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Abstract: As a novel meta-heuristic algorithm, the Whale Optimization Algorithm (WOA) has
well performance in solving optimization problems. However, WOA usually tends to trap in local
optimal and it suffers slow convergence speed for large-scale and high-dimension optimization
problems. A modified whale optimization algorithm with single-dimensional swimming (abbreviated
as SWWOA) is proposed in order to overcome the shortcoming. First, tent map is applied to generate
the initialize population for maximize search ability. Second, quasi-opposition learning is adopted
after every iteration for further improving the search ability. Third, a novel nonlinearly control
parameter factor that is based on logarithm function is presented in order to balance exploration and
exploitation. Additionally, the last, single-dimensional swimming is proposed in order to replace
the prey behaviour in standard WOA for tuning. The simulation experiments were conducted
on 20 well-known benchmark functions. The results show that the proposed SWWOA has better
performance in solution precision and higher convergence speed than the comparison methods.

Keywords: whale optimization algorithm; quasi-opposition learning; tent map; single-dimensional
swimming; nonlinearly convergence factor

1. Introduction

With the development of technology, increasing global optimization problems have to be solved
in various fields, such as economic scheduling, aerospace, signal processing, artificial intelligence,
mechanical design, chemical engineering [1-3], etc. In general, optimization problems with typical
mathematical characteristics can be solved by traditional algorithms and the optimal solution is
guaranteed in this case. However, many problems in modern applications have the characteristics of
large-scale, high-dimensional, and lack of typical mathematical characteristics, and they cannot be
solved by traditional optimization algorithms or the solution is too complex to be feasible. For this,
many scholars have conducted research on the meta-heuristic algorithm and have remarkable results.

A meta-heuristic algorithm is an implementation on a specific problem guided by a set of
guidelines or strategies, which adopts the “trial-and-error” mechanism [4]. The “trial-and-error”
mechanism is a method for obtaining a feasible solution at first, and then gradually improve it
by comparing the fitness of feasible solutions, finally approach or obtain the optimal solution.
The meta-heuristic algorithms cannot guarantee to obtain the optimal, but it can obtain a satisfactory
solution within a certain amount of time. The “trial-and-error” mechanism adopted by the meta-heuristic
algorithms ensure that it does not require the problem to have precise mathematical characteristics, and it is
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very adaptable. Motivated by the diversity of engineering applications, many meta-heuristic algorithms
have been proposed, such as the Genetic Algorithm (GA) [5,6], Simulated Annealing (SA) [7,8], and the
subsequently, Ant Colony Optimization (ACO) [9,10], Differential Evolution (DE) [11], Particle Swarm
Optimization (PSO) [12-14], Gravitational Search Algorithm (GSA) [15], and so on. Some of these
meta-heuristic algorithms are called Swarm Intelligent algorithm (SI), which iteratively solve problems
by simulating group collaboration. In recent years, a large number of novel swarm intelligent
optimization algorithms have been proposed in order to meet the challenge of global optimization
problems, such as artificial bee colony optimization (ABC) [16-18], Whale Optimization Algorithm,
(WOA) [19-22], Glowworm Swarm Optimization (GSO) [23,24], Grey Wolf Optimization (GWO) [25],
and Symbiotic Organisms Search (SOS) [26,27], etc.

The meta-heuristic algorithm can generally obtain good results when solving small-scale
optimization problems, but, when targeting some high-dimensional large-scale optimization problems,
there are often two problems: (1) convergence speed slow, which leads to long computation time; and,
(2) it is easy to fall into the local optimum. These two problems are related to each other, the former
is that the approximation speed is too low, which can be improved by improving some parameters
or introducing some mechanisms, while the latter is mainly due to the lack of population diversity,
which is directly related to the final solution quality, and it can be improved by enhancing population
diversity. Many scholars have conducted a lot of work on the shortcomings of meta-heuristic
algorithms, and have obtained good results by improving the standard algorithm or mixing the
standard algorithm with various mechanisms.

Whale Optimization Algorithm is a new meta-heuristic optimization algorithm for simulating
humpback whale hunting behavior proposed by Mirjalili [28] in 2016, and it has been shown that
WOA has better optimization performance when compared to PSO, ABC, and DE algorithms [29],
but it still suffers from slow convergence and low solution accuracy when solving high-dimensional
large-scale optimization problems. In view of this, a lot of work has been done on WOA for improving
the WOA algorithm in order to obtain better performance. In the literature [30], Adel introduces
the concept of leader to guide the population into the optimal solution region, which enhances the
convergence speed of WOA. In [31], Mohamed proposed that chaotic sequences and Opposition-Based
Learning (OBL) are the two most effective ways to improve WOA. The adaptive chaotic sequence
selection method is proposed in the paper in order to improve the diversity of the initial population
and, at the same time, a part of the population is selected to execute the DE algorithm, which finally
results in an improved DEWCO algorithm that is a mixture of WOA and DE. A nonlinear dynamic
control parameter update strategy that is based on a cosine function is proposed in [20] in order to
balance the exploration and tuning ability. Additioanlly, the Lévy flight strategy is used to make the
algorithm jump out of the local optimum and avoid stagnation [22]. In the literature [19], a WOA
based on quadratic interpolation is proposed. The algorithm mainly introduces new parameters,
improves the search process, and balances the convergence speed and solution accuracy. At the
same time, quadratic interpolation is used to search the optimal agent, which improves the solution
accuracy. The literature [21] employs a logistic chaos map in order to improve the distribution of the
initial population in the solution space and a quasi-opposition learning mechanism, in which both the
standard algorithm and the quasi-opposition learning generate and evaluate agents during predation,
and the better agent is retained by comparing the adaptation values of the two agents to improve
the convergence speed. In literature [32], two strategies are used to improve the standard WOA:
(1) random replacement of poorer agents with better ones, which is used to improve the algorithm’s
solution convergence speed, and (2) adaptive double weights, which is used to balance the algorithm’s
early spatial search ability and later local spatial tuning ability. There are three main improvements
in the literature [33]; firstly, a chaotic sequence is introduced for optimizing the initial population.
Subsequently, Gaussian variation is used to maintain the diversity level of the population. Finally,
a “reduced” strategy is used to search near the optimal solution. The literature [34] introduced quantum
behavior in the standard WOA to simulate the hunting process of humpback whales in order to enhance
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the search capability of the algorithm, which is used for feature selection. Although these studies have
improved the standard WOA algorithm to some extent, there are still problems of slow convergence
and low solution accuracy, especially for high-dimensional large-scale optimization problems.

In this paper, a modified WOA algorithm SWWOA based on single-dimensional swimming is
proposed, with four main improvements: (1) the use of tent chaotic sequences to optimize the quality of
the initial population; (2) the introduction of quasi-opposition learning mechanism, any agent updated
position will be learned by quasi-opposition learning, retain the better agent by fitness; (3) the use
of logarithmic function to dynamically update the weights, instead of the original linear weights.
Balancing the between convergence speed and solution quality; and, (4) the single-dimensional
swimming improvement is borrowed from the single-dimensional update of position in the ABC
algorithm, which replaces the full dimensional update in the standard WOA with single-dimensional
improvement in order to further improve the algorithm’s ability.

The rest of paper is organized, as follows. Section 2 introduces the standard whale optimization
algorithm. Section 3 describes the proposed SWWOA algorithm. Simulations and the discussion of
results are shown in Section 4. Finally, Section 5 gives the conclusions.

2. Standard WOA Algorithm

WOA is a novel meta-heuristic optimization algorithm by imitating the hunting mechanism of
humpback whales, which consists of three phases: encircling prey, spiral bubble-net feeding maneuver,
and search for prey [28].

2.1. Encircling Prey (Exploitation Phase)

At this stage, the algorithm sets the current optimal position in the population as the global
optimal, which is, the prey. All of the whales in the population move towards the prey and gradually
shrink to surround the prey, as follows:

B:]c-ﬁ(t)—?(t)‘ (1)

X (t+1)=X* (t) —A- D 7

where t represents the current time, X is the position vector, which represents a feasible solution.

}?*? represents the optimal solution at the current time and |-| represents the absolute value. A and C
are two control parameters, which are calculated, as follows:

A=2ar—a 3)

C=2r ()

where a is linearly factor from 2 to 0 over the whole iterations (both exploration and exploitation) and r
is a random number in [0, 1].

2.2. Bubble-Net Attacking Method (Exploitation Phase)

At this stage, WOA imitate humpback whales attacking prey with bubble net, which are essentially
spiral search space, whose mathematical model is as follows:

Di— ]?(t) - X (1) 5)

X (t41)= D' - o' - cos (2711) +X° (#) ©)

_>
where D’ represents the distance between current whale and the best solution of population. [ is
a random number in [—1, 1] and b is a constant used in order to define the shape of the spiral, normally
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is 1. Exploitation phase has bubble-net attacking and encircling prey two methods, each is implemented
with 50% probability. Accordingly, combining the two method, the following formula can be obtained:

T (t41) = X -A-D p <05 .
X (1) —Hf—)>’ et . cos(2ml) p>05

2.3. Search for Prey (Exploration Phase)

In a standard WOA algorithm, this stage is the mainly phase for exploration, where the
mathematical model is similar to Equations (1) and (2), and the only difference is the use of a random
agent instead of the optimal agent. The formula is as follows:

D=|C Xana ()~ X (1) ®)
X (1) =Xyqut () A - D ©)

o

X,and denotes a random agent in population, other meanings same to the Section 2.1. It is worth
noting that the scheduling between encircling (exploitation) and search (exploration) is done by the
value of |A|. When |A| < 1, exploitation is selected. When |A| > 1, exploration is selected.

2.4. The Pseudo Code of WOA

When compared with other meta-heuristic algorithms, in addition to the necessary parameters,
such as population size and max iteration times, the WOA algorithm only has one parameter a for
balanced exploitation and exploration, which is a very good advantage. However, from another aspect,
WOA has very few adjustable parameters and it is slightly lacking in flexibility. The pseudo code of
the standard WOA Algorithm 1 is as follows:

Algorithm 1 WOA

01 initialize maxIteration, popsize and parameter b
02 initialize the population and calculate fitness

03 obtain the optimal agent

04 WHILE t<maxIteration DO

05 updatea, A, C by Equations (3) and (4)

06  WHILE i<popsize DO

07 generate random number p € [0,1]

08 IF p < 0.5 THEN

09 IF |A| <1 THEN

10 update position of agent i by Equation (2)
11 ELSE

12 generate random agent rand

13 update position of agent i by Equation (9)
14 ENDIF

15 ELSE

16 update position of agent i by Equation (6)
17 ENDIF

18 i=i+1

19 ENDWHILE

20 update optimal agent if there is a better solution
21 t=t+1

22 ENDWHILE

23 RETURN optimal agent
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3. Whale Optimization Algorithm with Single-Dimensional Swimming (SWWOA)

In this paper, an improved algorithm is proposed for the features of the standard WOA algorithm.
The main improvements are divided into four interrelated aspects. First, the quality of the initial
population is directly related to the convergence speed and, if there are agents located in the optimal
solution region at the beginning, it will save a lot of useless calculations. Subsequently, quasi-opposition
learning is introduced in order to improve search capability in all directions. On the basis of
greatly improving the search ability, this paper introduces a logarithm-based nonlinear parameter,
which is used in order to apply more computation to tuning and improve the solution accuracy.
Finally, borrowing from the ABC algorithm for finding food, the full-dimensional encircling prey is
replaced by a single-dimensional swimming, which is essentially a more fine-grained approach to
finding excellence and, moreover, gives the algorithm the ability to jump out of the local optimum.
Before describing the improvements in this paper, the test functions are first described.

3.1. Chaotic Sequence Based on Tent Map

A chaotic system is a deterministic system, in which there is seemingly random irregular
movement that behaves in an indeterminate, unrepeatable, and unpredictable manner [21]. Chaos
is an inherent property of nonlinear system and it is a common phenomenon in nonlinear systems.
There are many map functions for chaotic system, the most commonly used of which are logistic map
and tent map [21,31,33]. In this paper, we use tent map with the following formula. Presently, most of
the improved algorithms use logistic map. However, logistic map has uneven traversal characteristics,
while tent map has better uniform characteristics [31]. Figure 1 shows the specific comparison of
logistic map and tent map.
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Figure 1. Tent map and Logistic map.
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In this paper, the tent map is selected, whose formula is as follows:

1OSk/7 Sk < 0.7
Skt { 10(1—s)/3 s > 07 (19)

when the initial value s; € (0,1) is randomly given, through Equation (10) iteration n — 1 times,
a chaotic sequence {s1s3,- - - , 5, } can be generated. The initial agent can be generated by mapping the
sequence to the solution, as follows:

Xi = Ximin + (xi,max - xi,min)si (11)

where x; nin represents the lower boundary of x in the i-th dimension, x; n,x represents the upper
boundary of x in the i-th dimension. At the time of initialization, all of the agents in the population are
mapping according to formula Equations (10) and (11) in order to generate chaotic population.

3.2. Quasi-Opposition Learning

In the meta-heuristic algorithm, feasible solutions are obtained first, and then the solution space is
searched for the optimal based on the fitness of the feasible solution. Various different meta-heuristic
algorithms search in different ways, but all of them essentially have a random factor. In recent years,
Opposition-Based Learning [35] has been widely used in meta-heuristic algorithms [21,27,29], which is
essentially a method of replacing random search with symmetric search, which can greatly improve
the search ability of the algorithm.

Although the opposite-learning method improves the search capability of the algorithm
considerably, Opposition-Based Learning is too fixed and not very effective for tuning in a small
space. The literature [31,36] proposes quasi-opposite learning, which adds a random factor to
Opposition-Based Learning, and the resulting position is not a fixed symmetric position, but a random
position between the central position and the symmetric position. Assuming x € [a, b], the expression
for quasi-opposite learning is as follows:

x0:a+b+r<a+b—x> (12)

2 2

where r € [0,1] is a random variable. If r € [0, 2], quasi-opposite point theoretically has 50% chance
falling within the symmetry point and the center, and 50% chance of falling outside the symmetry
point. If it falls within the symmetry point, it is good for algorithm tuning to improve solution quality,
while falling outside the symmetry point is more good for spatial search to improve convergence
speed. If the variables x are multi-dimensional, then each dimension of x needs to separately execute
Equation (12), i.e., where a and b are vectors, the multi-dimensional expression is as follows:

?:”+b+r<”;b—7> (13)

2

3.3. Logarithm-Based Nonlinear Control Parameter

There is only one control parameter a in the standard WOA, as mentioned in Sections 2.3 and 2.4.
This parameter controls the proportion of exploitation and exploration, as shown in Equation (3). In the
standard WOA, the parameter a varies linearly from 2 to 0, while the direct control of exploration and
exploitation is |A|. From Equation (3) alone, exploration and exploitation each account for about 50%
weight. At the beginning of WOA, exploration accounts for a greater proportion and, after beginning,
the proportion of exploration gradually decreases, while that of exploitation gradually increases.

The proposed SWWOA algorithm, employs a chaos mechanism Section 3.1 and quasi-opposite
learning Section 3.2 mechanism, which has already improved exploration more substantially,
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so nonlinear control mechanism based on logarithm with a greater proportion of exploitation is
employed, which improves the tuning ability of the algorithm and ultimately improves the quality
of the solution. The expression of parameter is as follows, and the comparison of two parameter
mechanism is shown in Figure 2:

a=2-—log, (1 + 1 ) (14)

tmax

where t denotes t-th iteration, fmax denotes the max iteration times. As can be seen in Figure 2,
the logarithm-based control parameter curve starts out very steep and declines rapidly, while it flattens
out later. Overall, the tuning is performed with greater probability.

Original mechanism Logarithm mechanism

Value of a
Value of a

40 60 80 100 ] 20 40 60 80 100
Iteration Iteration

Figure 2. Two parameter mechanism with #;;5, = 100.

3.4. Single-Dimensional Swimming

It has been documented in [16], that the ABC algorithm has better optimization performance
when compared with algorithms, such as PSO and GA. Most of the above improvements in this paper
are dedicated to improving the search capability, in order to allow for the population to perform
a fine-grained search in a narrow space near the optimal; this paper introduces the employed bee
position update method in the ABC algorithm for single-dimensional swimming.

Dy=|[C- X5 (t) — X4 (1)] (15)

Xy (t4+1)=Xj (t) —A- Dy (16)
where d denotes a dimension, randomly generated for each agent, otherwise refer to Equations (1) and (2).

3.5. The Pseudo Code of SWWOA

SWWOA introduces four improvements to the standard WOA. These four improvements are
interrelated. Chaos mechanisms and opposition-based learning are used in order to improve the
spatial search capability; on top of this, nonlinear control parameter factors are introduced, which are
used to apply more computations to tuning, and finally single-dimensional swimming are used inn
order to search in narrow space and improve the solution quality. In Section 4, the ablation experiment
is designed to discuss the impact of each improvement on the algorithm. The pseudo code of the
standard SWWOA Algorithm 2 is as follows:
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Algorithm 2 SWWOA

01 initialize maxIteration, popsize and parameter b

02 initialize chaos population and calculate fitness by Equations (10) and (11)
03 obtain the optimal agent

04 WHILE t<maxIteration DO

05 update a by Equation (14)

06 update A, C by Equations (3) and (4)

07  WHILE i<popsize DO

08 quasi-opposition learning x{ on agent i by Equation (13)
09 generate random number p € [0,1]

10 IF p < 0.5 THEN

11 IF |[A| < 1 THEN

12 generate random dimension d

13 update position of agent i by Equations (15) and (16)
14 ELSE

15 generate random agent rand

16 update position of agent i by Equation (9)

17 ENDIF

18 ELSE

19 update position of agent i by Equation (6)

20 ENDIF

21 compare xj and x;, retaining the better agent

22 i=i+1

23 ENDWHILE

24  update optimal agent if there is a better solution
25 t=t+1

26 ENDWHILE

27 RETURN optimal agent

4. Experimental Results and Analysis

In order to verify the effectiveness of the proposed algorithm, we select other four algorithms
(WOA [28], ABC [16], PSO [12], and OBCWOA [21]) to conduct comparative experiments on 20
well-known test functions. The language used for the implementation is C/C++, the compiler is
gcc-4.8.5, the computer CPU is i3-9100, the memory is 16GB, and the CentOS-7.5 amd64 with kernel
3.10 operating system is used.

The PSO algorithm is a very famous meta-heuristic algorithm, which has a very stable performance
and it is often used as a benchmark for meta-heuristic algorithm. The ABC algorithm is also a much
studied algorithm with high solution quality, which is selected in this paper, because SWWOA draws
on its scout bee update mechanism. SWWOA is a proposed algorithm based on standard WOA, and the
standard WOA is also selected. In addition, the literature [21], which is almost the latest improvement
algorithm of the standard WOA, it uses a chaos mechanism and quasi-opposition learning mechanism,
which is similar to SWWOA, so the OBCWOA algorithm proposed in [21] is selected. Among the above
four algorithms, ABC is special, in that it is mainly updated in single-dimensional way. For fairness,
more iterations and a bigger population size are set for ABC. Table 1 shows the specific parameters
of algorithm.
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Table 1. Parameter setting.

Algorithm Parameter Settings
ABC popsize = 60, tmax = 2000, trial = 20
PSO popsize = 30, tmax = 1000, w = 0.9 — (0.9 — 0.2)¢/tmax,
g =15,¢0=15V €[-05,0.5]
WOA popsize = 30, tmax = 1000, a = 2 (1 — ¢/ tmax),

OBCWOA  popsize = 30, tmax = 1000, 2 = 2 (1 — t/tmax), Aogistic = 4 b=1
SWWOA popsize = 30, tmax = 1000, a = 2 —logyy (14 99t/tmax), b =1

4.1. Test Functions

A series of large-scale and high-dimensional test functions presented in Table 2 are utilized to test
algorithms’ performance. fi-fs are unimodal-separable functions (abbreviated as US), mainly to check
the convergence speed of the algorithm. f;—f;, are unimodal-nonseparable functions (abbreviated as
UN), when compared with the US functions, more able to detect the search capability of the algorithm.
f13—f15 are multimodal-separable functions (abbreviated as MS), more test algorithm out of the local
optimum ability. fi¢—f20 are multimodal-nonseparable functions (abbreviated as MN); these types of
functions are more complex and more reflective of the overall performance.

Table 2. Test functions.

Name Equation Range Type
Sphere filx) =" x? [-100,100]"  US
Sum Squares falx) =Y ix? [—10,10]" Us
Schwefel 2.21 f3(x) =max|x;[,1<i<n [—100,100]" us
Powell Sum fa(x) = X0 |t [-1,1]" Us
Quartic fs(x) = Y0 ixt [-1.28,1.28]"  US
Step fo(x) = X0 [x; + 05/ [—100,100]"  US
Zakharov Fr(x) = S0 224 (X0, 0.5ix,) 2+ (L0 _ , 0.5ix)* [—5,10]" UN
Rosenbrock fo(x) = 21 [100(xi4q — x2)% + (x5 — 1)?] [—30,30]" UN
Schwefel 1.2 folx) =X 1 (T _y x;)? [-100,100]" UN
Schwefel 2.22 fro(x) =8 q x| + 1T 2 1 |l [—10,10]" UN
Discus fia(x) =10%x3 + Y0, x® [—1,1]" UN
Cigar fra(x) =x2 41007, x® [-100,100]"  UN
Alpine f13(x) = |x;sin (x; + 0.1x;)]| [—10,10]" MS
Rastrigin fra(x) = 4 (x* — 10 cos 27x; + 10) [-5.12,5.12]" MS
Bohachevsky  fi5(x) = Z?;ll(xiz + 2x7-2+1 —0.3cos3mx; — 0.4 cosdmx; 1 +0.7) [—50,50]" MS
Griewank fre(x) = X1 x2/4000 — [T _ 4 cos(x; /i) +1 [—60,60]" MN
Weierstrass  fi7(x) = X0 1 Y20 {[cos(23F(x; + 0.5)) — cos(273F - 0.5)]/2F}  [-0.5,05]"  MN
Ackley Fis(x) = —20exp(—0.2y/ H=13) _expyr_ | £0s2mn 4 og 4 [-32,32]"  MN
Schaffer fro(x) = 0.5+ [sin?(TF_ ; x2)%° — 0.5]/(1 + LI ; x2/1000)? [—100,100]" MN
Salomon foolx) =1— cos(zn\/z;; 13+ \/2;’; 1 X2/10 [~100,100]"  MN

4.2. Numerical Analysis

In the comparative experiments, the problem dimensions are set to 20 (Table 3), 100 (Table 4),
200 (Table 5), 500 (Table 6), and 1000 (Table 7). Each algorithm is run independently on each function
20 times, and the optimal, average, and standard deviation are taken in tables.

The data in Tables 3-7 are the results of experiments conducted on different functional dimensions.
The data avg denotes the mean value, which is mainly an indicator of the performance of the algorithm,
while the best denotes the optimal result, which mainly reflects the accuracy of the algorithm, and std
denotes the standard deviation of the data, which reflects the stability of the algorithm. The following
section relies mainly on the avg value for evaluation. It is noteworthy that ABC and PSO are not
available in Table 7, because, from the data presented in Tables 3-6, these two algorithms have not
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achieved good results, and the gap between the results is too large, which loses the meaning of
the analysis.

Table 3. Comparison results for 20 test functions with n = 20.

Function ABC PSO WOA OBCWOA SWWOA
best 838 x107% 129 x107%° 1.86 x10718  0.00 x 1079  0.00 x 10100
fi avg 838x107% 129x107% 1.15x10712  0.00 x 10*%°  0.00 x 10+

std  474x1072 146 x107>* 219 x 10711 0.00 x 10790 0.00 x 101
best 1.32x107% 230x107% 419 x10°191  0.00 x 1010  0.00 x 10100
f avg 146 x107% 961 x107%  1.81 x 10717  0.00 x 10*%°  0.00 x 10+
std  4.80 x107%  3.80 x1073%  0.00 x 10790  0.00 x 1019 0.00 x 10190
best 7.24 x10101 418 x107%% 134 x 10730 196 x 10218 (.00 x 10100
f3 avg 724 x10701 418 x107%® 158 x 107!  2.87 x 10720 0.00 x 10700
std  0.00 x10T%  0.00 x 1010 3,00 x10"2  0.00 x 10790 0,00 x 101
best 1.10 x107% 433 x10%0 149 x 10727  0.00 x 10100 0.00 x 10+
fa avg 110x107% 433 x107%°  1.81 x1072°  0.00 x 10*%°  0.00 x 10+
std  1.52x10720 780 x1071% 000 x 1019  0.00 x 1019 0.00 x 10190
best 1.05x10712 122x10772 763 x1073%  0.00 x 1010  0.00 x 10100
fs avg 576 x107% 122 x10772 552 x 10723  0.00 x 10*%  0.00 x 107
std 446 x107% 225 x107%  0.00 x1019°  0.00 x 10190 0.00 x 10190
best 1.97 x 10192 420 x 10t 0.00 x 10790 0.00 x 1010 0.00 x 10+
fe avg 197 x 10702 420 x10*%  0.00 x 10  0.00 x 10*%°  0.00 x 107
std  0.00 x 10190 0.00 x 1019 0.00 x 10190 0.00 x 1019 0.00 x 10190
best 3.07 x10102 106 x107% 491 x107% 338 x10792 694 x1071°
f7 avg 3.07 x10702 106 x107% 687 x 1071 3.15 x 10701 248 x 1071°
std 508 x10713 1.85x1072* 3.03x10192 131 x10192 268 x10"14
best 3.79 x 10102 114 x10t% 337 x107% 144 x10792 1.17 x 1010
fs avg 379 x 10702 114 x 100 359 x 107  7.16 x 107  1.31 x 100!
std 508 x10713  0.00x10t0 231 x1010 384 x 10t 546 x 1010
best 1.45x 1010 483 %1079 223 x107*  0.00 x 1010 .00 x 10100
fo avg 147 x 1070 483 x107% 877 x 1071 0.00 x 10*%°  0.00 x 107
std  1.02 x 1019 0.00 x 1010 153 x 1019 0.00 x 10190 0.00 x 10190
best 154x107%2 252 %1070 354 x107120 210x1072° 0.00 x 10100
fio avg 154x10792 252x10710 168 x107112 3.03 x1072%  0.00 x 10+
std 310 x10717  0.00 x 10190 321 x 10~ 0.00 x 1019 0.00 x 10190
best 1.12x107%2 236 x107% 1.70 x1073%  0.00 x 10t%°  0.00 x 10100
i avg 112x107% 236 x107% 204 x1072%  0.00 x 10*%  0.00 x 10+
std 155 x10717 3.83 x107190 000 x 1079  0.00 x 1019 0.00 x 10190
best 3.12 x10H%7 124 x10772  3.60 x 10739 0.00 x 1010 0.00 x 10+
f12 avg  312x1077 116 x107% 3.2 x10-%1  0.00 x 10*%°  0.00 x 107
std 167 x107% 173 x107%  0.00 x 1019°  0.00 x 1019 0.00 x 10190
best 2.64 x 10100 426 x107% 348 x 10712 694 x 10721 .00 x 10100
fi3 avg 275 %1070 426 x107% 380 x 10710% 147 x 102! 0.00 x 1079
std 319 x1079 740 x107%* 735 x1071%  0.00 x 1019 0.00 x 10190
best 1.60 x 10101 249 x 10101 0.00 x 10t  0.00 x 1010  0.00 x 10100
fia avg 281 x1070 249 x 10t 0.00 x 100  0.00 x 10*%°  0.00 x 107
std 312 %1091 318 x107*  0.00 x 1019°  0.00 x 10190 0.00 x 10190
best 3.85 x107%2  0.00 x 1019  0.00 x 1019  0.00 x 10t%°  0.00 x 10100
fis avg 199 x107% 139 x10t%  0.00 x 109  0.00 x 10*%°  0.00 x 10+
std 201 x10190 143 x 1010 0.00 x 10190 0.00 x 10190 0.00 x 10190
best 3.13 x107%2 333 x1071®  0.00 x 10t%°  0.00 x 10t%° .00 x 1010
fie avg 123x107% 333 x1071  0.00x10%%0  0.00 x 10*%°  0.00 x 10+
std 371 %1079 0.00 x 1010 0.00 x 10790 0.00 x 10190 0.00 x 10190
best 2.02x107%2 534x10792  0.00 x 10t .00 x 10t%° .00 x 10100
fiz avg  710x107% 123 x10*% 0,00 x 10  0.00 x 107  0.00 x 10+
std 493 x1010 542 x 10100 0.00 x 1010  0.00 x 10190 0.00 x 10100
best 6.85x 10701 431 x107* 444 x1071° 444 x 1071 444 x 10716
fis avg 202 x1070 431 x107* 240 x1071® 444 x 10710 444 x1071°
std  9.08 1010 0.00 x 10t 790 x 1071  0.00 x 10190 0.00 x 10100
best 499 x107%1 415 %1079 0.00 x 10t  0.00 x 1010  0.00 x 10100
fi9 avg 499 x10701 428 x107% 826 x 107  4.86 x10~*  0.00 x 10+
std 497 x10716 925 x107%2  155x107%2 947 x 1079  0.00 x 10100
best 121 x 10101 450 x 10190 425 x107%  0.00 x 1010  0.00 x 10100
fa0 avg 121 x10701 450 x10*% 849 x 1072 0.00 x 107  0.00 x 10+
std 159 x107# 397 x1071 159 x107%  0.00 x 10190 0.00 x 10100
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Table 4. Comparison results for 20 test functions with n = 100.

Function ABC PSO WOA OBCWOA SWWOA
best 4.13 x10T92 769 x 10792 361 x10-181  0.00 x 10T  0.00 x 1079
f avg  7.82x 1072 834 x107%2 215x1071%  0.00 x 10  0.00 x 10+
std 496 x 10103 288 x10792  0.00 x 1070 0.00 x 10100 0.00 x 101
best 3.16 x 1019 859 x 10701 213 x 10719  0.00 x 10790 .00 x 107
£ avg 3.6 x 1078 876 x 107°1  1.02 x 10712 0.00 x 107  0.00 x 10+
std 407 x10712 757 x10792 147 x 107161 0.00 x 10T%  0.00 x 10100
best 9.45 x 1079 555 x 10100 363 x 10730 478 x 10~  0.00 x 1079
f3 avg  9.46 x 10701 580 x 1019 9,67 x 1071  4.43 x 10718 0.00 x 107
std 117 x10790 123 %1070 188 x10"Y  0.00 x 10t%  0.00 x 10100
best 1.00 x 10792 155 %1072 357 x 107266 .00 x 10790 .00 x 1079
fa avg 123 x107%0 991 x 10722 461 x 107221 0.00 x 10  0.00 x 10+
std 545 %1079 722 %1072 0.00 x 1079 0.00 x 10T%  0.00 x 10100
best 120x10792 738 x10~% 834 %1072  0.00 x 10T  0.00 x 1079
fs avg 330 x1072 173 x107% 491 x1072¢2  0.00 x 109  0.00 x 10+
std 157 x1079 324 x1079  0.00 x 1070  0.00 x 10100 .00 x 101
best 2.01 x101% 290 x 10102 0.00 x 10790  0.00 x 10790 .00 x 107
fe avg 201 x107% 305 x 10702 0.00 x 107 0.00 x 10  0.00 x 10+
std  0.00 x 10790 623 x 10191 0.00 x 10790 0.00 x 1079  0.00 x 10100
best 148 x10T%3  1.64 x 1010 641 x 1012 361 x 10102 1.15x 10~ 1
fr avg 139 x 1078 211 x 1070 156 x 1078 2.07 x 10*%®  3.08 x 10~%
std 208 x10108 235 x10T% 127 x100% 408 x 10103 356 x 10~%
best 824 x10T% 1.00 x101%2 559 x 10792 317 x 1079 950 x 107"
fs avg 824 x107% 178 x 1072 171 x 1070 570 x 10701 9.75 x 10701
std  0.00 x101t00 257 x10792  1.31 x1001 205 x 10102 528 x 1010
best 279 x10T%  1.63 x 10103 736 x107%  0.00 x 107  0.00 x 1079
fo avg 318 x107% 205 x 107  1.83 x107%  0.00 x 10  0.00 x 10+
std 237 x107% 153 x 1079 887 x 1079  0.00 x 1079  0.00 x 10100
best 3.55 x 10101 121 x 10100 242 x 107120 333 x 10727 (.00 x 107
fio avg 421 x 10700 150 x 1070 595 x 1071 1,07 x 10713 0.00 x 1070
std 122 x 10101 117 x 10790 116 x 1071%¢  0.00 x 1010 0.00 x 101
best 5.09 x107%2 1.00 x 1010 320 x 107316 .00 x 10790 .00 x 107
fin avg 5.09 x10792 160 x 1079 745 x 10723 0.00 x 1079 0.00 x 10+
std 621 x107Y 219 10190 0,00 x 10790 0.00 x 10T%  0.00 x 10100
best 1.00 x 10111 1.07 x 10102 1.75 x 107315 0.00 x 10790 .00 x 107
fio avg 184 x10T13 117 x 1072 178 x1072**  0.00 x 107  0.00 x 1070
std 126 x 10113 328 x 10791 0.00 x 10790 0.00 x 10100 .00 x 101
best 2.63x10101 777 %1092 116 x 107121 2.16 x 10722 (.00 x 10T
f13 avg 3.56 x 10701 208 x 10701 225 x 107110 378 x 10724  0.00 x 107+
std 278 x 10791 483 x 10791 249 x 10719  0.00 x 1079  0.00 x 10100
best 3.36 x 10102 1,02 x 10102 0.00 x 1079  0.00 x 10790 .00 x 107
f1a avg 444 x 10192 121 x 10702 0.00 x 1079 0.00 x 10*%  0.00 x 10+
std 278 x 10792 684 x 10191 0.00 x 10790 0.00 x 1079  0.00 x 10100
best 1.66 x 10102 2,68 x 10101 0.00 x 1079  0.00 x 1079 (.00 x 107
f15 avg  4.07 x 10702 326 x 1079 0.00 x 1070  0.00 x 107  0.00 x 107
std 111 x 10103 1.84 x10T91  0.00 x 10790 0.00 x 10100 0.00 x 101
best 1.05 x 10100 412 x10~%  0.00 x 1019  0.00 x 10790 .00 x 107
fi6 avg 1.80 x 1070 591 x107%%  0.00 x 1079 0.00 x 10*%  0.00 x 10+
std 411 x10790 253 %1079  0.00 x 1079 0.00 x 10T%  0.00 x 10100
best 8.03 x 1070 744 x 1001 0.00 x 10t 0.00 x 10T  0.00 x 1079
fi7 avg 227 x10T00 9,07 x 1079 0.00 x 1079 0.00 x 107%°  0.00 x 107
std 453 x 10791 414 x 1091 0.00 x 10790 0.00 x 1079 0.00 x 10100
best 7.75 x 10100 346 x 10100 444 x 10716 444 x 10716 4.44 x 10716
fis avg  9.89 x 1070 507 x 10790 169 x 10715 4.44 x 10716 4.44 x 10716
std 697 x10790 740 x 10190 758 x 10" 0.00 x 10T%  0.00 x 10100
best 5.00 x10791 496 x10791  0.00 x 10190  0.00 x 10790 .00 x 107
fr9 avg  5.00x107% 496 x 107"  9.15x 107 437 x10"%  0.00 x 1070
std 393 x107% 180x1079 336 x10792 216 x107%2  0.00 x 10100
best 4.87 x 10101 750 x 10100 490 x 1078  0.00 x 1079 .00 x 107
f20 avg 4.87 x 10T 838 x 10790 549 x 10792 2.00 x 10792  0.00 x 10+
std  0.00 x 10790 482 %1010 222 x1079 179 x 1071 0.00 x 10100
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Table 5. Comparison results for 20 test functions with n = 200.

Function ABC PSO WOA OBCWOA SWWOA
best 4.69 x 10792 531 x 10100 162 x10°183  0.00 x 10T  0.00 x 1079

fi avg 141 x107% 108 x 10701  1.81 x 10710  0.00 x 10  0.00 x 10+
std  1.06 x 1079 1,68 x 10191 345 x 1071  0.00 x 1079  0.00 x 10100

best 2.02 x10792 136 x 10102 500 x10~1?  0.00 x 107  0.00 x 1079

fa avg 3.82 x10192 147 x10702 1.83 x 1071%*  0.00 x 10*%°  0.00 x 10+
std 726 x 10792 592 x 10t 0.00 x 10790 0.00 x 1079 0.00 x 10100

best 9.80 x 10101 8.66 x 101 853 x 10731  1.09 x 10713 0.00 x 107

f3 avg  9.83 x 10701 961 x 1070 152 x 10718 638 x 107177 0.00 x 107
std 122 x 10100 403 x107° 293 x10717  0.00 x 10190 0.00 x 101

best 252 x1079 444 x10716 813 x10~%1  0.00 x 10T%  0.00 x 10100

fa avg 111 x 1070 611 x 107 203 x1072%  0.00 x 10  0.00 x 10+
std 143 x10100 436 x1071  0.00 x 10790 0.00 x 10100 .00 x 101

best 3.45x10792 244 x10100 217 x 107303 .00 x 1070 .00 x 1079

fs avg 335 x107%0 711 x 1070 158 x10720  0.00 x 109  0.00 x 10*%°
std  1.21 x 10100 271 x 10T 0.00 x 10790 0.00 x 10100 0.00 x 101

best 1.76 x 1079 138 x 10795 0.00 x 10790 0.00 x 1079  0.00 x 10100

fe avg 216 x 1070 321 x 1070  0.00 x 107 0.00 x 10  0.00 x 10+
std 198 x 10t 6,05 x 1079  0.00 x 1070 0.00 x 10100 0.00 x 101

best 1.00 x 10T 613 x 10103 223 x10t% 880 x 10792 450 x 1098

f7 avg  1.04 x 10713 692 x 1070 337 x 10708 427 x10*% 146 x 10+
std 324 x10t13 315 x10T8 263 x1079® 643 x 10103 2.82 x 10101

best 217 x10T% 120 x 10703 876 x 10702 252 x 1070  1.96 x 10792

fs avg 219 x107% 134 x107%® 123 x 10701 130 x 10702 1.98 x 10702
std 238 x101% 642 x10792 190 x 10192 372 x 10102 271 x 1010

best 152 x10T% 143 x1010% 155 x10t%  0.00 x 107  0.00 x 1079

fo avg 152 x107% 208 x 107*  1.59 x 107%  0.00 x 10  0.00 x 10+
std 208 x1079 322 %1019 654 x107%  0.00 x 10T%  0.00 x 10100

best 9.62 x 10790 149 x 10101 818 x10~18 575 x 10722 (.00 x 1079

f10 avg 138 x 10792 168 x 10701 349 x 1071 1.28 x 1072  0.00 x 10+
std 511 x10792 813 x 10790 680 x 107102 0.00 x 10T%  0.00 x 10100

best 9.11 x10T% 3.01 x 10100 475 x 107302 0.00 x 107  0.00 x 1079

fin avg  1.04 x 10701 446 x 107 393 x 10729  0.00 x 10  0.00 x 10+
std 648 x 10790 114 x 1091 0.00 x 10790 0.00 x 1079  0.00 x 10100

best 1.00 x 10T 242 x 10105 219 x 107311 0.00 x 107  0.00 x 1079

fio avg 164 x 10" 805 x107% 3.09 x 1072  0.00 x 10*%  0.00 x 10+
std 127 x 10718 276 x 1019  0.00 x 10790 0.00 x 1079  0.00 x 10100

best 559 x 10101 233 x 10100 124 x 1017 632 x 10725 (.00 x 107

fiz avg  9.31 x 10T 3,09 x 1079 509 x 1071%®  6.65 x 107210 0.00 x 10+
std  9.07 x 10791 296 x 10190 9.16 x 107107 0.00 x 1079  0.00 x 10100

best 7.21 x 10192 243 x 10102 0.00 x 101  0.00 x 1079 .00 x 107

fia avg  1.06 x 1078 2.75 x 10702 0.00 x 107  0.00 x 10  0.00 x 10+
std  6.07 x10102 124 x10792  0.00 x 10790 0.00 x 10100 0.00 x 101

best 245 x 10192 1,01 x 10102 0.00 x 1019 0.00 x 1079 0.00 x 107

fi5 avg 357 x10T% 121 x 10702 0.00 x 1079 0.00 x 10*%  0.00 x 10+
std 134 x107% 476 x 10191 0.00 x 10790 0.00 x 1079  0.00 x 10100

best 2.00 x107% 333 %1079 0.00 x 1070  0.00 x 1079 .00 x 107

fi6 avg 208 x10T%0 437 %1072  0.00 x 109  0.00 x 107%  0.00 x 107
std 155 %1079 378 x 10792  0.00 x 1079 0.00 x 1079  0.00 x 10100

best 8.81 x 10101 241 x 10102 0.00 x 1070  0.00 x 1079 .00 x 107

fiz avg 146 x 1072 256 x 10702 0.00 x 107 0.00 x 10  0.00 x 10+
std 138 x 10102 411 x10™91  0.00 x 10790 0.00 x 10700 .00 x 101

best 123 x10T9 535 x 10100 444 x 10710 444 x10710 444 x 10716

fis avg 145 x 10700 617 x 10190 151 x 10715 444 x 10710 4.44 x 1071°
std 717 x 10790 327 x 10190 728 x 107 0.00 x 10t%  0.00 x 10100

best 5.00 x 10791 499 x 10791 0.00 x 10790  0.00 x 1079 .00 x 107

it avg 500 x107% 499 x107 777 x107® 632 x107%  0.00 x 10+
std 227 x107%7 418 x107% 174 x10792 207 x107%2  0.00 x 10100

best 7.58 x 10101 129 x 10101 141 x107°°  0.00 x 10790 (.00 x 107

fa0 avg  7.68 x 10701 132 x 10701 649 x 1072 499 x107%  0.00 x 100
std 444 x10100 134 1070 213 x10790 973 x107%  0.00 x 101
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Table 6. Comparison results for 20 test functions with n = 500.

Function ABC PSO WOA OBCWOA SWWOA
best 133 x10T% 156 x 10102 948 x10~181  0.00 x 10T  0.00 x 1079
fi avg 921 x107% 2,00 x 10702 222 x 10710 0.00 x 10  0.00 x 10+
std 259 x107% 169 x 10192 431 x 1071  0.00 x 10T%  0.00 x 10100
best 7.75 x 1019 747 x 10103 119 x 107182 0.00 x 10790 .00 x 107
fa avg 7.63 x107% 979 x 1070 111 x 107158 0.00 x 10*%°  0.00 x 10+
std 236 x 1079 456 x 10195 2,06 x 10717 0.00 x 1079 0.00 x 10100
best 9.90 x 10101 1,13 x 10101 1.06 x1072° 9.88 x 107190 .00 x 107
f3 avg  9.92 x 10701 128 x 107 192 x 1072 755 x 1077  0.00 x 107
std 770 x107% 399 x 1070 291 x1071?  0.00 x 10190 0.00 x 101
best 1.99 x 10790 644 x 10712 658 x 10722 0.00 x 1079 0.00 x 10100
fa avg 272x107%0 138 x107% 2.00x 10727  0.00 x 109  0.00 x 10+
std  1.68 x 10100 243 x1079  0.00 x 10790 0.00 x 10100 .00 x 101
best 4.63 x 10102 476 x 10102 283 x 10727  0.00 x 1079 .00 x 107
fs avg 171 x107% 101 x10%® 600 x 10728 0.00 x 1079  0.00 x 107
std 730 x 10103 192 x 1079 0.00 x 10790 0.00 x 10100 0.00 x 101
best 122 x10T%  1.06 x 101  0.00 x 10t  0.00 x 107  0.00 x 1079
fe avg  1.34 x107% 143 x107*  0.00 x 107 0.00 x 10  0.00 x 10+
std  5.16 x 1079 1.14 x 1019 0.00 x 1079 0.00 x 1079  0.00 x 10100
best 1.00 x 10T 1.98 x 1010 715 x10t% 255 x 1079 490 x 1010
fr avg 555 x 1077 949 x 107?817 x10t%  9.20 x 101% 1,07 x 1010
std 129 x 10118 127 x10T11 439 x 1010 157 x1070*  1.64 x 10104
best 1.13 x 10108 181 x10t% 133 x10791 336 x 10790 498 x 10102
fs avg 164 x107%® 243 x107% 596 x 1070 2,79 x 10102 498 x 10192
std  3.09 x 1079 206 x 1079 259 x 10T 9.76 x 10102 421 x 1070
best 672 x10T% 125 x 10105  1.07 x10t%  0.00 x 1079  0.00 x 1079
fo avg 741 x107% 203 x107%° 112 x 107  0.00 x 10  0.00 x 10+
std 254 x107% 171 x 1019 324 x 10797 0.00 x 1079  0.00 x 10100
best 3.55x10102 118 x 10102 317 x 10717 623 x 107220 (.00 x 107
fio avg 7.67 x 10721 131 x 1072 287 x 10710 490 x 10729  0.00 x 1070
std  6.86 x 10122 409 x 10T 557 x1071¢  0.00 x 10100 0.00 x 101
best 398 x 10101 6.66 x 10100 248 x1072%  0.00 x 10790 .00 x 107
fi1 avg  6.83 x 10701 139 x 10791 453 x 1072 0.00 x 107  0.00 x 107
std 128 x10792 242 x 10191 0.00 x 1079 0.00 x 10T  0.00 x 10100
best 1.00 x 10T 445 x 10102 178 x 107307  0.00 x 107  0.00 x 1079
fi2 avg 3.03 x 10718 845 x 107 928 x107202  0.00 x 107  0.00 x 107
std 171 x 10t 1.11 x 10710 0.00 x 1079 0.00 x 1079  0.00 x 10100
best 235 x10T92 433 x10101 530 x10"18 1.88 x1072Y (.00 x 1079
f13 avg 4.07 x10192 550 x 10700 457 x 107103 443 x 107208 0.00 x 10+
std 495 x 10792 299 x 10t 891 x 107102 0.00 x 10T  0.00 x 10100
best 251 x10T% 134 x10103  0.00 x 10t  0.00 x 107  0.00 x 1079
fra avg  3.60 x 10703 156 x 1079 0.00 x 1070  0.00 x 107  0.00 x 107
std 283 x1079 447 x 10192 0.00 x 10790 0.00 x 1079  0.00 x 10100
best 219 x1010% 742 x 10102 0.00 x 10790  0.00 x 10790 .00 x 107
fis avg 147 x107%% 853 x 1092 0.00 x 109  0.00 x 107%  0.00 x 107
std 877 x1010% 316 x10792  0.00 x 10790 0.00 x 10100 0.00 x 101
best 4.25x 1010 327 x10701  0.00 x 10790 0.00 x 10790 .00 x 107
fi6 avg 312 x 10700 3387 x107%0  0.00 x 107 0.00 x 10  0.00 x 10+
std 156 x 10792 177 x 10791 0.00 x 1079 0.00 x 1079  0.00 x 10100
best 255 x 10792 762 x 10792 0.00 x 10790 0.00 x 10T%  0.00 x 10100
f17 avg  4.68 x 10192 795 x 10702 0.00 x 1079 0.00 x 10*%°  0.00 x 10+
std 975 x 10792 632 x 10T 0.00 x 1079 0.00 x 1079  0.00 x 10100
best 1.62 x 10701 682 x 10100 444 x 10716 444 x 10716 444 x 10716
fis avg 170 x 10700 755 x 10700 1,69 x 10715 444 x 10716 444 x 1071°
std 273 x10100 223 x 10790 758 x1071>  0.00 x 10100 0.00 x 101
best 5.00 x1079 500 %1079 0.00 x 10790 0.00 x 10T%  0.00 x 10100
f19 avg 500 x107% 500 x107%"  6.80 x 1078 437 x107%  0.00 x 10+
std  5.05x107% 862x107% 199 %1072 216 x107%2  0.00 x 10100
best 1.23 x10102 177 x 10101 322 10792  0.00 x 1079 0.00 x 107
fa0 avg 124 x10702 193 x 107" 649 x 10792 350 x 10792 0.00 x 1070
std 201 x101t00 314 x10T0 213 x1079 213 x107%  0.00 x 101
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Table 7. Comparison results for 20 test functions with n = 1000.

Function WOA OBCWOA SWWOA
best 1.40 x 107181  0.00 x 1019  0.00 x 109
fi avg  1.07 x107%7  0.00 x 10t% 0,00 x 10+
std  2.09 x107156 0,00 x 1010 0.00 x 10100
best 1.18 x10717°  0.00 x 1079  0.00 x 101
fo avg 341 x1071%% 000 x 1079 0.00 x 1079
std  0.00 x10T%  0.00 x 1019  0.00 x 10100
best 1.41 x107%  7.14 x10~18 .00 x 10T
f3 avg 983 x10721 449 x107171  0.00 x 10+
std 150 107  0.00 x 1010  0.00 x 10100
best 6.62 x 10721 0.00 x 1019 0.00 x 10100
fa avg 229 x107%* 000 x 1079 0.00 x 10+
std  0.00 x10T%  0.00 x 1019  0.00 x 10100
best 5.30 x10727  0.00 x 1010 0.00 x 10100
fs avg 208 x1072°  0.00 x 1079 0.00 x 10+
std  0.00 x10T%  0.00 x 1010 0,00 x 10100
best  0.00 x 1079 0.00 x 1010  0.00 x 10100
fe avg  0.00 x 1079 0,00 x 1079 0.00 x 10+
std  0.00 x10T%  0.00 x 1019  0.00 x 10100
best 1.11 x10T% 484 x 10T 994 x 10~ %
fr avg 159 x107%4  1.84 x 101  1.31 x 101
std 817 x10T% 266 x1010*  6.18 x 10104
best 3.18 x10792 150 x 10100 998 x 10102
fs avg 818 x 10701 6,60 x 10192 9.98 x 10102
std  9.74 x 10102 187 x 10103 441 x 1079
best 492 x10T%  0.00 x 1010  0.00 x 10100
fo avg 718 x107%7  0.00 x 1079 0.00 x 10+
std 233 x10T%  0.00 x 10100  0.00 x 10100
best 751 x10717 376 x107220  0.00 x 10190
f1o avg  3.61 x10718 596 x 10727 0.00 x 10+
std 534 x107107 000 %1010  0.00 x 10100
best 1.41 x1073%%  0.00 x 1019  0.00 x 10100
fin avg 141 x107%2 000 x 1079 0.00 x 1079
std  0.00 x10T%  0.00 x 1010 0.00 x 10100
best 143 x10732  0.00 x 1010 0.00 x 10100
fr2 avg 295 x10722 000 x 1079 0.00 x 1079
std  0.00 x10T%  0.00 x 1010  0.00 x 10100
best 210 x10716 119 x107220 .00 x 10190
fi3 avg 413 x1071° 154 x10720%  0.00 x 10+
std  5.08 x107108 0,00 x 10100  0.00 x 10100
best 0.00 x 1019 0.00 x 1019 .00 x 109
fra avg  0.00 x107% 0,00 x 10t 0,00 x 10+
std  0.00 x10T%  0.00 x 10100  0.00 x 10100
best 0.00 x 101 0.00 x 1019 .00 x 1079
fis avg  0.00 x107% 0,00 x 10+ 0,00 x 10+
std  0.00 x10T%  0.00 x 10100 0,00 x 10100
best 0.00 x 1019 0.00 x 1019 .00 x 109
fie avg  0.00 x107% 0,00 x 10t 0,00 x 10+
std  0.00 x10T%  0.00 x 10100 0,00 x 10100
best 0.00 x 101 0.00 x 1019 0.00 x 109
fiz avg  0.00 x107% 0,00 x 10t 0,00 x 10+
std  0.00 x10T%  0.00 x 10100 0,00 x 10100
best 4.44 x10716 444 x 10710 444 x 10716
fis avg 204 x1071% 444 x10710 444 x 10716
std 790 x1071®  0.00 x 10790 0.00 x 10100
best  0.00 x 1079 0.00 x 1019 0.00 x 10100
f19 avg 729 x107% 680 x107%  0.00 x 100
std  1.88 %1079 199 x10792  0.00 x 10100
best 3.03x1078  0.00 x 1010  0.00 x 10100
f avg 699 x107%2 3,00 x 10792 0.00 x 10+
std  205x107% 2,05 %1079 0.00 x 10100
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The data presented in Table 3 are obtained with the function dimension is set to 20. From the data
presented in the table, we can see that f—f are functions of type “US”, and SWWOA has obtained all
of the optimal solutions on these functions. OBCWOA obtains the optimal solution on five functions
except f3. Standard WOA obtains the optimal solution only on fg. ABC and PSO have not obtained
the optimal solution. The average value of PSO is lower than ABC except fi7, and the standard
deviation is also smaller than ABC. From these results, SWWOA can obtain the optimal solution
stably, which shows that SWWOA has better spatial search capability. f;—f1, are functions of type
“UN”, which are more difficult to optimize on the basis of “US” functions. SWWOA obtains the
optimal solutions on four functions (fo—f12). OBCWOA obtains the optimal solution on three functions
(fo, f11, and f12). Standard WOA, ABC, and PSO did not obtain the optimal solution. The overall ABC
has the worst performance and SWWOA has the best performance. f13—f20 are multimodal functions.
This type functions test the algorithm’s ability to jump out of the local optimum based on the space
search. When compared with the unimodal function, its optimization is more difficult. SWWOA
obtained the optimal solution on seven functions (f13—f17, f19, f20), OBCWOA obtained the optimal
solution on five functions (f14—f17, f20), and the standard WOA obtained the optimal solution on four
functions (f14—f17), ABC and PSO have not obtained the optimal solution. In terms of performance,
SWWOA does not obtain the optimal solution on f7, fg, fig and, in comparison, SWWOA does not
obtain the optimal result only on fg. The overall situation is similar to that of the unimodal function.

The above analysis focuses on algorithm performance (avg), which is also the basis for other
analyses. If the avg of an algorithm is poor, but the std is good, then it can only mean that the algorithm
is stuck in local optimum and stagnant. Additionally, an algorithm best is good, but the avg is very
bad. From the side, it can show that std must be bad, indicating that the algorithm lacks stability.
On the basis of performance analysis, analyze the functions f7, fs, and fig, respectively.

Function f7: the “avg” order is SWWOA>PSO>OBCWOA>WOA>ABC, the “best” order is
SWWOA>PSO>WOA>OBCWOA>ABC, the “std” order is PSO>SWWOA>ABC>OBCWOA>WOA.
From the order view, the “avg” of ABC is the worst, but the “std” of ABC is approximately the best,
which can indicate that ABC stably obtains a poor solution on this function, and it has actually fallen
into a local optimum. For PSO, “avg” is approximately the best, “best” is also good, which indicates
that the solution accuracy and performance of PSO is good. The “avg” and “best” of SWWOA are both
best, “std” is also good, indicating that SWWOA can stably obtain better solutions.

Function fg: the “avg” order is WOA>PSO>OBCWOA>SWWOA>ABC, the “best” order is
WOA>OBCWOA>PSO>SWWOA>ABC, the “std” order is PSO>ABC>WOA>SWWOA>OBCWOA.
With the analysis of f7, ABC is still the worst. The “avg” and “best” of WOA are good and the best.
The proposed SWWOA does not achieve the desired effect on this function. This is mainly because
the optimal solution area of the function is a narrow and approximately flat area. When SWWOA is
close to the optimal solution, it searches near the approximate optimal solution with a very small step,
see Equation (14), which is biased towards tuning, instead of searching, so it fails to search the solution
space more effectively.

Function fig: the “avg” order is SWWOA=OBCWOA>WOA>PSO>ABC, the “best” order is
SWWOA=OBCWOA=WOA>PSO>ABC, and the “std” order is SWWOA=OBCWOA=PSO>WOA>ABC.
This function is a multimodal function. Both SWWOA and OBCWOA fall into the local optimum,
but, overall, SWWOA and OBCWOA should be the two algorithms with the best performance on
this function.

Based on the above data, when considering “avg”, “best”, and “std”, the overall performance
ranking of the algorithms is roughly SWWOA>OBCWOA>WOA>PSO>ABC.

From the perspective of algorithm comparison, Tables 4-7 are similar to Table 3, so this paper does not
analyze them in detail. The following is to select a function from “US”, “UN”, “MS”, and “MN”, respectively
(f3, f7, f13, f19), and from Table 8 to perform algorithm performance between different dimensions.
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Table 8. Comparison results with different dimensions.

n=20 n =100 n =200 n =500 n = 1000

WOA 158 x10721 967 x10719 152 x1078  192x10720 983 x 102!

fs OBCWOA 287 x10720 443 x10718 638 x10717? 755 x107177 4.49 x 10~71
SWWOA  0.00 x10T%  0.00 x 1079 0.00 x 10100 0.00 x 1079  0.00 x 1090
WOA 6.87 x 10101 156 x 1078 337 x 1079  8.17 x 10103 159 x 10104

f;  OBCWOA 3.15x 10701 207 x10*% 427 x 1078 920 x 1078 1.84 x 10+
SWWOA 248 x10715 308 x107% 146 x10t00 1,07 x10t0  1.31 x 10704
WOA 3.80 x 107105 225 x 10710 509 x10719% 457 x 10719 413 x 10107

fiz OBCWOA 147 x1072! 378 x 10724 665 x 107210 443 x 107208 1,54 x 10729
SWWOA  0.00 x10t%  0.00 x 1079 0.00 x 10100 0.00 x 10t%°  0.00 x 10190

WOA 826 x107%  915x107%® 777 x107%% 680 x10"%B 729 x 1079

fio OBCWOA 486 x107% 437 x107% 632 x107%® 437 x107%  6.80 x 107%
SWWOA  0.00 x101t%  0.00 x 1019  0.00 x 1019  0.00 x 10700 0.00 x 10100

The meta-heuristic algorithm has a great advantage, which is, it is not sensitive to the problem
dimension. This feature is also an important indicator to measure the algorithm. The data presented
in Table 8 are “avg” data. From the table, it can be seen that the average values of WOA, OBCWOA,
and SWWOA almost all deteriorate with the dimensionality, indicating that the algorithms all have
good robustness. Among them, WOA and OBCWOA still have some fluctuations, while the SWWOA
steadily become worse with the increase of dimensions, correspondingly the best.

In order to more comprehensively compare the performance of algorithms, Table 9 compares
algorithms according to different function types and dimensions. The data in the table are the number
of times the algorithm won.

Table 9. Comparison of wins under different function types and dimensions.

n ABC PSO WOA OBCWOA SWWOA

20 0 0
100 0
200 0
500 0
1000

20

100
200
500
1000

20

100

200

500
1000

20

100

200

500
1000 - -

—_
(o)}

f1=fe (US)

o O O

f7—f12 (UN)

o O O o |
o O O O |

f13—f15 (MS)

SO o o |
S O O o |

f16=f20 (MN)

O O O O |

oo oo |
W WWWEDNDNMNNNDNWWWWWa oo g o

NDNDNNNMNNNDNNNNNDNR R R R R
Q1 01 01 U1 U1 W W W W WO 01 U1 U1 U1 o OO O

First of all, it can be seen from Table 9 that SWWOA is the algorithm with the most wins in various
function types and dimensions, which shows that SWWOA has better adaptability. In addition, it can
be seen from Table 9 that the effectiveness of the algorithm has little to do with the dimensionality of
the function, but it has a greater relationship with the characteristics of the function itself. In general,
if an algorithm wins on a function with lower dimension, it is highly likely that the algorithm can win
on a higher dimension. When combining the data in Table 8, it can be concluded that the function
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dimension affects the accuracy of the solution, but whether an algorithm is effective on the function
depends more on the characteristics of the function itself.

4.2.1. Test on Shifted Rotated Functions

Most of the benchmark functions shown in the Table 2 obtain the optimal value when x* =
[0,0,0,---,0]. This situation can easily lead to better performance of the algorithm while using the
“average mechanism”. In view of this, all of the algorithms have been tested on eight shifted /rotated
functions in CEC 2014 benchmark functions [37]. The algorithms use the same settings as above,

and the test results are shown in Tables 10 and 11.

Table 10. Comparison results for 8 shifted rotated functions with n = 20.

Function ABC PSO WOA OBCWOA SWWOA
best 627 x 10791 1.04 x 1070 599 x 10192 364 x 10792 1.01 x 10703

Shifted Rotated fg avg 149 x 10702 2.16 x 10t91 221 x107%® 1,52 x 1070 520 x 109
std 192 x10102 125 x10102 554 x 1073  3.19 x 10703 291 x 109!

best 893 x 1079 199 x 10t 334 x10~170 .00 x 10T%  0.00 x 10100

Rotated f1q avg 128 x 107%™ 1,99 x 1078 151 x 10t%  0.00 x 107  0.00 x 1070
std 398 x101% 203 x10712 111 x10T%  0.00 x 10100  0.00 x 10790

best 3.79 x 10102 692 x1073 721 x10718  0.00 x 10790 .00 x 10100

Rotated fp avg 3.81 x10%8 692 x1073 346 x 107145 0.00 x 10*%  0.00 x 1070
std 154 x101%% 122 x107% 674 x107  0.00 x 1079  0.00 x 10100

best 2.89 x 10791 687 x 10T 118 x 10192  1.12 x 10192 259 x 100!

Shifted fi4 avg  7.86 x 10101 746 x 10701 1.79 x 10702 1,55 x 10192 2.79 x 100!

std  1.06 x 10192 154 x 10101 122 x 10792 729 x 10101 9.75 x 1000

best 299 x 10792 299 x 10792 299 x 10102 299 x 10702 2.99 x 10102

Shifted Rotated f14 avg 299 x 10702 299 x 10702 299 x 10792 2.99 x 10702 2.99 x 10+02
std 254 x10713 254x10718 254 x1071 254 x10°13 254 x10°13

best 4.45 x 10792 445 x 10792 445 x 10192 445 x 10702 445 x 10102

Shifted Rotated f1s avg 445 x 10702 445 x 10702 445 x 10792 445 x 10702 4.45 x 10+02
std 763x10783 763x10713 763x10718 763x10718 763 x10713

best 3.34 x 10791 334 x 10T 334 x10M01 334 x 10T 3.34 x 10101

Shifted Rotated f;; avg 3.34 x 10791 334 x 10701 334 x 1079 3.34 x 10701 3.34 x 107"
std 636 x1071% 636 x1071* 636 x107¥ 636 x1071* 636 x 10714

best 2.16 x 10791 216 x 10T 216 x 10191 2.16 x 10T 2.16 x 10101

Shifted Rotated fig avg 2.16 x 10701 2,16 x 10701 2,16 x 10791 2.16 x 10701 2.16 x 10+
std  0.00 x 10190 0.00 x 1019 0.00 x 10T  0.00 x 1079  0.00 x 10100

From the data presented in Table 10, it can be seen that the proposed algorithm is still in the
leading position on shifted rotated fg, rotated fi1, rotated f1,, and shifted f14, but, when compared
with the above results, the advantage is not big. On Shifted Rotated f14, Shifted Rotated f14, Shifted
Rotated fq7, and Shifted Rotated fig, the results of all algorithms are exactly the same, and no optimal
solution is obtained, which shows that all algorithms fall into local optima on these functions. The data
presented in Table 11 and the data in Table 10 show almost the same results. The only difference
is that the quality of the obtained solution decreases due to the increase of the function dimension.
Combining the data from the two tables, it can be seen that SWWOA has certain advantages, but the
advantages are not obvious, especially in the case of complex shifted rotated functions, the ability to
jump out of the local optimum needs to be strengthened.
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Table 11. Comparison results for eight shifted rotated functions with n = 100.

18 of 23

Function ABC PSO WOA OBCWOA SWWOA

best 630 x 10792  1.87 x 1073 547 x10T%*  3.84 x 107 3.16 x 10102

Shifted Rotated f3 avg 120 x 1070 497 x 108 736 x 10t# 529 x 107  7.48 x 1002
std  1.63 x 10193 905 x 10103 496 x 107%* 348 x 10T 1.45 x 10103

best 218 x 1079 1.03 x10t% 587 x1079  0.00 x 10T%°  0.00 x 10100

Rotated fi avg 349 x 107 156 x 107® 158 x 10*®  0.00 x 10+ .00 x 10+
std  3.63 x101%% 331 x1070* 7.89 x107%®  0.00 x 10100  0.00 x 10790

best 9.01 x 1018 683 x10T% 319 x 107178  0.00 x 10790 .00 x 101

Rotated f, avg 394 x 109 442 x10*% 1,67 x 107152 0.00 x 107  0.00 x 1070
std  1.64 x 10110 216 x 1010 326 x 107151 0.00 x 10790  0.00 x 10100

best 3.35 x 10792 542 x 10192 124 x10t%%  1.03 x10T% 320 x 10102

Shifted f14 avg 474 x101°2 617 x 10702 132 x107® 120 x 10793 4.08 x 10702

std  3.38 x10102 234 x10702  1.60 x 10792 341 x 10102 2,09 x 10792

best 1.70 x 1079 170 x 1079 170 x107%  1.70 x 1079  1.70 x 10103

Shifted Rotated f1; avg 1.70 x 107 1.70 x 107 1.70 x 1078 1.70 x 107  1.70 x 10+
std 407 x10712 407 x10712 407 x10712  4.07 x10712  4.07 x 10712

best 347 x10103 347 x10108 347 x 1010 347 x 10103 347 x 10103

Shifted Rotated f1s avg 347 x 1070 347 x 1070 347 x 1078 347 x 107 347 x 10*0
std  0.00 x 10190 0.00 x 10709 0.00 x 1079  0.00 x 10700 0.00 x 10790

best 1.81 x 10792 1.81 x 10792 1.81 x10T%2 1.81 x 10792 1.81 x 10102

Shifted Rotated fi; avg 1.81 x 10792 1.81 x 10702 1.81 x 10792  1.81 x 10702 1.81 x 10+
std  0.00 x 10190 0.00 x 1019 0.00 x 10T  0.00 x 1079  0.00 x 10100

best 217 x 10791 217 x 10t 217 x 1091 217 x 10t 2.17 x 10101

Shifted Rotated fig avg 217 x 1019 217 x 10700 217 x 1079 2,17 x 10t 2.17 x 10+%
std 318 x107% 318x107* 318x10° 318x107* 318x10°14

4.3. Wilcoxon’S Rank Sum Test Analysis

Almost all meta-heuristic algorithms include certain random factors. Wilcoxon’s rank sum test [38]
is adopted in order to statistically reflect the superiority of the proposed algorithm. The significant
differences between SWWOA and comparison algorithms are indicated by the p-values that were
obtained from the Wilcoxon’s rank sum test, and the significance level is set at 0.05. When p-value < 0.05,
it means that SWWOA has statistical advantages in solving problems as compared with the comparison
algorithms. Table 12 shows the test results. It can be seen from Table 12 that most of the p-values are less
than 0.001, which shows that SWWOA can solve the problem more effectively in most cases. In addition,
there are some p-values that are equal to 1 in Table 12. This situation is because the two compared
algorithms have obtained the optimal solution. There are only three p-values that are greater than 0.05
in Table 12. They are (1) SWWOA vs. OBCWOA on fg with n = 10, (2) SWWOA vs. OBCWOA on fg
with n = 100, and (3) SWWOA vs. WOA on fig with n = 500. This shows that, in these three cases,
SWWOA does not have statistical advantages, which is consistent with the situation in Section 4.2.
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Table 12. p-values obtained from Wilcoxon’s rank sum test.

19 of 23

n Funcs ABC PSO WOA OBCWOA Funcs ABC PSO WOA OBCWOA
20 fi <0.001 <0.001 <0.001 1 f11 <0.001 <0.001 <0.001 1
100 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
20 f2 <0.001 <0.001 <0.001 1 fi2 <0.001 <0.001 <0.001 1
100 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 1

20 f3 <0.001 <0.001 <0.001 <0.001 fi3 <0.001 <0.001 <0.001 <0.001
100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
20 fa <0.001 <0.001 <0.001 1 f1a <0.001 <0.001 1 1
100 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
20 fs <0.001 <0.001 <0.001 1 fis <0.001 <0.001 1 1
100 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 1 1

20 fs <0.001 <0.001 1 1 fi6 <0.001 <0.001 1 1
100 <0.001 <0.001 1 1 <0.001 <0.001 1 1
200 <0.001 <0.001 1 1 <0.001 <0.001 1 1
500 <0.001 <0.001 1 1 <0.001 <0.001 1 1
20 f7 <0.001 <0.001 <0.001 <0.001 f17 <0.001 <0.001 1 1
100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1 1
20 fs <0.001 <0.001 <0.001 0.589 fis <0.001 <0.001 0.003 1
100 <0.001 <0.001 <0.001 0.194 <0.001 <0.001 0.007 1
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.030 1
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.176 1

20 fo <0.001 <0.001 <0.001 1 f19 <0.001 <0.001 <0.001 <0.001
100 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
200 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
500 <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
20 fio <0.001 <0.001 <0.001 <0.001 f20 <0.001 <0.001 <0.001 1
100 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
200 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.015
500 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.003

4.4. Convergence Speed Comparison

Because different algorithms have different optimization mechanisms, for example, PSO has high
global search capability. Therefore, only standard WOA (black), OBCWOA (blue) and SWWOA (green)
are selected in this experiment, and the function dimension is set to 200. In Figure 3, the abscissa is the
number of iterations, and the ordinate is the logarithm of the function value.

It can be clearly seen from Figure 3 that SWWOA converges to a better solution at a very high
speed in all other functions, except for the two functions f7 and fg. In the f7 test, the convergence
speed of SWWOA is not superior to that of WOA and OBCWOA, but it finally converges to the better
solution. In the fg test, SWWOA and OBCWOA have a slight advantage in the convergence speed,
but both have stagnated, and the final solution quality is not as good as WOA. Generally speaking,
when compared with WOA and OBCWOA, SWWOA has a very high convergence speed.
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Figure 3. Convergence speed comparison with n = 200.

4.5. Ablation Experiment

As mentioned above, this section selects f3, f7, f13, and fig for experiments, and the selected function’s
dimension are set to 20. For the validity of the experiment, we run the algorithm independently on
four functions 20 times, and count the results. The SWWOA has four improvements on the standard
WOA, corresponding to the design algorithm WOA+Chaos (A1), A1+Quasi-Opposition-Learning (A2),
A2-+nonlinear-control-parameter (A3), A3+Single-dimensional swimming (SWWOA), and algorithms’
parameters refer to Table 1.

Table 13 shows the results of the ablation experiment. From the results of Al, the chaotic
sequence alone did not improve the algorithm performance, but it decreased. This is because chaos is
super random, and the initial population needs a stronger search mechanism to obtain better solution.
From the results of A2, on the basis of the chaos initial population, quasi-opposition learning completely
improves the algorithm’s spatial search ability. Except for the function f7, the other functions have
obtained the optimal solutions. From the perspective of A3, the performance of the algorithm is once
again reduced. This is because more calculations are used for tuning, but there is a lack of a tuning
mechanism. Finally, single-dimensional swimming is added. From the data of f7, the accuracy of the
algorithm is greatly improved. In summary, the chaotic sequence strengthens the chaos of the initial
population, coupled with quasi-opposition learning, greatly improves the algorithm’s spatial search
ability, even a little excessive. As a result, we put forward nonlinear control parameters, use excess
calculations for tuning, and add unique single-dimensional swimming to achieve better results.
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Table 13. Ablation experiment with n = 20.

21 of 23

Function WOA Al A2 A3 SWWOA
best 1.89 x107% 353 x1073% .00 x 10T  0.00 x 10100 0.00 x 10190
f3 avg 473 x1071  4.00 x1072'  0.00 x 1079 0.00 x 109 0.00 x 100
std 917 x10718  715x1072%  0.00 x 10100 0.00 x 10190 .00 x 101
best 1.73 x107%  1.05 x10™9 351 x 10102  1.15 x 10103 471 x 102!
f7 avg 887 x 10T 139 x 10792 330 x 1070 312 x 10t%  8.54 x 10716
std 455 x10102 472 x 10792 450 x 10103 430 x 1019 774 x 10~1°
best 7.37 x107121 122 x107121 .00 x 1070  0.00 x 10100 0.00 x 10190
fi3 avg 143 x107112 223 x 1071 0.00 x 107 0.00 x 10t 0.00 x 107
std 128 x 10711 410 x 107110 0.00 x 10700 0.00 x 10190 .00 x 101
best  0.00 x 10790 0.00 x 10790 0.00 x 1070  0.00 x 1079  0.00 x 1079
fio avg 729 x107% 632 x107%  0.00 x 10v°  0.00 x 107  0.00 x 1070
std  1.88x10792 207 x1079  0.00 x 10790  0.00 x 1019 .00 x 1079

5. Conclusions

Based on the study of WOA, this paper proposes a modified WOA algorithm that is based
on single-dimensional swimming (abbreviated as SWWOA). By proposing a chaotic sequence to
generate the initial population, and using quasi-opposition learning on these foundations, the global
search capability of SWWOA is greatly improved. At the same time, the original linear control
parameter of WOA is improved, and nonlinear control parameter based on logarithm is used to balance
The relationship between search and tuning, finally a single-dimensional swimming mechanism is
proposed, which maximizes the tuning capability. The comparative experiments of 20 test functions
in different dimensions show that the proposed algorithm can obtain high-quality solutions in few
iterations and, at the same time, has strong stability and robustness. However, Section 4.2.1 presents a
test conducted on complex shifted rotated functions. When compared with the comparison algorithm,
although SWWOA has certain advantages, the advantages are not obvious, and there is obviously
stagnation. Solving the stagnation problem and enhancing the ability of the algorithm to jump out of
the local optimum are the directions of future work.
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