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Abstract: As a novel meta-heuristic algorithm, the Whale Optimization Algorithm (WOA) has
well performance in solving optimization problems. However, WOA usually tends to trap in local
optimal and it suffers slow convergence speed for large-scale and high-dimension optimization
problems. A modified whale optimization algorithm with single-dimensional swimming (abbreviated
as SWWOA) is proposed in order to overcome the shortcoming. First, tent map is applied to generate
the initialize population for maximize search ability. Second, quasi-opposition learning is adopted
after every iteration for further improving the search ability. Third, a novel nonlinearly control
parameter factor that is based on logarithm function is presented in order to balance exploration and
exploitation. Additionally, the last, single-dimensional swimming is proposed in order to replace
the prey behaviour in standard WOA for tuning. The simulation experiments were conducted
on 20 well-known benchmark functions. The results show that the proposed SWWOA has better
performance in solution precision and higher convergence speed than the comparison methods.

Keywords: whale optimization algorithm; quasi-opposition learning; tent map; single-dimensional
swimming; nonlinearly convergence factor

1. Introduction

With the development of technology, increasing global optimization problems have to be solved
in various fields, such as economic scheduling, aerospace, signal processing, artificial intelligence,
mechanical design, chemical engineering [1–3], etc. In general, optimization problems with typical
mathematical characteristics can be solved by traditional algorithms and the optimal solution is
guaranteed in this case. However, many problems in modern applications have the characteristics of
large-scale, high-dimensional, and lack of typical mathematical characteristics, and they cannot be
solved by traditional optimization algorithms or the solution is too complex to be feasible. For this,
many scholars have conducted research on the meta-heuristic algorithm and have remarkable results.

A meta-heuristic algorithm is an implementation on a specific problem guided by a set of
guidelines or strategies, which adopts the “trial-and-error” mechanism [4]. The “trial-and-error”
mechanism is a method for obtaining a feasible solution at first, and then gradually improve it
by comparing the fitness of feasible solutions, finally approach or obtain the optimal solution.
The meta-heuristic algorithms cannot guarantee to obtain the optimal, but it can obtain a satisfactory
solution within a certain amount of time. The “trial-and-error” mechanism adopted by the meta-heuristic
algorithms ensure that it does not require the problem to have precise mathematical characteristics, and it is
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very adaptable. Motivated by the diversity of engineering applications, many meta-heuristic algorithms
have been proposed, such as the Genetic Algorithm (GA) [5,6], Simulated Annealing (SA) [7,8], and the
subsequently, Ant Colony Optimization (ACO) [9,10], Differential Evolution (DE) [11], Particle Swarm
Optimization (PSO) [12–14], Gravitational Search Algorithm (GSA) [15], and so on. Some of these
meta-heuristic algorithms are called Swarm Intelligent algorithm (SI), which iteratively solve problems
by simulating group collaboration. In recent years, a large number of novel swarm intelligent
optimization algorithms have been proposed in order to meet the challenge of global optimization
problems, such as artificial bee colony optimization (ABC) [16–18], Whale Optimization Algorithm,
(WOA) [19–22], Glowworm Swarm Optimization (GSO) [23,24], Grey Wolf Optimization (GWO) [25],
and Symbiotic Organisms Search (SOS) [26,27], etc.

The meta-heuristic algorithm can generally obtain good results when solving small-scale
optimization problems, but, when targeting some high-dimensional large-scale optimization problems,
there are often two problems: (1) convergence speed slow, which leads to long computation time; and,
(2) it is easy to fall into the local optimum. These two problems are related to each other, the former
is that the approximation speed is too low, which can be improved by improving some parameters
or introducing some mechanisms, while the latter is mainly due to the lack of population diversity,
which is directly related to the final solution quality, and it can be improved by enhancing population
diversity. Many scholars have conducted a lot of work on the shortcomings of meta-heuristic
algorithms, and have obtained good results by improving the standard algorithm or mixing the
standard algorithm with various mechanisms.

Whale Optimization Algorithm is a new meta-heuristic optimization algorithm for simulating
humpback whale hunting behavior proposed by Mirjalili [28] in 2016, and it has been shown that
WOA has better optimization performance when compared to PSO, ABC, and DE algorithms [29],
but it still suffers from slow convergence and low solution accuracy when solving high-dimensional
large-scale optimization problems. In view of this, a lot of work has been done on WOA for improving
the WOA algorithm in order to obtain better performance. In the literature [30], Adel introduces
the concept of leader to guide the population into the optimal solution region, which enhances the
convergence speed of WOA. In [31], Mohamed proposed that chaotic sequences and Opposition-Based
Learning (OBL) are the two most effective ways to improve WOA. The adaptive chaotic sequence
selection method is proposed in the paper in order to improve the diversity of the initial population
and, at the same time, a part of the population is selected to execute the DE algorithm, which finally
results in an improved DEWCO algorithm that is a mixture of WOA and DE. A nonlinear dynamic
control parameter update strategy that is based on a cosine function is proposed in [20] in order to
balance the exploration and tuning ability. Additioanlly, the Lévy flight strategy is used to make the
algorithm jump out of the local optimum and avoid stagnation [22]. In the literature [19], a WOA
based on quadratic interpolation is proposed. The algorithm mainly introduces new parameters,
improves the search process, and balances the convergence speed and solution accuracy. At the
same time, quadratic interpolation is used to search the optimal agent, which improves the solution
accuracy. The literature [21] employs a logistic chaos map in order to improve the distribution of the
initial population in the solution space and a quasi-opposition learning mechanism, in which both the
standard algorithm and the quasi-opposition learning generate and evaluate agents during predation,
and the better agent is retained by comparing the adaptation values of the two agents to improve
the convergence speed. In literature [32], two strategies are used to improve the standard WOA:
(1) random replacement of poorer agents with better ones, which is used to improve the algorithm’s
solution convergence speed, and (2) adaptive double weights, which is used to balance the algorithm’s
early spatial search ability and later local spatial tuning ability. There are three main improvements
in the literature [33]; firstly, a chaotic sequence is introduced for optimizing the initial population.
Subsequently, Gaussian variation is used to maintain the diversity level of the population. Finally,
a “reduced” strategy is used to search near the optimal solution. The literature [34] introduced quantum
behavior in the standard WOA to simulate the hunting process of humpback whales in order to enhance



Symmetry 2020, 12, 1892 3 of 23

the search capability of the algorithm, which is used for feature selection. Although these studies have
improved the standard WOA algorithm to some extent, there are still problems of slow convergence
and low solution accuracy, especially for high-dimensional large-scale optimization problems.

In this paper, a modified WOA algorithm SWWOA based on single-dimensional swimming is
proposed, with four main improvements: (1) the use of tent chaotic sequences to optimize the quality of
the initial population; (2) the introduction of quasi-opposition learning mechanism, any agent updated
position will be learned by quasi-opposition learning, retain the better agent by fitness; (3) the use
of logarithmic function to dynamically update the weights, instead of the original linear weights.
Balancing the between convergence speed and solution quality; and, (4) the single-dimensional
swimming improvement is borrowed from the single-dimensional update of position in the ABC
algorithm, which replaces the full dimensional update in the standard WOA with single-dimensional
improvement in order to further improve the algorithm’s ability.

The rest of paper is organized, as follows. Section 2 introduces the standard whale optimization
algorithm. Section 3 describes the proposed SWWOA algorithm. Simulations and the discussion of
results are shown in Section 4. Finally, Section 5 gives the conclusions.

2. Standard WOA Algorithm

WOA is a novel meta-heuristic optimization algorithm by imitating the hunting mechanism of
humpback whales, which consists of three phases: encircling prey, spiral bubble-net feeding maneuver,
and search for prey [28].

2.1. Encircling Prey (Exploitation Phase)

At this stage, the algorithm sets the current optimal position in the population as the global
optimal, which is, the prey. All of the whales in the population move towards the prey and gradually
shrink to surround the prey, as follows:

−→
D=

∣∣∣C · −→X∗ (t)−−→X (t)
∣∣∣ (1)

−→
X (t+1) =

−→
X∗ (t)−A · −→D (2)

where t represents the current time,
−→
X is the position vector, which represents a feasible solution.

−→
X∗ represents the optimal solution at the current time and |·| represents the absolute value. A and C
are two control parameters, which are calculated, as follows:

A=2ar− a (3)

C=2r (4)

where a is linearly factor from 2 to 0 over the whole iterations (both exploration and exploitation) and r
is a random number in [0, 1].

2.2. Bubble-Net Attacking Method (Exploitation Phase)

At this stage, WOA imitate humpback whales attacking prey with bubble net, which are essentially
spiral search space, whose mathematical model is as follows:

−→
D′=

∣∣∣−→X∗ (t)−−→X (t)
∣∣∣ (5)

−→
X (t+1) =

−→
D′ · ebl · cos (2πl) +

−→
X∗ (t) (6)

where
−→
D′ represents the distance between current whale and the best solution of population. l is

a random number in [−1, 1] and b is a constant used in order to define the shape of the spiral, normally
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is 1. Exploitation phase has bubble-net attacking and encircling prey two methods, each is implemented
with 50% probability. Accordingly, combining the two method, the following formula can be obtained:

−→
X (t+1) =

{ −→
X∗ (t)−A · −→D p < 0.5

−→
X∗ (t) +

−→
D′ · ebl · cos (2πl) p ≥ 0.5

(7)

2.3. Search for Prey (Exploration Phase)

In a standard WOA algorithm, this stage is the mainly phase for exploration, where the
mathematical model is similar to Equations (1) and (2), and the only difference is the use of a random
agent instead of the optimal agent. The formula is as follows:

−→
D=

∣∣∣C · −−→Xrand (t)−
−→
X (t)

∣∣∣ (8)

−→
X (t+1) =

−−→
Xrand (t)−A · −→D (9)

−−→
Xrand denotes a random agent in population, other meanings same to the Section 2.1. It is worth

noting that the scheduling between encircling (exploitation) and search (exploration) is done by the
value of |A|. When |A| < 1, exploitation is selected. When |A| ≥ 1, exploration is selected.

2.4. The Pseudo Code of WOA

When compared with other meta-heuristic algorithms, in addition to the necessary parameters,
such as population size and max iteration times, the WOA algorithm only has one parameter a for
balanced exploitation and exploration, which is a very good advantage. However, from another aspect,
WOA has very few adjustable parameters and it is slightly lacking in flexibility. The pseudo code of
the standard WOA Algorithm 1 is as follows:

Algorithm 1 WOA
01 initialize maxIteration, popsize and parameter b
02 initialize the population and calculate fitness
03 obtain the optimal agent
04 WHILE t<maxIteration DO
05 update a, A, C by Equations (3) and (4)
06 WHILE i<popsize DO
07 generate random number p ∈ [0, 1]
08 IF p < 0.5 THEN
09 IF |A| < 1 THEN
10 update position of agent i by Equation (2)
11 ELSE
12 generate random agent rand
13 update position of agent i by Equation (9)
14 ENDIF
15 ELSE
16 update position of agent i by Equation (6)
17 ENDIF
18 i = i + 1
19 ENDWHILE
20 update optimal agent if there is a better solution
21 t = t + 1
22 ENDWHILE
23 RETURN optimal agent
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3. Whale Optimization Algorithm with Single-Dimensional Swimming (SWWOA)

In this paper, an improved algorithm is proposed for the features of the standard WOA algorithm.
The main improvements are divided into four interrelated aspects. First, the quality of the initial
population is directly related to the convergence speed and, if there are agents located in the optimal
solution region at the beginning, it will save a lot of useless calculations. Subsequently, quasi-opposition
learning is introduced in order to improve search capability in all directions. On the basis of
greatly improving the search ability, this paper introduces a logarithm-based nonlinear parameter,
which is used in order to apply more computation to tuning and improve the solution accuracy.
Finally, borrowing from the ABC algorithm for finding food, the full-dimensional encircling prey is
replaced by a single-dimensional swimming, which is essentially a more fine-grained approach to
finding excellence and, moreover, gives the algorithm the ability to jump out of the local optimum.
Before describing the improvements in this paper, the test functions are first described.

3.1. Chaotic Sequence Based on Tent Map

A chaotic system is a deterministic system, in which there is seemingly random irregular
movement that behaves in an indeterminate, unrepeatable, and unpredictable manner [21]. Chaos
is an inherent property of nonlinear system and it is a common phenomenon in nonlinear systems.
There are many map functions for chaotic system, the most commonly used of which are logistic map
and tent map [21,31,33]. In this paper, we use tent map with the following formula. Presently, most of
the improved algorithms use logistic map. However, logistic map has uneven traversal characteristics,
while tent map has better uniform characteristics [31]. Figure 1 shows the specific comparison of
logistic map and tent map.
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Figure 1. Tent map and Logistic map.
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In this paper, the tent map is selected, whose formula is as follows:

sk+1 =

{
10sk/7 sk < 0.7

10(1− sk)/3 sk ≥ 0.7
(10)

when the initial value s1 ∈ (0, 1) is randomly given, through Equation (10) iteration n − 1 times,
a chaotic sequence {s1,s2, · · · , sn} can be generated. The initial agent can be generated by mapping the
sequence to the solution, as follows:

xi = xi,min + (xi,max − xi,min)si (11)

where xi,min represents the lower boundary of x in the i-th dimension, xi,max represents the upper
boundary of x in the i-th dimension. At the time of initialization, all of the agents in the population are
mapping according to formula Equations (10) and (11) in order to generate chaotic population.

3.2. Quasi-Opposition Learning

In the meta-heuristic algorithm, feasible solutions are obtained first, and then the solution space is
searched for the optimal based on the fitness of the feasible solution. Various different meta-heuristic
algorithms search in different ways, but all of them essentially have a random factor. In recent years,
Opposition-Based Learning [35] has been widely used in meta-heuristic algorithms [21,27,29], which is
essentially a method of replacing random search with symmetric search, which can greatly improve
the search ability of the algorithm.

Although the opposite-learning method improves the search capability of the algorithm
considerably, Opposition-Based Learning is too fixed and not very effective for tuning in a small
space. The literature [31,36] proposes quasi-opposite learning, which adds a random factor to
Opposition-Based Learning, and the resulting position is not a fixed symmetric position, but a random
position between the central position and the symmetric position. Assuming x ∈ [a, b], the expression
for quasi-opposite learning is as follows:

xo =
a + b

2
+ r

(
a + b

2
− x
)

(12)

where r ∈ [0, 1] is a random variable. If r ∈ [0, 2], quasi-opposite point theoretically has 50% chance
falling within the symmetry point and the center, and 50% chance of falling outside the symmetry
point. If it falls within the symmetry point, it is good for algorithm tuning to improve solution quality,
while falling outside the symmetry point is more good for spatial search to improve convergence
speed. If the variables x are multi-dimensional, then each dimension of x needs to separately execute
Equation (12), i.e., where a and b are vectors, the multi-dimensional expression is as follows:

−→
xo =

−→a +
−→
b

2
+ r

(−→a +
−→
b

2
−−→x

)
(13)

3.3. Logarithm-Based Nonlinear Control Parameter

There is only one control parameter a in the standard WOA, as mentioned in Sections 2.3 and 2.4.
This parameter controls the proportion of exploitation and exploration, as shown in Equation (3). In the
standard WOA, the parameter a varies linearly from 2 to 0, while the direct control of exploration and
exploitation is |A|. From Equation (3) alone, exploration and exploitation each account for about 50%
weight. At the beginning of WOA, exploration accounts for a greater proportion and, after beginning,
the proportion of exploration gradually decreases, while that of exploitation gradually increases.

The proposed SWWOA algorithm, employs a chaos mechanism Section 3.1 and quasi-opposite
learning Section 3.2 mechanism, which has already improved exploration more substantially,
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so nonlinear control mechanism based on logarithm with a greater proportion of exploitation is
employed, which improves the tuning ability of the algorithm and ultimately improves the quality
of the solution. The expression of parameter is as follows, and the comparison of two parameter
mechanism is shown in Figure 2:

a = 2− log10

(
1 +

99t
tmax

)
(14)

where t denotes t-th iteration, tmax denotes the max iteration times. As can be seen in Figure 2,
the logarithm-based control parameter curve starts out very steep and declines rapidly, while it flattens
out later. Overall, the tuning is performed with greater probability.
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Figure 2. Two parameter mechanism with tmax = 100.

3.4. Single-Dimensional Swimming

It has been documented in [16], that the ABC algorithm has better optimization performance
when compared with algorithms, such as PSO and GA. Most of the above improvements in this paper
are dedicated to improving the search capability, in order to allow for the population to perform
a fine-grained search in a narrow space near the optimal; this paper introduces the employed bee
position update method in the ABC algorithm for single-dimensional swimming.

Dd= |C · X∗d (t)− Xd (t)| (15)

Xd (t+1) =X∗d (t)−A · Dd (16)

where d denotes a dimension, randomly generated for each agent, otherwise refer to Equations (1) and (2).

3.5. The Pseudo Code of SWWOA

SWWOA introduces four improvements to the standard WOA. These four improvements are
interrelated. Chaos mechanisms and opposition-based learning are used in order to improve the
spatial search capability; on top of this, nonlinear control parameter factors are introduced, which are
used to apply more computations to tuning, and finally single-dimensional swimming are used inn
order to search in narrow space and improve the solution quality. In Section 4, the ablation experiment
is designed to discuss the impact of each improvement on the algorithm. The pseudo code of the
standard SWWOA Algorithm 2 is as follows:
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Algorithm 2 SWWOA
01 initialize maxIteration, popsize and parameter b
02 initialize chaos population and calculate fitness by Equations (10) and (11)
03 obtain the optimal agent
04 WHILE t<maxIteration DO
05 update a by Equation (14)
06 update A, C by Equations (3) and (4)
07 WHILE i<popsize DO
08 quasi-opposition learning xo

i on agent i by Equation (13)
09 generate random number p ∈ [0, 1]
10 IF p < 0.5 THEN
11 IF |A| < 1 THEN
12 generate random dimension d
13 update position of agent i by Equations (15) and (16)
14 ELSE
15 generate random agent rand
16 update position of agent i by Equation (9)
17 ENDIF
18 ELSE
19 update position of agent i by Equation (6)
20 ENDIF
21 compare xo

i and xi, retaining the better agent
22 i = i + 1
23 ENDWHILE
24 update optimal agent if there is a better solution
25 t = t + 1
26 ENDWHILE
27 RETURN optimal agent

4. Experimental Results and Analysis

In order to verify the effectiveness of the proposed algorithm, we select other four algorithms
(WOA [28], ABC [16], PSO [12], and OBCWOA [21]) to conduct comparative experiments on 20
well-known test functions. The language used for the implementation is C/C++, the compiler is
gcc-4.8.5, the computer CPU is i3-9100, the memory is 16GB, and the CentOS-7.5 amd64 with kernel
3.10 operating system is used.

The PSO algorithm is a very famous meta-heuristic algorithm, which has a very stable performance
and it is often used as a benchmark for meta-heuristic algorithm. The ABC algorithm is also a much
studied algorithm with high solution quality, which is selected in this paper, because SWWOA draws
on its scout bee update mechanism. SWWOA is a proposed algorithm based on standard WOA, and the
standard WOA is also selected. In addition, the literature [21], which is almost the latest improvement
algorithm of the standard WOA, it uses a chaos mechanism and quasi-opposition learning mechanism,
which is similar to SWWOA, so the OBCWOA algorithm proposed in [21] is selected. Among the above
four algorithms, ABC is special, in that it is mainly updated in single-dimensional way. For fairness,
more iterations and a bigger population size are set for ABC. Table 1 shows the specific parameters
of algorithm.
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Table 1. Parameter setting.

Algorithm Parameter Settings

ABC popsize = 60, tmax = 2000, trial = 20
PSO popsize = 30, tmax = 1000, w = 0.9− (0.9− 0.2)t/tmax,

c1 = 1.5, c2 = 1.5, V ∈ [−0.5, 0.5]
WOA popsize = 30, tmax = 1000, a = 2 (1− t/tmax),

OBCWOA popsize = 30, tmax = 1000, a = 2 (1− t/tmax), alog istic = 4, b = 1
SWWOA popsize = 30, tmax = 1000, a = 2− log10 (1 + 99t/tmax) , b = 1

4.1. Test Functions

A series of large-scale and high-dimensional test functions presented in Table 2 are utilized to test
algorithms’ performance. f1– f6 are unimodal-separable functions (abbreviated as US), mainly to check
the convergence speed of the algorithm. f7– f12 are unimodal-nonseparable functions (abbreviated as
UN), when compared with the US functions, more able to detect the search capability of the algorithm.
f13– f15 are multimodal-separable functions (abbreviated as MS), more test algorithm out of the local
optimum ability. f16– f20 are multimodal-nonseparable functions (abbreviated as MN); these types of
functions are more complex and more reflective of the overall performance.

Table 2. Test functions.

Name Equation Range Type

Sphere f1(x) = ∑n
i = 1 x2

i [−100, 100]n US
Sum Squares f2(x) = ∑n

i = 1 ix2
i [−10, 10]n US

Schwefel 2.21 f3(x) = max |xi|, 1 ≤ i ≤ n [−100, 100]n US
Powell Sum f4(x) = ∑n

i = 1 |xi|i+1 [−1, 1]n US
Quartic f5(x) = ∑n

i = 1 ix4
i [−1.28, 1.28]n US

Step f6(x) = ∑n
i = 1 bxi + 0.5c2 [−100, 100]n US

Zakharov f7(x) = ∑n
i = 1 x2

i +(∑n
i = 1 0.5ixi)

2+(∑n
i = 1 0.5ix)4 [−5, 10]n UN

Rosenbrock f8(x) = ∑n−1
i = 1[100(xi+1 − x2

i )
2 + (xi − 1)2] [−30, 30]n UN

Schwefel 1.2 f9(x) = ∑n
i = 1 (∑

i
j = 1 xj)

2 [−100, 100]n UN
Schwefel 2.22 f10(x) = ∑n

i = 1 |xi|+ ∏n
i = 1 |xi| [−10, 10]n UN

Discus f11(x) = 106x2
1 + ∑n

i = 2 x6
i [−1, 1]n UN

Cigar f12(x) = x2
1 + 106 ∑n

i = 2 x6
i [−100, 100]n UN

Alpine f13(x) = |xi sin (xi + 0.1xi)| [−10, 10]n MS
Rastrigin f14(x) = ∑n

i = 1(x2
i − 10 cos 2πxi + 10) [−5.12, 5.12]n MS

Bohachevsky f15(x) = ∑n−1
i = 1(x2

i + 2x2
i+1 − 0.3 cos 3πxi − 0.4 cos 4πxi+1 + 0.7) [−50, 50]n MS

Griewank f16(x) = ∑n
i = 1 x2

i /4000−∏n
i = 1 cos(xi/

√
i) + 1 [−60, 60]n MN

Weierstrass f17(x) = ∑n
i = 1 ∑20

k = 0{[cos(2π3k(xi + 0.5))− cos(2π3k · 0.5)]/2k} [−0.5, 0.5]n MN

Ackley f18(x) = −20 exp(−0.2
√

∑n
i = 1 x2

i
n )− exp ∑n

i = 1
cos 2πxi

n + 20 + e [−32, 32]n MN
Schaffer f19(x) = 0.5 + [sin2(∑n

i = 1 x2
i )

0.5 − 0.5]/(1 + ∑n
i = 1 x2

i /1000)2 [−100, 100]n MN

Salomon f20(x) = 1− cos(2π
√

∑n
i = 1 x2

i ) +
√

∑n
i = 1 x2

i /10 [−100, 100]n MN

4.2. Numerical Analysis

In the comparative experiments, the problem dimensions are set to 20 (Table 3), 100 (Table 4),
200 (Table 5), 500 (Table 6), and 1000 (Table 7). Each algorithm is run independently on each function
20 times, and the optimal, average, and standard deviation are taken in tables.

The data in Tables 3–7 are the results of experiments conducted on different functional dimensions.
The data avg denotes the mean value, which is mainly an indicator of the performance of the algorithm,
while the best denotes the optimal result, which mainly reflects the accuracy of the algorithm, and std
denotes the standard deviation of the data, which reflects the stability of the algorithm. The following
section relies mainly on the avg value for evaluation. It is noteworthy that ABC and PSO are not
available in Table 7, because, from the data presented in Tables 3–6, these two algorithms have not
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achieved good results, and the gap between the results is too large, which loses the meaning of
the analysis.

Table 3. Comparison results for 20 test functions with n = 20.

Function ABC PSO WOA OBCWOA SWWOA

best 8.38 × 10−07 1.29 × 10−39 1.86 × 10−185 0.00 × 10+00 0.00 × 10+00

f1 avg 8.38 × 10−07 1.29 × 10−39 1.15 × 10−162 0.00 × 10+00 0.00 × 10+00

std 4.74 × 10−22 1.46 × 10−54 2.19 × 10−161 0.00 × 10+00 0.00 × 10+00

best 1.32 × 10−08 2.30 × 10−40 4.19 × 10−191 0.00 × 10+00 0.00 × 10+00

f2 avg 1.46 × 10−04 9.61 × 10−39 1.81 × 10−167 0.00 × 10+00 0.00 × 10+00

std 4.80 × 10−04 3.80 × 10−38 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 7.24 × 10+01 4.18 × 10−05 1.34 × 10−30 1.96 × 10−218 0.00 × 10+00

f3 avg 7.24 × 10+01 4.18 × 10−05 1.58 × 10−21 2.87 × 10−200 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 3.00 × 10−20 0.00 × 10+00 0.00 × 10+00

best 1.10 × 10−05 4.33 × 10−90 1.49 × 10−267 0.00 × 10+00 0.00 × 10+00

f4 avg 1.10 × 10−05 4.33 × 10−90 1.81 × 10−226 0.00 × 10+00 0.00 × 10+00

std 1.52 × 10−20 7.80 × 10−105 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.05 × 10−12 1.22 × 10−72 7.63 × 10−303 0.00 × 10+00 0.00 × 10+00

f5 avg 5.76 × 10−09 1.22 × 10−72 5.52 × 10−263 0.00 × 10+00 0.00 × 10+00

std 4.46 × 10−08 2.25 × 10−87 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.97 × 10+02 4.20 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f6 avg 1.97 × 10+02 4.20 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 3.07 × 10+02 1.06 × 10−09 4.91 × 10−08 3.38 × 10−02 6.94 × 10−19

f7 avg 3.07 × 10+02 1.06 × 10−09 6.87 × 10+01 3.15 × 10+01 2.48 × 10−15

std 5.08 × 10−13 1.85 × 10−24 3.03 × 10+02 1.31 × 10+02 2.68 × 10−14

best 3.79 × 10+02 1.14 × 10+00 3.37 × 10−03 1.44 × 10−02 1.17 × 10+01

f8 avg 3.79 × 10+02 1.14 × 10+00 3.59 × 10−01 7.16 × 10+00 1.31 × 10+01

std 5.08 × 10−13 0.00 × 10+00 2.31 × 10+00 3.84 × 10+01 5.46 × 10+00

best 1.45 × 10+04 4.83 × 10−05 2.23 × 10−43 0.00 × 10+00 0.00 × 10+00

f9 avg 1.47 × 10+04 4.83 × 10−05 8.77 × 10+01 0.00 × 10+00 0.00 × 10+00

std 1.02 × 10+03 0.00 × 10+00 1.53 × 10+03 0.00 × 10+00 0.00 × 10+00

best 1.54 × 10−02 2.52 × 10−10 3.54 × 10−120 2.10 × 10−239 0.00 × 10+00

f10 avg 1.54 × 10−02 2.52 × 10−10 1.68 × 10−112 3.03 × 10−225 0.00 × 10+00

std 3.10 × 10−17 0.00 × 10+00 3.21 × 10−111 0.00 × 10+00 0.00 × 10+00

best 1.12 × 10−02 2.36 × 10−85 1.70 × 10−304 0.00 × 10+00 0.00 × 10+00

f11 avg 1.12 × 10−02 2.36 × 10−85 2.04 × 10−233 0.00 × 10+00 0.00 × 10+00

std 1.55 × 10−17 3.83 × 10−100 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 3.12 × 10+07 1.24 × 10−72 3.60 × 10−303 0.00 × 10+00 0.00 × 10+00

f12 avg 3.12 × 10+07 1.16 × 10−66 3.12 × 10−251 0.00 × 10+00 0.00 × 10+00

std 1.67 × 10−08 1.73 × 10−66 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.64 × 10+00 4.26 × 10−09 3.48 × 10−122 6.94 × 10−241 0.00 × 10+00

f13 avg 2.75 × 10+00 4.26 × 10−09 3.80 × 10−105 1.47 × 10−231 0.00 × 10+00

std 3.19 × 10−01 7.40 × 10−24 7.35 × 10−104 0.00 × 10+00 0.00 × 10+00

best 1.60 × 10+01 2.49 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f14 avg 2.81 × 10+01 2.49 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 3.12 × 10+01 3.18 × 10−14 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 3.85 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f15 avg 1.99 × 10−01 1.39 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 2.01 × 10+00 1.43 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 3.13 × 10−02 3.33 × 10−16 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f16 avg 1.23 × 10−01 3.33 × 10−16 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 3.71 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.02 × 10−02 5.34 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f17 avg 7.10 × 10−01 1.23 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 4.93 × 10+00 5.42 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 6.85 × 10−01 4.31 × 10−14 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16

f18 avg 2.02 × 10+00 4.31 × 10−14 2.40 × 10−15 4.44 × 10−16 4.44 × 10−16

std 9.08 × 10+00 0.00 × 10+00 7.90 × 10−15 0.00 × 10+00 0.00 × 10+00

best 4.99 × 10−01 4.15 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f19 avg 4.99 × 10−01 4.28 × 10−01 8.26 × 10−03 4.86 × 10−04 0.00 × 10+00

std 4.97 × 10−16 9.25 × 10−02 1.55 × 10−02 9.47 × 10−03 0.00 × 10+00

best 1.21 × 10+01 4.50 × 10+00 4.25 × 10−86 0.00 × 10+00 0.00 × 10+00

f20 avg 1.21 × 10+01 4.50 × 10+00 8.49 × 10−02 0.00 × 10+00 0.00 × 10+00

std 1.59 × 10−14 3.97 × 10−15 1.59 × 10−01 0.00 × 10+00 0.00 × 10+00
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Table 4. Comparison results for 20 test functions with n = 100.

Function ABC PSO WOA OBCWOA SWWOA

best 4.13 × 10+02 7.69 × 10−02 3.61 × 10−181 0.00 × 10+00 0.00 × 10+00

f1 avg 7.82 × 10+02 8.34 × 10−02 2.15 × 10−166 0.00 × 10+00 0.00 × 10+00

std 4.96 × 10+03 2.88 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 3.16 × 10+03 8.59 × 10−01 2.13 × 10−194 0.00 × 10+00 0.00 × 10+00

f2 avg 3.16 × 10+03 8.76 × 10−01 1.02 × 10−162 0.00 × 10+00 0.00 × 10+00

std 4.07 × 10−12 7.57 × 10−02 1.47 × 10−161 0.00 × 10+00 0.00 × 10+00

best 9.45 × 10+01 5.55 × 10+00 3.63 × 10−36 4.78 × 10−196 0.00 × 10+00

f3 avg 9.46 × 10+01 5.80 × 10+00 9.67 × 10−19 4.43 × 10−185 0.00 × 10+00

std 1.17 × 10+00 1.23 × 10+00 1.88 × 10−17 0.00 × 10+00 0.00 × 10+00

best 1.00 × 10−02 1.55 × 10−26 3.57 × 10−266 0.00 × 10+00 0.00 × 10+00

f4 avg 1.23 × 10−01 9.91 × 10−22 4.61 × 10−221 0.00 × 10+00 0.00 × 10+00

std 5.45 × 10−01 7.22 × 10−21 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.20 × 10−02 7.38 × 10−04 8.34 × 10−296 0.00 × 10+00 0.00 × 10+00

f5 avg 3.30 × 10−02 1.73 × 10−03 4.91 × 10−262 0.00 × 10+00 0.00 × 10+00

std 1.57 × 10−01 3.24 × 10−03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.01 × 10+04 2.90 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f6 avg 2.01 × 10+04 3.05 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 6.23 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.48 × 10+03 1.64 × 10+03 6.41 × 10+02 3.61 × 10+02 1.15 × 10−11

f7 avg 1.39 × 10+08 2.11 × 10+03 1.56 × 10+03 2.07 × 10+03 3.08 × 10−05

std 2.08 × 10+08 2.35 × 10+03 1.27 × 10+03 4.08 × 10+03 3.56 × 10−04

best 8.24 × 10+06 1.00 × 10+02 5.59 × 10−02 3.17 × 10−01 9.50 × 10+01

f8 avg 8.24 × 10+06 1.78 × 10+02 1.71 × 10+00 5.70 × 10+01 9.75 × 10+01

std 0.00 × 10+00 2.57 × 10+02 1.31 × 10+01 2.05 × 10+02 5.28 × 10+00

best 2.79 × 10+05 1.63 × 10+03 7.36 × 10−04 0.00 × 10+00 0.00 × 10+00

f9 avg 3.18 × 10+05 2.05 × 10+03 1.83 × 10+05 0.00 × 10+00 0.00 × 10+00

std 2.37 × 10+05 1.53 × 10+03 8.87 × 10+05 0.00 × 10+00 0.00 × 10+00

best 3.55 × 10+01 1.21 × 10+00 2.42 × 10−120 3.33 × 10−227 0.00 × 10+00

f10 avg 4.21 × 10+01 1.50 × 10+00 5.95 × 10−106 1.07 × 10−213 0.00 × 10+00

std 1.22 × 10+01 1.17 × 10+00 1.16 × 10−104 0.00 × 10+00 0.00 × 10+00

best 5.09 × 10−02 1.00 × 10+00 3.20 × 10−316 0.00 × 10+00 0.00 × 10+00

f11 avg 5.09 × 10−02 1.60 × 10+00 7.45 × 10−253 0.00 × 10+00 0.00 × 10+00

std 6.21 × 10−17 2.19 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.00 × 10+11 1.07 × 10+02 1.75 × 10−315 0.00 × 10+00 0.00 × 10+00

f12 avg 1.84 × 10+13 1.17 × 10+02 1.78 × 10−245 0.00 × 10+00 0.00 × 10+00

std 1.26 × 10+13 3.28 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.63 × 10+01 7.77 × 10−02 1.16 × 10−121 2.16 × 10−232 0.00 × 10+00

f13 avg 3.56 × 10+01 2.08 × 10−01 2.25 × 10−110 3.78 × 10−214 0.00 × 10+00

std 2.78 × 10+01 4.83 × 10−01 2.49 × 10−109 0.00 × 10+00 0.00 × 10+00

best 3.36 × 10+02 1.02 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f14 avg 4.44 × 10+02 1.21 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 2.78 × 10+02 6.84 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.66 × 10+02 2.68 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f15 avg 4.07 × 10+02 3.26 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.11 × 10+03 1.84 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.05 × 10+00 4.12 × 10−04 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f16 avg 1.80 × 10+00 5.91 × 10−03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 4.11 × 10+00 2.53 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 8.03 × 10+00 7.44 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f17 avg 2.27 × 10+01 9.07 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 4.53 × 10+01 4.14 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 7.75 × 10+00 3.46 × 10+00 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16

f18 avg 9.89 × 10+00 5.07 × 10+00 1.69 × 10−15 4.44 × 10−16 4.44 × 10−16

std 6.97 × 10+00 7.40 × 10+00 7.58 × 10−15 0.00 × 10+00 0.00 × 10+00

best 5.00 × 10−01 4.96 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f19 avg 5.00 × 10−01 4.96 × 10−01 9.15 × 10−03 4.37 × 10−03 0.00 × 10+00

std 3.93 × 10−07 1.80 × 10−03 3.36 × 10−02 2.16 × 10−02 0.00 × 10+00

best 4.87 × 10+01 7.50 × 10+00 4.90 × 10−89 0.00 × 10+00 0.00 × 10+00

f20 avg 4.87 × 10+01 8.38 × 10+00 5.49 × 10−02 2.00 × 10−02 0.00 × 10+00

std 0.00 × 10+00 4.82 × 10+00 2.22 × 10−01 1.79 × 10−01 0.00 × 10+00
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Table 5. Comparison results for 20 test functions with n = 200.

Function ABC PSO WOA OBCWOA SWWOA

best 4.69 × 10+02 5.31 × 10+00 1.62 × 10−183 0.00 × 10+00 0.00 × 10+00

f1 avg 1.41 × 10+04 1.08 × 10+01 1.81 × 10−160 0.00 × 10+00 0.00 × 10+00

std 1.06 × 10+05 1.68 × 10+01 3.45 × 10−159 0.00 × 10+00 0.00 × 10+00

best 2.02 × 10+02 1.36 × 10+02 5.00 × 10−179 0.00 × 10+00 0.00 × 10+00

f2 avg 3.82 × 10+02 1.47 × 10+02 1.83 × 10−164 0.00 × 10+00 0.00 × 10+00

std 7.26 × 10+02 5.92 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 9.80 × 10+01 8.66 × 10+00 8.53 × 10−31 1.09 × 10−193 0.00 × 10+00

f3 avg 9.83 × 10+01 9.61 × 10+00 1.52 × 10−18 6.38 × 10−179 0.00 × 10+00

std 1.22 × 10+00 4.03 × 10+00 2.93 × 10−17 0.00 × 10+00 0.00 × 10+00

best 2.52 × 10−01 4.44 × 10−16 8.13 × 10−271 0.00 × 10+00 0.00 × 10+00

f4 avg 1.11 × 10+00 6.11 × 10−14 2.03 × 10−227 0.00 × 10+00 0.00 × 10+00

std 1.43 × 10+00 4.36 × 10−13 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 3.45 × 10−02 2.44 × 10+00 2.17 × 10−303 0.00 × 10+00 0.00 × 10+00

f5 avg 3.35 × 10−01 7.11 × 10+00 1.58 × 10−270 0.00 × 10+00 0.00 × 10+00

std 1.21 × 10+00 2.71 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.76 × 10+04 1.38 × 10+03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f6 avg 2.16 × 10+04 3.21 × 10+03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.98 × 10+04 6.05 × 10+03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.00 × 10+11 6.13 × 10+03 2.23 × 10+03 8.80 × 10+02 4.50 × 10−08

f7 avg 1.04 × 10+13 6.92 × 10+03 3.37 × 10+03 4.27 × 10+03 1.46 × 10+00

std 3.24 × 10+13 3.15 × 10+03 2.63 × 10+03 6.43 × 10+03 2.82 × 10+01

best 2.17 × 10+05 1.20 × 10+03 8.76 × 10−02 2.52 × 10+00 1.96 × 10+02

f8 avg 2.19 × 10+05 1.34 × 10+03 1.23 × 10+01 1.30 × 10+02 1.98 × 10+02

std 2.38 × 10+04 6.42 × 10+02 1.90 × 10+02 3.72 × 10+02 2.71 × 10+00

best 1.52 × 10+06 1.43 × 10+04 1.55 × 10+04 0.00 × 10+00 0.00 × 10+00

f9 avg 1.52 × 10+06 2.08 × 10+04 1.59 × 10+06 0.00 × 10+00 0.00 × 10+00

std 2.08 × 10−09 3.22 × 10+04 6.54 × 10+06 0.00 × 10+00 0.00 × 10+00

best 9.62 × 10+00 1.49 × 10+01 8.18 × 10−118 5.75 × 10−223 0.00 × 10+00

f10 avg 1.38 × 10+02 1.68 × 10+01 3.49 × 10−103 1.28 × 10−209 0.00 × 10+00

std 5.11 × 10+02 8.13 × 10+00 6.80 × 10−102 0.00 × 10+00 0.00 × 10+00

best 9.11 × 10+00 3.01 × 10+00 4.75 × 10−302 0.00 × 10+00 0.00 × 10+00

f11 avg 1.04 × 10+01 4.46 × 10+00 3.93 × 10−265 0.00 × 10+00 0.00 × 10+00

std 6.48 × 10+00 1.14 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.00 × 10+11 2.42 × 10+05 2.19 × 10−311 0.00 × 10+00 0.00 × 10+00

f12 avg 1.64 × 10+17 8.05 × 10+05 3.09 × 10−243 0.00 × 10+00 0.00 × 10+00

std 1.27 × 10+18 2.76 × 10+06 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 5.59 × 10+01 2.33 × 10+00 1.24 × 10−117 6.32 × 10−225 0.00 × 10+00

f13 avg 9.31 × 10+01 3.09 × 10+00 5.09 × 10−108 6.65 × 10−210 0.00 × 10+00

std 9.07 × 10+01 2.96 × 10+00 9.16 × 10−107 0.00 × 10+00 0.00 × 10+00

best 7.21 × 10+02 2.43 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f14 avg 1.06 × 10+03 2.75 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 6.07 × 10+02 1.24 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.45 × 10+02 1.01 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f15 avg 3.57 × 10+04 1.21 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.34 × 10+05 4.76 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.00 × 10−01 3.33 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f16 avg 2.08 × 10+00 4.37 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.55 × 10+01 3.78 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 8.81 × 10+01 2.41 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f17 avg 1.46 × 10+02 2.56 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.38 × 10+02 4.11 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.23 × 10+01 5.35 × 10+00 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16

f18 avg 1.45 × 10+01 6.17 × 10+00 1.51 × 10−15 4.44 × 10−16 4.44 × 10−16

std 7.17 × 10+00 3.27 × 10+00 7.28 × 10−15 0.00 × 10+00 0.00 × 10+00

best 5.00 × 10−01 4.99 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f19 avg 5.00 × 10−01 4.99 × 10−01 7.77 × 10−03 6.32 × 10−03 0.00 × 10+00

std 2.27 × 10−07 4.18 × 10−04 1.74 × 10−02 2.07 × 10−02 0.00 × 10+00

best 7.58 × 10+01 1.29 × 10+01 1.41 × 10−90 0.00 × 10+00 0.00 × 10+00

f20 avg 7.68 × 10+01 1.32 × 10+01 6.49 × 10−02 4.99 × 10−03 0.00 × 10+00

std 4.44 × 10+00 1.34 × 10+00 2.13 × 10−01 9.73 × 10−02 0.00 × 10+00
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Table 6. Comparison results for 20 test functions with n = 500.

Function ABC PSO WOA OBCWOA SWWOA

best 1.33 × 10+05 1.56 × 10+02 9.48 × 10−181 0.00 × 10+00 0.00 × 10+00

f1 avg 9.21 × 10+05 2.00 × 10+02 2.22 × 10−160 0.00 × 10+00 0.00 × 10+00

std 2.59 × 10+06 1.69 × 10+02 4.31 × 10−159 0.00 × 10+00 0.00 × 10+00

best 7.75 × 10+04 7.47 × 10+03 1.19 × 10−182 0.00 × 10+00 0.00 × 10+00

f2 avg 7.63 × 10+05 9.79 × 10+03 1.11 × 10−158 0.00 × 10+00 0.00 × 10+00

std 2.36 × 10+06 4.56 × 10+03 2.06 × 10−157 0.00 × 10+00 0.00 × 10+00

best 9.90 × 10+01 1.13 × 10+01 1.06 × 10−29 9.88 × 10−190 0.00 × 10+00

f3 avg 9.92 × 10+01 1.28 × 10+01 1.92 × 10−20 7.55 × 10−177 0.00 × 10+00

std 7.70 × 10−01 3.99 × 10+00 2.91 × 10−19 0.00 × 10+00 0.00 × 10+00

best 1.99 × 10+00 6.44 × 10−12 6.58 × 10−292 0.00 × 10+00 0.00 × 10+00

f4 avg 2.72 × 10+00 1.38 × 10−05 2.00 × 10−217 0.00 × 10+00 0.00 × 10+00

std 1.68 × 10+00 2.43 × 10−04 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 4.63 × 10+02 4.76 × 10+02 2.83 × 10−297 0.00 × 10+00 0.00 × 10+00

f5 avg 1.71 × 10+03 1.01 × 10+03 6.00 × 10−258 0.00 × 10+00 0.00 × 10+00

std 7.30 × 10+03 1.92 × 10+03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.22 × 10+05 1.06 × 10+04 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f6 avg 1.34 × 10+05 1.43 × 10+04 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 5.16 × 10+04 1.14 × 10+04 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.00 × 10+11 1.98 × 10+04 7.15 × 10+03 2.55 × 10+03 4.90 × 10−10

f7 avg 5.55 × 10+17 9.49 × 10+09 8.17 × 10+03 9.20 × 10+03 1.07 × 10+03

std 1.29 × 10+18 1.27 × 10+11 4.39 × 10+03 1.57 × 10+04 1.64 × 10+04

best 1.13 × 10+08 1.81 × 10+04 1.33 × 10−01 3.36 × 10+00 4.98 × 10+02

f8 avg 1.64 × 10+08 2.43 × 10+04 5.96 × 10+00 2.79 × 10+02 4.98 × 10+02

std 3.09 × 10+08 2.06 × 10+04 2.59 × 10+01 9.76 × 10+02 4.21 × 10−01

best 6.72 × 10+06 1.25 × 10+05 1.07 × 10+06 0.00 × 10+00 0.00 × 10+00

f9 avg 7.41 × 10+06 2.03 × 10+05 1.12 × 10+07 0.00 × 10+00 0.00 × 10+00

std 2.54 × 10+06 1.71 × 10+05 3.24 × 10+07 0.00 × 10+00 0.00 × 10+00

best 3.55 × 10+02 1.18 × 10+02 3.17 × 10−117 6.23 × 10−220 0.00 × 10+00

f10 avg 7.67 × 10+21 1.31 × 10+02 2.87 × 10−105 4.90 × 10−209 0.00 × 10+00

std 6.86 × 10+22 4.09 × 10+01 5.57 × 10−104 0.00 × 10+00 0.00 × 10+00

best 3.98 × 10+01 6.66 × 10+00 2.48 × 10−299 0.00 × 10+00 0.00 × 10+00

f11 avg 6.83 × 10+01 1.39 × 10+01 4.53 × 10−246 0.00 × 10+00 0.00 × 10+00

std 1.28 × 10+02 2.42 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.00 × 10+11 4.45 × 10+09 1.78 × 10−307 0.00 × 10+00 0.00 × 10+00

f12 avg 3.03 × 10+18 8.45 × 10+09 9.28 × 10−262 0.00 × 10+00 0.00 × 10+00

std 1.71 × 10+19 1.11 × 10+10 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.35 × 10+02 4.33 × 10+01 5.30 × 10−118 1.88 × 10−219 0.00 × 10+00

f13 avg 4.07 × 10+02 5.50 × 10+01 4.57 × 10−103 4.43 × 10−208 0.00 × 10+00

std 4.95 × 10+02 2.99 × 10+01 8.91 × 10−102 0.00 × 10+00 0.00 × 10+00

best 2.51 × 10+03 1.34 × 10+03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f14 avg 3.60 × 10+03 1.56 × 10+03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 2.83 × 10+03 4.47 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.19 × 10+04 7.42 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f15 avg 1.47 × 10+05 8.53 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 8.77 × 10+05 3.16 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 4.25 × 10+00 3.27 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f16 avg 3.12 × 10+01 3.87 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.56 × 10+02 1.77 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.55 × 10+02 7.62 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f17 avg 4.68 × 10+02 7.95 × 10+02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 9.75 × 10+02 6.32 × 10+01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.62 × 10+01 6.82 × 10+00 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16

f18 avg 1.70 × 10+01 7.55 × 10+00 1.69 × 10−15 4.44 × 10−16 4.44 × 10−16

std 2.73 × 10+00 2.23 × 10+00 7.58 × 10−15 0.00 × 10+00 0.00 × 10+00

best 5.00 × 10−01 5.00 × 10−01 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f19 avg 5.00 × 10−01 5.00 × 10−01 6.80 × 10−03 4.37 × 10−03 0.00 × 10+00

std 5.05 × 10−09 8.62 × 10−05 1.99 × 10−02 2.16 × 10−02 0.00 × 10+00

best 1.23 × 10+02 1.77 × 10+01 3.22 × 10−92 0.00 × 10+00 0.00 × 10+00

f20 avg 1.24 × 10+02 1.93 × 10+01 6.49 × 10−02 3.50 × 10−02 0.00 × 10+00

std 2.01 × 10+00 3.14 × 10+00 2.13 × 10−01 2.13 × 10−01 0.00 × 10+00
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Table 7. Comparison results for 20 test functions with n = 1000.

Function WOA OBCWOA SWWOA

best 1.40 × 10−181 0.00 × 10+00 0.00 × 10+00

f1 avg 1.07 × 10−157 0.00 × 10+00 0.00 × 10+00

std 2.09 × 10−156 0.00 × 10+00 0.00 × 10+00

best 1.18 × 10−179 0.00 × 10+00 0.00 × 10+00

f2 avg 3.41 × 10−165 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.41 × 10−27 7.14 × 10−189 0.00 × 10+00

f3 avg 9.83 × 10−21 4.49 × 10−171 0.00 × 10+00

std 1.50 × 10−19 0.00 × 10+00 0.00 × 10+00

best 6.62 × 10−291 0.00 × 10+00 0.00 × 10+00

f4 avg 2.29 × 10−224 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 5.30 × 10−297 0.00 × 10+00 0.00 × 10+00

f5 avg 2.08 × 10−269 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f6 avg 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.11 × 10+04 4.84 × 10+03 9.94 × 10−04

f7 avg 1.59 × 10+04 1.84 × 10+04 1.31 × 10+04

std 8.17 × 10+03 2.66 × 10+04 6.18 × 10+04

best 3.18 × 10−02 1.50 × 10+00 9.98 × 10+02

f8 avg 8.18 × 10+01 6.60 × 10+02 9.98 × 10+02

std 9.74 × 10+02 1.87 × 10+03 4.41 × 10−01

best 4.92 × 10+06 0.00 × 10+00 0.00 × 10+00

f9 avg 7.18 × 10+07 0.00 × 10+00 0.00 × 10+00

std 2.33 × 10+08 0.00 × 10+00 0.00 × 10+00

best 7.51 × 10−117 3.76 × 10−220 0.00 × 10+00

f10 avg 3.61 × 10−108 5.96 × 10−207 0.00 × 10+00

std 5.34 × 10−107 0.00 × 10+00 0.00 × 10+00

best 1.41 × 10−304 0.00 × 10+00 0.00 × 10+00

f11 avg 1.41 × 10−242 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.43 × 10−322 0.00 × 10+00 0.00 × 10+00

f12 avg 2.95 × 10−262 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.10 × 10−116 1.19 × 10−220 0.00 × 10+00

f13 avg 4.13 × 10−109 1.54 × 10−203 0.00 × 10+00

std 5.08 × 10−108 0.00 × 10+00 0.00 × 10+00

best 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f14 avg 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f15 avg 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f16 avg 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f17 avg 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 4.44 × 10−16 4.44 × 10−16 4.44 × 10−16

f18 avg 2.04 × 10−15 4.44 × 10−16 4.44 × 10−16

std 7.90 × 10−15 0.00 × 10+00 0.00 × 10+00

best 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f19 avg 7.29 × 10−03 6.80 × 10−03 0.00 × 10+00

std 1.88 × 10−02 1.99 × 10−02 0.00 × 10+00

best 3.03 × 10−88 0.00 × 10+00 0.00 × 10+00

f20 avg 6.99 × 10−02 3.00 × 10−02 0.00 × 10+00

std 2.05 × 10−01 2.05 × 10−01 0.00 × 10+00
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The data presented in Table 3 are obtained with the function dimension is set to 20. From the data
presented in the table, we can see that f1– f6 are functions of type “US”, and SWWOA has obtained all
of the optimal solutions on these functions. OBCWOA obtains the optimal solution on five functions
except f3. Standard WOA obtains the optimal solution only on f6. ABC and PSO have not obtained
the optimal solution. The average value of PSO is lower than ABC except f17, and the standard
deviation is also smaller than ABC. From these results, SWWOA can obtain the optimal solution
stably, which shows that SWWOA has better spatial search capability. f7– f12 are functions of type
“UN”, which are more difficult to optimize on the basis of “US” functions. SWWOA obtains the
optimal solutions on four functions ( f9– f12). OBCWOA obtains the optimal solution on three functions
( f9, f11, and f12). Standard WOA, ABC, and PSO did not obtain the optimal solution. The overall ABC
has the worst performance and SWWOA has the best performance. f13– f20 are multimodal functions.
This type functions test the algorithm’s ability to jump out of the local optimum based on the space
search. When compared with the unimodal function, its optimization is more difficult. SWWOA
obtained the optimal solution on seven functions ( f13– f17, f19, f20), OBCWOA obtained the optimal
solution on five functions ( f14– f17, f20), and the standard WOA obtained the optimal solution on four
functions ( f14– f17), ABC and PSO have not obtained the optimal solution. In terms of performance,
SWWOA does not obtain the optimal solution on f7, f8, f18 and, in comparison, SWWOA does not
obtain the optimal result only on f8. The overall situation is similar to that of the unimodal function.

The above analysis focuses on algorithm performance (avg), which is also the basis for other
analyses. If the avg of an algorithm is poor, but the std is good, then it can only mean that the algorithm
is stuck in local optimum and stagnant. Additionally, an algorithm best is good, but the avg is very
bad. From the side, it can show that std must be bad, indicating that the algorithm lacks stability.
On the basis of performance analysis, analyze the functions f7, f8, and f18, respectively.

Function f7: the “avg” order is SWWOA>PSO>OBCWOA>WOA>ABC, the “best” order is
SWWOA>PSO>WOA>OBCWOA>ABC, the “std” order is PSO>SWWOA>ABC>OBCWOA>WOA.
From the order view, the “avg” of ABC is the worst, but the “std” of ABC is approximately the best,
which can indicate that ABC stably obtains a poor solution on this function, and it has actually fallen
into a local optimum. For PSO, “avg” is approximately the best, “best” is also good, which indicates
that the solution accuracy and performance of PSO is good. The “avg” and “best” of SWWOA are both
best, “std” is also good, indicating that SWWOA can stably obtain better solutions.

Function f8: the “avg” order is WOA>PSO>OBCWOA>SWWOA>ABC, the “best” order is
WOA>OBCWOA>PSO>SWWOA>ABC, the “std” order is PSO>ABC>WOA>SWWOA>OBCWOA.
With the analysis of f7, ABC is still the worst. The “avg” and “best” of WOA are good and the best.
The proposed SWWOA does not achieve the desired effect on this function. This is mainly because
the optimal solution area of the function is a narrow and approximately flat area. When SWWOA is
close to the optimal solution, it searches near the approximate optimal solution with a very small step,
see Equation (14), which is biased towards tuning, instead of searching, so it fails to search the solution
space more effectively.

Function f18: the “avg” order is SWWOA=OBCWOA>WOA>PSO>ABC, the “best” order is
SWWOA=OBCWOA=WOA>PSO>ABC, and the “std” order is SWWOA=OBCWOA=PSO>WOA>ABC.
This function is a multimodal function. Both SWWOA and OBCWOA fall into the local optimum,
but, overall, SWWOA and OBCWOA should be the two algorithms with the best performance on
this function.

Based on the above data, when considering “avg”, “best”, and “std”, the overall performance
ranking of the algorithms is roughly SWWOA>OBCWOA>WOA>PSO>ABC.

From the perspective of algorithm comparison, Tables 4–7 are similar to Table 3, so this paper does not
analyze them in detail. The following is to select a function from “US”, “UN”, “MS”, and “MN”, respectively
( f3, f7, f13, f19), and from Table 8 to perform algorithm performance between different dimensions.
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Table 8. Comparison results with different dimensions.

n = 20 n = 100 n = 200 n = 500 n = 1000

WOA 1.58 × 10−21 9.67 × 10−19 1.52 × 10−18 1.92 × 10−20 9.83 × 10−21

f3 OBCWOA 2.87 × 10−200 4.43 × 10−185 6.38 × 10−179 7.55 × 10−177 4.49 × 10−171

SWWOA 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

WOA 6.87 × 10+01 1.56 × 10+03 3.37 × 10+03 8.17 × 10+03 1.59 × 10+04

f7 OBCWOA 3.15 × 10+01 2.07 × 10+03 4.27 × 10+03 9.20 × 10+03 1.84 × 10+04

SWWOA 2.48 × 10−15 3.08 × 10−05 1.46 × 10+00 1.07 × 10+03 1.31 × 10+04

WOA 3.80 × 10−105 2.25 × 10−110 5.09 × 10−108 4.57 × 10−103 4.13 × 10−109

f13 OBCWOA 1.47 × 10−231 3.78 × 10−214 6.65 × 10−210 4.43 × 10−208 1.54 × 10−203

SWWOA 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

WOA 8.26 × 10−03 9.15 × 10−03 7.77 × 10−03 6.80 × 10−03 7.29 × 10−03

f19 OBCWOA 4.86 × 10−04 4.37 × 10−03 6.32 × 10−03 4.37 × 10−03 6.80 × 10−03

SWWOA 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

The meta-heuristic algorithm has a great advantage, which is, it is not sensitive to the problem
dimension. This feature is also an important indicator to measure the algorithm. The data presented
in Table 8 are “avg” data. From the table, it can be seen that the average values of WOA, OBCWOA,
and SWWOA almost all deteriorate with the dimensionality, indicating that the algorithms all have
good robustness. Among them, WOA and OBCWOA still have some fluctuations, while the SWWOA
steadily become worse with the increase of dimensions, correspondingly the best.

In order to more comprehensively compare the performance of algorithms, Table 9 compares
algorithms according to different function types and dimensions. The data in the table are the number
of times the algorithm won.

Table 9. Comparison of wins under different function types and dimensions.

n ABC PSO WOA OBCWOA SWWOA

20 0 0 1 5 6
100 0 0 1 5 6

f1– f6 (US) 200 0 0 1 5 6
500 0 0 1 5 6

1000 – – 1 5 6
20 0 0 1 3 5
100 0 0 1 3 5

f7– f12 (UN) 200 0 0 1 3 5
500 0 0 1 3 5

1000 – – 1 3 5
20 0 0 2 2 3
100 0 0 2 2 3

f13– f15 (MS) 200 0 0 2 2 3
500 0 0 2 2 3

1000 – – 2 2 3
20 0 0 2 4 5
100 0 0 2 3 5

f16– f20 (MN) 200 0 0 2 3 5
500 0 0 2 3 5

1000 – – 2 3 5

First of all, it can be seen from Table 9 that SWWOA is the algorithm with the most wins in various
function types and dimensions, which shows that SWWOA has better adaptability. In addition, it can
be seen from Table 9 that the effectiveness of the algorithm has little to do with the dimensionality of
the function, but it has a greater relationship with the characteristics of the function itself. In general,
if an algorithm wins on a function with lower dimension, it is highly likely that the algorithm can win
on a higher dimension. When combining the data in Table 8, it can be concluded that the function
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dimension affects the accuracy of the solution, but whether an algorithm is effective on the function
depends more on the characteristics of the function itself.

4.2.1. Test on Shifted Rotated Functions

Most of the benchmark functions shown in the Table 2 obtain the optimal value when x∗ =

[0, 0, 0, · · · , 0]. This situation can easily lead to better performance of the algorithm while using the
“average mechanism”. In view of this, all of the algorithms have been tested on eight shifted/rotated
functions in CEC 2014 benchmark functions [37]. The algorithms use the same settings as above,
and the test results are shown in Tables 10 and 11.

Table 10. Comparison results for 8 shifted rotated functions with n = 20.

Function ABC PSO WOA OBCWOA SWWOA

best 6.27 × 10+01 1.04 × 10+00 5.99 × 10+02 3.64 × 10+02 1.01 × 10−03

Shifted Rotated f8 avg 1.49 × 10+02 2.16 × 10+01 2.21 × 10+03 1.52 × 10+03 5.20 × 10+00

std 1.92 × 10+02 1.25 × 10+02 5.54 × 10+03 3.19 × 10+03 2.91 × 10+01

best 8.93 × 10+03 1.99 × 10+03 3.34 × 10−170 0.00 × 10+00 0.00 × 10+00

Rotated f11 avg 1.28 × 10+04 1.99 × 10+03 1.51 × 10+04 0.00 × 10+00 0.00 × 10+00

std 3.98 × 10+03 2.03 × 10−12 1.11 × 10+05 0.00 × 10+00 0.00 × 10+00

best 3.79 × 10+02 6.92 × 10−33 7.21 × 10−183 0.00 × 10+00 0.00 × 10+00

Rotated f12 avg 3.81 × 10+03 6.92 × 10−33 3.46 × 10−145 0.00 × 10+00 0.00 × 10+00

std 1.54 × 10+04 1.22 × 10−47 6.74 × 10−144 0.00 × 10+00 0.00 × 10+00

best 2.89 × 10+01 6.87 × 10+01 1.18 × 10+02 1.12 × 10+02 2.59 × 10+01

Shifted f14 avg 7.86 × 10+01 7.46 × 10+01 1.79 × 10+02 1.55 × 10+02 2.79 × 10+01

std 1.06 × 10+02 1.54 × 10+01 1.22 × 10+02 7.29 × 10+01 9.75 × 10+00

best 2.99 × 10+02 2.99 × 10+02 2.99 × 10+02 2.99 × 10+02 2.99 × 10+02

Shifted Rotated f14 avg 2.99 × 10+02 2.99 × 10+02 2.99 × 10+02 2.99 × 10+02 2.99 × 10+02

std 2.54 × 10−13 2.54 × 10−13 2.54 × 10−13 2.54 × 10−13 2.54 × 10−13

best 4.45 × 10+02 4.45 × 10+02 4.45 × 10+02 4.45 × 10+02 4.45 × 10+02

Shifted Rotated f16 avg 4.45 × 10+02 4.45 × 10+02 4.45 × 10+02 4.45 × 10+02 4.45 × 10+02

std 7.63 × 10−13 7.63 × 10−13 7.63 × 10−13 7.63 × 10−13 7.63 × 10−13

best 3.34 × 10+01 3.34 × 10+01 3.34 × 10+01 3.34 × 10+01 3.34 × 10+01

Shifted Rotated f17 avg 3.34 × 10+01 3.34 × 10+01 3.34 × 10+01 3.34 × 10+01 3.34 × 10+01

std 6.36 × 10−14 6.36 × 10−14 6.36 × 10−14 6.36 × 10−14 6.36 × 10−14

best 2.16 × 10+01 2.16 × 10+01 2.16 × 10+01 2.16 × 10+01 2.16 × 10+01

Shifted Rotated f18 avg 2.16 × 10+01 2.16 × 10+01 2.16 × 10+01 2.16 × 10+01 2.16 × 10+01

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

From the data presented in Table 10, it can be seen that the proposed algorithm is still in the
leading position on shifted rotated f8, rotated f11, rotated f12, and shifted f14, but, when compared
with the above results, the advantage is not big. On Shifted Rotated f14, Shifted Rotated f16, Shifted
Rotated f17, and Shifted Rotated f18, the results of all algorithms are exactly the same, and no optimal
solution is obtained, which shows that all algorithms fall into local optima on these functions. The data
presented in Table 11 and the data in Table 10 show almost the same results. The only difference
is that the quality of the obtained solution decreases due to the increase of the function dimension.
Combining the data from the two tables, it can be seen that SWWOA has certain advantages, but the
advantages are not obvious, especially in the case of complex shifted rotated functions, the ability to
jump out of the local optimum needs to be strengthened.
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Table 11. Comparison results for eight shifted rotated functions with n = 100.

Function ABC PSO WOA OBCWOA SWWOA

best 6.30 × 10+02 1.87 × 10+03 5.47 × 10+04 3.84 × 10+04 3.16 × 10+02

Shifted Rotated f8 avg 1.20 × 10+03 4.97 × 10+03 7.36 × 10+04 5.29 × 10+04 7.48 × 10+02

std 1.63 × 10+03 9.05 × 10+03 4.96 × 10+04 3.48 × 10+04 1.45 × 10+03

best 2.18 × 10+04 1.03 × 10+04 5.87 × 10−07 0.00 × 10+00 0.00 × 10+00

Rotated f11 avg 3.49 × 10+04 1.56 × 10+04 1.58 × 10+05 0.00 × 10+00 0.00 × 10+00

std 3.63 × 10+04 3.31 × 10+04 7.89 × 10+05 0.00 × 10+00 0.00 × 10+00

best 9.01 × 10+08 6.83 × 10+04 3.19 × 10−178 0.00 × 10+00 0.00 × 10+00

Rotated f12 avg 3.94 × 10+09 4.42 × 10+05 1.67 × 10−152 0.00 × 10+00 0.00 × 10+00

std 1.64 × 10+10 2.16 × 10+06 3.26 × 10−151 0.00 × 10+00 0.00 × 10+00

best 3.35 × 10+02 5.42 × 10+02 1.24 × 10+03 1.03 × 10+03 3.20 × 10+02

Shifted f14 avg 4.74 × 10+02 6.17 × 10+02 1.32 × 10+03 1.20 × 10+03 4.08 × 10+02

std 3.38 × 10+02 2.34 × 10+02 1.60 × 10+02 3.41 × 10+02 2.09 × 10+02

best 1.70 × 10+03 1.70 × 10+03 1.70 × 10+03 1.70 × 10+03 1.70 × 10+03

Shifted Rotated f14 avg 1.70 × 10+03 1.70 × 10+03 1.70 × 10+03 1.70 × 10+03 1.70 × 10+03

std 4.07 × 10−12 4.07 × 10−12 4.07 × 10−12 4.07 × 10−12 4.07 × 10−12

best 3.47 × 10+03 3.47 × 10+03 3.47 × 10+03 3.47 × 10+03 3.47 × 10+03

Shifted Rotated f16 avg 3.47 × 10+03 3.47 × 10+03 3.47 × 10+03 3.47 × 10+03 3.47 × 10+03

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.81 × 10+02 1.81 × 10+02 1.81 × 10+02 1.81 × 10+02 1.81 × 10+02

Shifted Rotated f17 avg 1.81 × 10+02 1.81 × 10+02 1.81 × 10+02 1.81 × 10+02 1.81 × 10+02

std 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 2.17 × 10+01 2.17 × 10+01 2.17 × 10+01 2.17 × 10+01 2.17 × 10+01

Shifted Rotated f18 avg 2.17 × 10+01 2.17 × 10+01 2.17 × 10+01 2.17 × 10+01 2.17 × 10+01

std 3.18 × 10−14 3.18 × 10−14 3.18 × 10−14 3.18 × 10−14 3.18 × 10−14

4.3. Wilcoxon’S Rank Sum Test Analysis

Almost all meta-heuristic algorithms include certain random factors. Wilcoxon’s rank sum test [38]
is adopted in order to statistically reflect the superiority of the proposed algorithm. The significant
differences between SWWOA and comparison algorithms are indicated by the p-values that were
obtained from the Wilcoxon’s rank sum test, and the significance level is set at 0.05. When p-value < 0.05,
it means that SWWOA has statistical advantages in solving problems as compared with the comparison
algorithms. Table 12 shows the test results. It can be seen from Table 12 that most of the p-values are less
than 0.001, which shows that SWWOA can solve the problem more effectively in most cases. In addition,
there are some p-values that are equal to 1 in Table 12. This situation is because the two compared
algorithms have obtained the optimal solution. There are only three p-values that are greater than 0.05
in Table 12. They are (1) SWWOA vs. OBCWOA on f8 with n = 10, (2) SWWOA vs. OBCWOA on f8

with n = 100, and (3) SWWOA vs. WOA on f18 with n = 500. This shows that, in these three cases,
SWWOA does not have statistical advantages, which is consistent with the situation in Section 4.2.
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Table 12. p-values obtained from Wilcoxon’s rank sum test.

n Funcs ABC PSO WOA OBCWOA Funcs ABC PSO WOA OBCWOA

20 f1 <0.001 <0.001 <0.001 1 f11 <0.001 <0.001 <0.001 1
100 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
20 f2 <0.001 <0.001 <0.001 1 f12 <0.001 <0.001 <0.001 1

100 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
20 f3 <0.001 <0.001 <0.001 <0.001 f13 <0.001 <0.001 <0.001 <0.001

100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
20 f4 <0.001 <0.001 <0.001 1 f14 <0.001 <0.001 1 1

100 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
20 f5 <0.001 <0.001 <0.001 1 f15 <0.001 <0.001 1 1

100 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
20 f6 <0.001 <0.001 1 1 f16 <0.001 <0.001 1 1

100 <0.001 <0.001 1 1 <0.001 <0.001 1 1
200 <0.001 <0.001 1 1 <0.001 <0.001 1 1
500 <0.001 <0.001 1 1 <0.001 <0.001 1 1
20 f7 <0.001 <0.001 <0.001 <0.001 f17 <0.001 <0.001 1 1

100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1
20 f8 <0.001 <0.001 <0.001 0.589 f18 <0.001 <0.001 0.003 1

100 <0.001 <0.001 <0.001 0.194 <0.001 <0.001 0.007 1
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.030 1
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.176 1
20 f9 <0.001 <0.001 <0.001 1 f19 <0.001 <0.001 <0.001 <0.001

100 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
20 f10 <0.001 <0.001 <0.001 <0.001 f20 <0.001 <0.001 <0.001 1

100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.015
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003

4.4. Convergence Speed Comparison

Because different algorithms have different optimization mechanisms, for example, PSO has high
global search capability. Therefore, only standard WOA (black), OBCWOA (blue) and SWWOA (green)
are selected in this experiment, and the function dimension is set to 200. In Figure 3, the abscissa is the
number of iterations, and the ordinate is the logarithm of the function value.

It can be clearly seen from Figure 3 that SWWOA converges to a better solution at a very high
speed in all other functions, except for the two functions f7 and f8. In the f7 test, the convergence
speed of SWWOA is not superior to that of WOA and OBCWOA, but it finally converges to the better
solution. In the f8 test, SWWOA and OBCWOA have a slight advantage in the convergence speed,
but both have stagnated, and the final solution quality is not as good as WOA. Generally speaking,
when compared with WOA and OBCWOA, SWWOA has a very high convergence speed.
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Figure 3. Convergence speed comparison with n = 200.

4.5. Ablation Experiment

As mentioned above, this section selects f3, f7, f13, and f19 for experiments, and the selected function’s
dimension are set to 20. For the validity of the experiment, we run the algorithm independently on
four functions 20 times, and count the results. The SWWOA has four improvements on the standard
WOA, corresponding to the design algorithm WOA+Chaos (A1), A1+Quasi-Opposition-Learning (A2),
A2+nonlinear-control-parameter (A3), A3+Single-dimensional swimming (SWWOA), and algorithms’
parameters refer to Table 1.

Table 13 shows the results of the ablation experiment. From the results of A1, the chaotic
sequence alone did not improve the algorithm performance, but it decreased. This is because chaos is
super random, and the initial population needs a stronger search mechanism to obtain better solution.
From the results of A2, on the basis of the chaos initial population, quasi-opposition learning completely
improves the algorithm’s spatial search ability. Except for the function f7, the other functions have
obtained the optimal solutions. From the perspective of A3, the performance of the algorithm is once
again reduced. This is because more calculations are used for tuning, but there is a lack of a tuning
mechanism. Finally, single-dimensional swimming is added. From the data of f7, the accuracy of the
algorithm is greatly improved. In summary, the chaotic sequence strengthens the chaos of the initial
population, coupled with quasi-opposition learning, greatly improves the algorithm’s spatial search
ability, even a little excessive. As a result, we put forward nonlinear control parameters, use excess
calculations for tuning, and add unique single-dimensional swimming to achieve better results.
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Table 13. Ablation experiment with n = 20.

Function WOA A1 A2 A3 SWWOA

best 1.89 × 10−27 3.53 × 10−30 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f3 avg 4.73 × 10−19 4.00 × 10−21 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 9.17 × 10−18 7.15 × 10−20 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 1.73 × 10−07 1.05 × 10+01 3.51 × 10+02 1.15 × 10+03 4.71 × 10−21

f7 avg 8.87 × 10+01 1.39 × 10+02 3.30 × 10+03 3.12 × 10+03 8.54 × 10−16

std 4.55 × 10+02 4.72 × 10+02 4.50 × 10+03 4.30 × 10+03 7.74 × 10−15

best 7.37 × 10−121 1.22 × 10−121 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f13 avg 1.43 × 10−112 2.23 × 10−111 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.28 × 10−111 4.10 × 10−110 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

best 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

f19 avg 7.29 × 10−03 6.32 × 10−03 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

std 1.88 × 10−02 2.07 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

5. Conclusions

Based on the study of WOA, this paper proposes a modified WOA algorithm that is based
on single-dimensional swimming (abbreviated as SWWOA). By proposing a chaotic sequence to
generate the initial population, and using quasi-opposition learning on these foundations, the global
search capability of SWWOA is greatly improved. At the same time, the original linear control
parameter of WOA is improved, and nonlinear control parameter based on logarithm is used to balance
The relationship between search and tuning, finally a single-dimensional swimming mechanism is
proposed, which maximizes the tuning capability. The comparative experiments of 20 test functions
in different dimensions show that the proposed algorithm can obtain high-quality solutions in few
iterations and, at the same time, has strong stability and robustness. However, Section 4.2.1 presents a
test conducted on complex shifted rotated functions. When compared with the comparison algorithm,
although SWWOA has certain advantages, the advantages are not obvious, and there is obviously
stagnation. Solving the stagnation problem and enhancing the ability of the algorithm to jump out of
the local optimum are the directions of future work.
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