψ

(−)
n+1(x, a) =

A+√
E(+)

n

ψ
(+)
n (x, a), (10)

for all n ≥ 0 such that physically acceptable wavefunctions exist. In the deformed case considered
here, this imposes that they satisfy two conditions [39]:
(i) As for conventional SE, they should be square integrable on the (finite or infinite) interval of
definition (x1, x2) of the potentials V±(x, a)—i.e.,∫ x2

x1

dx |ψ(±)
n (x, a)|2 < ∞. (11)

(ii) They should ensure the Hermiticity of H±. This amounts to the condition

|ψ(±)
n (x, a))|2 f (x)→ 0 for x → x1 and x → x2, (12)

which implies an additional restriction whenever f (x) → ∞ for x → x1 and/or x → x2.
Equations (11) and (12) ensure the self-adjointness of H± and guarantee the relation (A±)† = A∓.
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The knowledge of the eigenvalues and eigenfunctions of H− automatically implies the same for
its partner H+ (or vice versa). However, whenever the partner potentials V− and V+ are similar in
shape and differ only in the parameters that appear in them—i.e.,

V+(x, a0) + g(a0) = V−(x, a1) + g(a1), (13)

where a1 is some function of a0 and g(a0), g(a1) do not depend on x, then the spectrum of either
Hamiltonian can be derived without reference to its partner. Here we restrict ourselves to the case
of translational (or additive) shape invariance—i.e., a1 and a0 only differ by some additive constant.
Considering then a set of parameters ai, i = 0, 1, 2, . . ., and extending condition (13) to

V+(x, ai) + g(ai) = V−(x, ai+1) + g(ai+1), i = 0, 1, 2, . . . , (14)

we get from Equations (3) and (5) the so-called DSI condition

W2(x, ai) + h̄ f (x)
dW(x, ai)

dx
+ g(ai) = W2(x, ai+1)− h̄ f (x)

dW(x, ai+1)

dx
+ g(ai+1). (15)

The eigenvalues and eigenfunctions of H− turn out to be given by

E(−)
n (a0) = g(an)− g(a0), n = 0, 1, 2, . . . , (16)

ψ
(−)
n (x, a0) ∝ A+(a0)A+(a1) . . . A+(an−1)ψ

(−)
0 (x, an), n = 0, 1, 2, . . . , (17)

with ψ
(−)
0 (x, an) as expressed in (8).

3. Deformed Shape Invariance for Superpotentials with no Explicit Dependence on h̄

As in [42–46], let us assume that the additive constant that allows us to get ai+1 from ai is just
h̄—i.e., ai+1 = ai + h̄. Note that, with respect to conventions used elsewhere where the system of units
is such that h̄ = 1, this implies some parameter re-normalization. In Appendix A, we summarize the
transformations that have to be carried out on the parameters and possibly the variable used in [39–41]
in order to arrive at the conventions employed here.

In the present section, we will also suppose that the dependence of W(x, ai) on h̄ is entirely
contained in ai, thus leaving the case of an explicit dependence of W on h̄ to Section 4.

Since Equation (15) must hold for an arbitrary value of h̄, we can expand it in powers of h̄ and
require that the coefficient of each power vanishes. It is straightforward to show that the coefficient of
h̄ leads to the condition

W
∂W
∂a
− f (x)

∂W
∂x

+
1
2

dg
da

= 0. (18)

Then, the coefficient of h̄2 yields

∂

∂a

[
W

∂W
∂a
− f (x)

∂W
∂x

+
1
2

dg
da

]
= 0, (19)

which is automatically satisfied if Equation (18) is so. Finally, the coefficient of h̄n for n ≥ 3
gives the condition

(2− n) f (x)
n!

∂nW
∂an−1∂x

= 0, n = 3, 4, . . . . (20)

This set of equations is satisfied, provided

∂3W
∂a2∂x

= 0. (21)
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We are therefore left with two independent conditions (18) and (21). This is similar to what
happens in SUSYQM [43,44], the only difference being the appearance of the deforming function f (x)
in the first equation.

Before giving the set of results, we shall discuss in detail two examples, a simple one and a more
involved one.

3.1. Example of the Pöschl-Teller Potential

Let us consider a deforming function f (x) = 1 + α sin2 x with −1 < α 6= 0 and −π
2 < x < π

2 ,
as well as a superpotential

W(x, a) = (1 + α)a tan x, −π

2
< x <

π

2
, (22)

where
a =

1
2(1 + α)

[(1 + α)h̄ + ∆], ∆ =
√
(1 + α)2h̄2 + 4A(A− h̄), A > h̄. (23)

We note that this W automatically satisfies Equation (21) and that, on inserting it in Equation (18),
we obtain

dg
da

= 2(1 + α)a, (24)

from which g(a) = (1 + α)a2, up to some additive constant.
From Equation (3), the starting potential can be written as

V−(x, a) = (1 + α)2a(a− h̄) sec2 x− (1 + α)a[(1 + α)a− h̄α]

= A(A− h̄) sec2 x−
{

A(A− h̄) +
1
2

h̄[(1 + α)h̄ + ∆]
}

, (25)

and therefore corresponds to the Pöschl–Teller (PT) potential V = A(A− h̄) sec2 x with ground-state
energy E0 = A(A− h̄) + 1

2 h̄[(1 + α)h̄ + ∆]. On the other hand, from (16), we get

E(−)
n = g(a + nh̄)− g(a) = h̄2(1 + α)n(n + 1) + h̄∆n. (26)

The results obtained here may be compared with those derived in [40] for V̄ = Ā(Ā− 1) sec2 x̄,
with bound-state energies Ēn = (E(−)

n + E0)/h̄2 = (λ̄ + n)2 − ᾱ(λ̄− n2), where λ̄ = (1 + ᾱ)a/h̄ is
changed into λ̄ + 1 + ᾱ when going to the partner.

3.2. Example of the Radial Harmonic Oscillator Potential

Let us now consider a deforming function f (x) = 1 + αx2 with α > 0 and 0 < x < ∞,
as well as a superpotential

W(x, a) = a
(
− 1

x
+ αx

)
− b

(
1
x
+ αx

)
, 0 < x < ∞, (27)

where

a =
1
2

(
l + 1 +

1
2

h̄ +
∆
2α

)
, b =

1
2

(
l + 1− 1

2
h̄− ∆

2α

)
,

∆ =

√
ω2 + h̄2α2, ω > 0, l = 0, 1, 2, . . . . (28)
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Here, when going to the partner, a is assumed to change into a + h̄, while b remains constant.
This W automatically satisfies Equation (21) again and Equation (18) leads to

dg
da

= 8αa, (29)

from which g(a) = 4αa2, up to some additive constant.
Equation (3) shows that the starting potential is given by

V−(x, a) = α2(a− b)(a− b− h̄)x2 +
(a + b)(a + b− h̄)

x2 − 2α(a2 − b2 + h̄a)

=
1
4

ω2x2 +
(l + 1)(l + 1− h̄)

x2 −
[(

l + 1 +
h̄
2

)
∆ + h̄α

(
2l + 2 +

1
2

h̄
)]

(30)

and therefore corresponds to the radial harmonic oscillator (RHO) potential V = 1
4 ω2x2 + (l+1)(l+1−h̄)

x2

with ground-state energy E0 =
(

l + 1 + h̄
2

)
∆ + h̄α

(
2l + 2 + 1

2 h̄
)

. Furthermore, Equation (16) leads to

E(−)
n = g(a + nh̄)− g(a) = 4h̄αn

[(
n +

1
2

)
h̄ + l + 1

]
+ 2h̄n∆. (31)

These results are comparable with those obtained in [40] for V̄ = 1
4 ω̄2 x̄2 + l̄(l̄ + 1)/x̄2 with

bound-state energies Ēn = E(−)
n + E0 = 2λ̄µ̄− ᾱλ̄ + µ̄− 4(ᾱλ̄− µ̄)n + 4ᾱn2, where λ̄ = −(a + b)/h̄

and µ̄ = (a− b)h̄α are changed into λ̄− 1 and µ̄ + ᾱ when going to the partner, respectively.

3.3. Lists of Results

On proceeding, as in Sections 3.1 and 3.2, we analyzed the other sets of potentials and deforming
functions considered in [39–41]. They include the Scarf I (S), radial Coulomb (C), Morse (M), Eckart (E),
Rosen-Morse I (RM), shifted harmonic oscillator (SHO), deformed radial harmonic oscillator (DRHO),
and deformed radial Coulomb (DC) potentials. The list of them is given in Table 1 in the notations
used in this paper. In all the cases, except for the PT and DC potentials, the deformed superpotential is
written in terms of two combinations of parameters, the first one a being changed into a + h̄ and the
second one b remaining constant when going to the partner. The corresponding results are listed in
Table 2. In all cases, it turns out that Equation (21) is automatically satisfied, while Equation (18) leads
to the expressions of g(a) listed in Table 3, together with the resulting energies E(−)

n .

Table 1. Potentials and deforming functions.

Name V f

PT A(A− h̄) sec2 x 1 + α sin2 x

−π
2 < x < π

2 , A > h̄ −1 < α 6= 0

RHO 1
4 ω2x2 + (l+1)(l+1−h̄)

x2 1 + αx2

0 < x < +∞ α > 0

S [A(A− h̄) + B2] sec2 x− B(2A− h̄) sec x tan x 1 + α sin x

−π
2 < x < π

2 , A− h̄ > B > 0 0 < |α| < 1

C − e2

x + (l+1)(l+1−h̄)
x2 1 + αx

0 < x < +∞ α > 0

M B2e−2x − B(2A + h̄)e−x 1 + αe−x

−∞ < x < +∞, A, B > 0 α > 0
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Table 1. Cont.

Name V f

E A(A− h̄) csch2 x− 2B coth x 1 + αe−x sinh x

0 < x < +∞, A ≥ 3
2 h̄, B > A2 −2 < α 6= 0

RM A(A− h̄) csc2 x + 2B cot x 1 + sin x(α cos x + β sin x)

0 < x < π, A ≥ 3
2 h̄ |α|

2 <
√

1 + β, β > −1

SHO 1
4 ω2

(
x− 2d

ω

)2
1 + αx2 + 2βx

−∞ < x < +∞ α > β2 ≥ 0

DRHO ω(ω+2h̄λ)x2

4(1+λx2)
+ (l+1)(l+1−h̄)

x2

√
1 + λx2

0 < x < +∞ if λ > 0

0 < x < 1/
√
|λ| if λ < 0

DC − e2

x

√
1 + λx2 + (l+1)(l+1−h̄)

x2

√
1 + λx2

0 < x < +∞ if λ > 0

0 < x < 1/
√
|λ| if λ < 0

Table 2. Superpotentials and combinations of parameters.

Name W Parameters

PT (1 + α)a tan x a = 1
2(1+α)

[(1 + α)h̄ + ∆]

∆ =
√
(1 + α)2h̄2 + 4A(A− h̄)

RHO a
(
− 1

x + αx
)
− b

(
1
x + αx

)
a = 1

2

(
l + 1 + 1

2 h̄ + ∆
2α

)
b = 1

2

(
l + 1− 1

2 h̄− ∆
2α

)
∆ =

√
ω2 + h̄2α2

S a(tan x + α sec x) a = 1
2

(
h̄ + α−1

2α ∆+ + α+1
2α ∆−

)
+b(tan x− α sec x) b = 1

4α [(α + 1)∆+ + (α− 1)∆−]

∆± =
√

1
4 h̄2(1∓ α)2 + (A± B)(A± B− h̄)

C − a+b
x + 2b

a+b −
α
2 (a + b) a = − 1

4{e
2 + (l + 1)[α(l + 1− h̄)− 4]}

b = 1
4 [e

2 + α(l + 1)(l + 1− h̄)]

M −α(a + b)e−x − 1
2 (a + b) a = − 1

4h̄α{B
2 + α[B(2A + h̄)− 2h̄2]− 2h̄∆}

+ 2h̄b
α(a+b)

b = B
4h̄α [B + α(2A + h̄)]

∆ =
√

4B2 + h̄2α2

E −(a + b) coth x + 2h̄b
a+b

a = 1
2h̄ [−B + 2h̄A− α

2 A(A− h̄)]

− α
2 (a + b) b = 1

2h̄ [B + α
2 A(A− h̄)]

RM −(a + b) cot x + 2h̄b
a+b

a = 1
2h̄ [B + 2h̄A− α

2 A(A− h̄)]

− α
2 (a + b) b = 1

2h̄ [−B + α
2 A(A− h̄)]
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Table 2. Cont.

Name W Parameters

SHO (a + b)(αx + β) a = h̄
2

(
−h̄ β

4α ω2 + 1 + ∆
h̄α −

d
2 h̄ω

)
− 2b

h̄2α(a+b)
b = 1

2 h̄2ω
(

β
4α ω + d

2

)
∆ =

√
ω2 + h̄2α2

DRHO a
(
− 1

x f − λx
f

)
a = 1

2
(
l + 1− ω

2λ

)
+b
(
− 1

x f + λx
f

)
b = 1

2
(
l + 1 + ω

2λ

)
DC − a

x f + e2

2a a = l + 1

Table 3. Functions g(a) and bound-state energies.

Name g E(−)
n

PT (1 + α)a2 h̄2(1 + α)n(n + 1) + h̄∆n

RHO 4αa2 4h̄αn
[(

n + 1
2

)
h̄ + l + 1

]
+ 2h̄n∆

S (1− α2)a2 h̄2(1− α2)n(n + 1) + h̄ [(1 + α)∆+ + (1− α)∆−] n

+2(1 + α2)ab

C − 4b2

(a+b)2 h̄n(h̄n + 2l + 2)[e2 − h̄α(l + 1)(n + 1)]

− α2

4 a(a + 2b) ×[e2 + α(l + 1)(h̄n + 2l + 2− h̄)]

×[4(l + 1)2(l + 1 + nh̄)2]−1

M − 4h̄2b2

α2(a+b)2 h̄n[∆ + h̄α(n + 1)][2B(2A + h̄)− h̄(∆ + αh̄)(n + 1)]

− 1
4 a(a + 2b) ×[4B2 + 2αB(2A + h̄) + h̄α(∆ + h̄α)(n + 1)]

×(∆ + h̄α)−2[∆ + (2n + 1)h̄α]−2

E − 4h̄2b2

(a+b)2 h̄n(2A + nh̄)[4A2(A + nh̄)2]−1

− 1
4 (α + 2)2a(a + 2b) ×{2B + 2A(A + nh̄) + αA[2A + (n− 1)h̄]}

×[2B− 2A(A + nh̄)− h̄αA(n + 1)]

RM − 4h̄2b2

(a+b)2 h̄n(2A + nh̄)[4A2(A + nh̄)2]−1

− 1
4 (α

2 − 4β− 4)a(a + 2b) ×{4A2(A + nh̄)2 + 4B2 − 4αBA(A− h̄)

−h̄α2 A2[2A− h̄ + n(2A + nh̄)]− 4βA2(A + nh̄)2}

SHO − 4b2

h̄4α2(a+b)2 4n[∆ + (n + 1)h̄α]

+(α− β2)a(a + 2b) ×{(∆ + h̄α)[∆ + h̄α(2n + 1)]}−2

×{h̄3α(α− β2)(n + 1)[2h̄2α2(n + 1) + ω2(n + 2)]

+dω2(β + h̄αd) + 1
4 h̄ω4

+h̄2∆(α− β2)(n + 1)[2h̄2α2(n + 1) + ω2]}

DRHO −4λa2 2nh̄ω− 4h̄λn(l + 1 + h̄n)

DC −λa2 − e4

4a2 nh̄(2l + 2 + nh̄)

×
(
−λ + e4

4(l+1)2(l+1+nh̄)2

)
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4. Deformed Shape Invariance for Superpotentials with an Explicit Dependence on h̄

Let us next consider the case where the superpotential contains an explicit dependence on h̄.
It may then be expanded in powers of h̄ as

W(x, a, h̄) =
∞

∑
n=0

h̄nWn(x, a). (32)

On inserting this expression in the DSI condition (15) and proceeding as in conventional
SUSYQM [43,44], we arrive at the set of relations

n

∑
k=0

WkWn−k + f
∂Wn−1

∂x
−

n

∑
s=0

s

∑
k=0

1
(n− s)!

∂n−s

∂an−s WkWs−k

+ f
n

∑
k=1

1
(k− 1)!

∂k

∂ak−1∂x
Wn−k −

1
n!

dng
dan = 0, n = 1, 2, . . . . (33)

The latter can be rewritten as

2 f
∂W0

∂x
− ∂

∂a
(W2

0 + g) = 0, (34)

f
∂W1

∂x
− ∂

∂a
(W0W1) = 0, (35)

2 f
∂Wn−1

∂x
−

n−1

∑
s=1

s

∑
k=0

1
(n− s)!

∂n−s

∂an−s WkWs−k +
n− 2

n!
f

∂nW0

∂an−1∂x

+ f
n−1

∑
k=2

1
(k− 1)!

∂k

∂ak−1∂x
Wn−k = 0, n = 3, 4, . . . . (36)

In [41], two sets of rational extensions of the DRHO potential with λ < 0 considered in Section 3,
referred to as type I and type II extensions, were constructed in terms of some Jacobi polynomials of
degree m. The potentials belonging to these two sets were shown to be derived from superpotentials
satisfying the DSI condition. The simplest potentials, corresponding to m = 1, turn out to be identical
and given by (after changing the parameters and the variable, as explained in Appendix A)

V =
ω(ω− 2h̄|λ|)x2

4(1− |λ|x2)
+

(l + 1)(l + 1− h̄)
x2 + 4h̄2

(
ω + 2|λ|(l + 1− h̄)

[ω− 2|λ|(l + 1)]x2 + 2l + 2− h̄

− 2(2l + 2− h̄)(ω− h̄|λ|)
{[ω− 2|λ|(l + 1)]x2 + 2l + 2− h̄}2

)
, (37)

with a corresponding superpotential

W =
ωx

2
√

1− |λ|x2
− l + 1

x

√
1− |λ|x2 + 2h̄[ω− 2(l + 1)|λ|]x

√
1− |λ|x2

×
(

1
[ω− 2(l + 1)|λ|]x2 + 2l + 2− h̄

− 1
[ω− 2(l + 1)|λ|]x2 + 2l + 2 + h̄

)
. (38)

Let us show that such a superpotential can be derived by the present method.
For such a purpose, we plan to prove that for

f =
√

1− |λ|x2, a =
1
2

(
l + 1 +

ω

2|λ|

)
, b =

1
2

(
l + 1− ω

2|λ|

)
, (39)
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the functions

W0(x, a) = − a + b
x

f +
(a− b)|λ|x

f
, (40)

W2ν+1(x, a) = 0, ν = 0, 1, 2, . . . , (41)

W2ν(x, a) = − f
16b|λ|x

(4b f 2 + 2a− 2b)2ν
, ν = 1, 2, . . . , (42)

provide a solution of the set of Equations (34)–(36). Note that, as in Section 3, the combinations of
parameters a and b become a + h̄ and b for the partner, respectively.

Let us start with Equation (34). From (40), we get

∂W0

∂x
=

a + b
x2 f +

(a + b)|λ|
f

+
(a− b)|λ|

f 3 , (43)

∂W0

∂a
= − 1

x
f +
|λ|x

f
, (44)

from which we obtain dg
da = 8a|λ| and g = 4a2|λ| up to some additive constant. Hence, from

Equation (16),

E(−)
n = 4h̄|λ|n(nh̄ + 2a) = 4h̄|λ|n

(
nh̄ + l + 1 +

ω

2|λ|

)
, (45)

in agreement with the result obtained in [41].
Equation (35) is automatically satisfied since W1 = 0.
Considering next Equation (36), we note that

∂nW0

∂an−1∂x
= 0, n = 3, 4, . . . , (46)

and that
s

∑
k=0

WkWs−k = 0 for odd s. (47)

For even s, on the other hand, we easily get

s

∑
k=0

WkWs−k = Fs, (48)

with Fs defined by

Fs =
32b|λ|

(4b f 2 + 2a− 2b)s {−4b(s− 2) f 4 + [2a + 4b(s− 2)] f 2 − a + b}. (49)

From this result, it is straightforward to prove that

∂n−s

∂an−s

s

∑
k=0

WkWs−k = (−2)n−s (n− 2)!
(s− 2)!

Fn for even s. (50)

Equations (47) and (50) then lead to

n−1

∑
s=1

s

∑
k=0

1
(n− s)!

∂n−s

∂an−s WkWs−k = Fn ×
{

1
2 (3

n−2 − 1) for even n,

− 1
2 (3

n−2 + 1) for odd n.
. (51)
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Furthermore, we obtain

2 f
∂Wn−1

∂x
=

{
0 for even n,

−2Fn for odd n,
. (52)

as well as

f
n−1

∑
k=2

1
(k− 1)!

∂k

∂ak−1∂x
Wn−k = Fn ×

{
1
2 (3

n−2 − 1) for even n,

− 1
2 (3

n−2 − 3) for odd n.
. (53)

On inserting Equations (46), (51), (52), and (53) in Equation (36), it is clear that the latter is satisfied,
which completes the proof that Equations (40)–(42) provide a solution of Equations (34)–(36).

It now only remains to use Equations (40) and (42) in

W(x, a, h̄) =
∞

∑
ν=0

h̄2νW2ν(x, a) (54)

to obtain

W(x, a, h̄) =
(a− b)|λ|x

f
− a + b

x
f − 8h̄b|λ|x f

(
1

4b f 2 + 2a− 2b− h̄

− 1
4b f 2 + 2a− 2b + h̄

)
, (55)

which, after introducing the definitions of f , a, and b, given in (39), reduces to the expression (38)—i.e.,
the extended superpotential found in [41].

5. Conclusions

In this paper, we have shown that the approach of Gangopadhyaya, Mallow, and their coworkers
of SI potentials in conventional SUSYQM can be extended to DSI ones in DSUSYQM and we have
illustrated our results by considering several examples taken from [39–41]. These include both
conventional potentials, for which the corresponding superpotential has no explicit dependence on h̄,
and a rationally-extended one, for which there is such a dependence. In all cases, it turns out that the
parameter a, which is changed into a + h̄ when going to the partner potential, is a combination of the
potential and deforming function parameters.

An interesting open question for future investigation would be the possibility of generalizing the
method to rationally-extended potentials exhibiting an “enlarged” shape invariance, for which the
partner is obtained by translating some potential parameter as well as the degree m of the polynomial
arising in the denominator. Such potentials are indeed known both in conventional SUSYQM [48–51]
and in DSUSYQM [41].

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Fonds de la Recherche Scientifique—FNRS under Grant
Number 4.45.10.08.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Going from Previously Used Conventions to the Present Ones

In this appendix, we summarize the changes that have to be carried out to go from the conventions
used in [39–41] to those of the present paper. The quantities employed in the former papers are
distinguished by a bar from those used here. It is worth noting too that in [39–41], the potentials
used have a nonvanishing ground-state energy and must therefore be compared with V = V− + E0,
where E0 is the shift to adjust the ground-state energy of H− to a zero value. As a consequence,
E(−)

n = En − E0 corresponds to Ēn − Ē0.
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Pöschl-Teller potential

V̄ = Ā(Ā− 1) sec2 x, f̄ (x̄) = 1 + ᾱ sin2 x̄,

Ā =
A
h̄

, ᾱ = α, x̄ = x,

V = A(A− h̄) sec2 x = h̄2V̄, f (x) = 1 + α sin2 x = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A1)

Radial Harmonic Oscillator potential

V̄ =
1
4

ω̄2 x̄2 +
l̄(l̄ + 1)

x̄2 , f̄ (x̄) = 1 + ᾱx̄2,

ω̄ = h̄ω, l̄ =
l + 1

h̄
− 1, ᾱ = h̄2α, x̄ =

x
h̄

,

V =
1
4

ω2x2 +
(l + 1)(l + 1− h̄)

x2 = V̄, f (x) = 1 + αx2 = f̄ (x̄),

W = W̄, En = Ēn.

(A2)

Scarf I potential

V̄ = [Ā(Ā− 1)] + B̄2] sec2 x̄− B̄(2Ā− 1) sec x̄ tan x̄, f̄ (x̄) = 1 + ᾱ sin x̄,

Ā =
A
h̄

, B̄ =
B
h̄

, ᾱ = α, x̄ = x,

V = [A(A− h̄) + B2] sec2 x− B(2A− h̄) sec x tan x = h̄2V̄,

f (x) = 1 + α sin x = f̄ (x̄), W = h̄W̄, En = h̄2Ēn.

(A3)

Coulomb potential

V̄ = −2Z̄
x̄

+
l̄(l̄ + 1)

x̄2 , f̄ (x̄) = 1 + ᾱx̄,

Z̄ =
e2

2h̄
, l̄ =

l + 1
h̄
− 1, ᾱ = h̄α, x̄ =

x
h̄

,

V = − e2

x
+

(l + 1)(l + 1− h̄)
x2 = V̄, f (x) = 1 + αx = f̄ (x̄),

W = W̄, En = Ēn.

(A4)

Morse potential

V̄ = B̄2e−2x̄ − B̄(2Ā + 1)e−x̄, f̄ (x̄) = 1 + ᾱe−x̄,

Ā =
A
h̄

, B̄ =
B
h̄

, ᾱ = α, x̄ = x,

V = B2e−2x − B(2A + h̄)e−x = h̄2V̄, f (x) = 1 + αe−x = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A5)

Eckart potential

V̄ = Ā(Ā− 1) csch2 x̄− 2B̄ coth x̄, f̄ (x̄) = 1 + ᾱe−x̄ sinh x̄,

Ā =
A
h̄

, B̄ =
B
h̄2 , ᾱ = α, x̄ = x,

V = A(A− h̄) csch2 x− 2B coth x = h̄2V̄, f (x) = 1 + αe−x sinh x = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A6)



Symmetry 2020, 12, 1853 13 of 15

Rosen-Morse I potential

V̄ = Ā(Ā− 1) csc2 x̄ + 2B̄ cot x̄, f̄ (x̄) = 1 + sin x̄(ᾱ cos x̄ + β̄ sin x̄),

Ā =
A
h̄

, B̄ =
B
h̄2 , ᾱ = α, β̄ = β, x̄ = x,

V = A(A− h̄) csc2 x + 2B cot x = h̄2V̄, f (x) = 1 + sin x(α cos x + β sin x) = f̄ (x̄),

W = h̄W̄, En = h̄2Ēn.

(A7)

Shifted Harmonic Oscillator potential

V̄ =
1
4

ω̄2
(

x̄− 2d̄
ω̄

)2

, f̄ (x̄) = 1 + ᾱx̄2 + 2β̄x̄,

ω̄ = h̄ω, d̄ = d, ᾱ = h̄2α, β̄ = h̄β, x̄ =
x
h̄

,

V =
1
4

ω2
(

x− 2d
ω

)2
= V̄, f (x) = 1 + αx2 + 2βx = f̄ (x̄),

W = W̄, En = Ēn.

(A8)

Deformed Radial Harmonic Oscillator potential

V̄ =
ω̄(ω̄ + 2λ̄)x̄2

4(1 + λ̄x̄2)
+

l̄(l̄ + 1)
x̄2 , f̄ (x̄) =

√
1 + λ̄x̄2,

ω̄ = h̄ω, l̄ =
l + 1

h̄
− 1, λ̄ = h̄2λ, x̄ =

x
h̄

,

V =
ω(ω + 2h̄λ)x2

4(1 + λx2)
+

(l + 1)(l + 1− h̄)
x2 = V̄, f (x) =

√
1 + λx2 = f̄ (x̄),

W = W̄, En = Ēn.

(A9)

Deformed Coulomb potential

V̄ = − Q̄
x̄

√
1 + λ̄x̄2 +

l̄(l̄ + 1)
x̄2 , f̄ (x̄) =

√
1 + λ̄x̄2,

Q̄ =
e2

h̄
, l̄ =

l + 1
h̄
− 1, λ̄ = h̄2λ, x̄ =

x
h̄

,

V = − e2

x

√
1 + λx2 +

(l + 1)(l + 1− h̄)
x2 = V̄, f (x) =

√
1 + λx2 = f̄ (x̄),

W = W̄, En = Ēn.

(A10)
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