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Abstract: The literature has shown that the performance of the de-noising algorithm was greatly
influenced by the dependencies between wavelet coefficients. In this paper, the bivariate probability
density function (PDF) was proposed which was symmetric, and the dependencies between
the coefficients were considered. The bivariate Cauchy distribution and the bivariate Student’s
distribution are special cases of the proposed bivariate PDF. One of the parameters in the probability
density function gave the estimation method, and the other parameter can take any real number
greater than 2. The algorithm adopted a maximum a posteriori estimator employing the dual-tree
complex wavelet transform (DTCWT). Compared with the existing best results, the method is faster
and more efficient than the previous numerical integration techniques. The bivariate shrinkage
function of the proposed algorithm can be expressed explicitly. The proposed method is simple to
implement.
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1. Introduction

Image denoising is very important in many image processing applications. The methods of
de-noising using wavelet transform have been widely proposed. Chang et al. proposed a subband
adaptive method based on the generalized Gaussian distribution (GGD) model in [1]. Mihçak et al.
in [2] gave the Bayesian linear least mean square error estimation (LMMSE) method by using the
central square window. Portiilla et al. in [3] proposed a stochastic model by a hidden random field
with an overcomplete wavelet pyramid. In [4], the method of combining dual tree complex wavelet
with total variation is studied to eliminate speckle noise and Gaussian noise in ultrasonic image. In [5],
a threshold estimation denoising method based on double density wavelet transform (DDWT) was
proposed. Shen et al. in [6] proposed a denoising algorithm by constructing nonseparable Parseval
frames. The paper in [7] used the designed tight frame wavelet filters for image de-noising.

The de-noising method can effectively improve the processing performance by considering
the dependence between wavelet subbands. Senduer and Selesnick in [8,9] have developed a new
non-Gaussian bivariate distribution, and a scheme was developed which considers the statistical
dependency between the dual-tree complex wavelet coefficients.Achim et al. in [10] designed a
bivariate Bayesian estimator using bivariate α-stable distributions. A spatially adaptive method
had been introduced using the Cauchy Prior for the speckle reduction in [11,12], and developed
method using Gaussian probability density function (PDF) in [13] by Bhuiyan et al., respectively.
Ranjani and Thiruvengadam in [14,15] proposed a despeckling algorithm using the bivariate Cauchy
probability density function (PDF) by the DTCWT subbands, respectively. In [16], a denoising
speckle algorithm was proposed using a heavy tailed Levy distribution based on DTCWT for the
ultrasound images. A denoising algorithm was developed using scale mixtures of Rayleigh distribution
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in [17]. The dual-tree complex wavelet (DTCWT) is tight frame wavelet in [18,19]. The DTCWT have
advantages that orthogonal bases can not have for image de-noising [20–22].

In this paper, a bivariate symmetric probability density function (PDF) was proposed,
which utilizes the dependence of DTCWT wavelet coefficients of each subband. A novel noise reduction
algorithm has been introduced for noisy images.

The organization of this paper is as follows. Section 2 describes a noise reduction algorithm.
The expression of the parameter for the distribution in each wavelet subband is also derived.
The standard maximum posterior (map) estimation of undamaged wavelet coefficients is given
in Section 2. The experimental results of the proposed method are discussed in Section 3.
Finally, conclusions are given in Section 4.

2. Proposed Algorithm

The paper discusses the denoising of the image with additive white Gaussian noise. Let ω1k
represent the kth wavelet coefficient,and ω2k represent the wavelet coefficient at the next scale. y1k and
y2k are noisy observations of ω1k and ω2k, and n1k and n2k are noise samples.

yk = wk + nk (1)

where wk = (w1,k, w2,k), yk = (y1,k, y2,k), and nk = (n1,k, n2,k) in the wavelet domain. To improve
readability, the coefficient index k is omitted. In this paper, we proposed a joint bivariate PDF as

fw (w1, w2) =
θγθ

2π
(
γ2 + w2

1 + w2
2
) θ+2

2

, θ > 0 (2)

where γ is the dispersion parameter. The joint bivariate symmetric probability density function (PDF)
for the coefficients was illustrated in Figure 1.

Figure 1. Joint bivariate probability density function for the coefficients.

In the previous literature, most of the exponential functions were used as densities for noise
removal [8,9,13,16], and the exponential functions attenuated rapidly. The density of this paper is
composed of power functions when the parameter θ is given.

The density of this paper was composed of power functions when the parameter θ was given.
The attenuation speed of power functions is relatively slow and the density has a thick tail. We know
that most of the practical application problems have thick tails. The density function of this paper is
more consistent with the actual problems and is more conducive to dealing with practical problems.
The bivariate Cauchy distribution and the bivariate student’s distribution are special cases of the
bivariate PDF in (2).

The value of parameter θ in (2) has a relatively large influence on the experimental results.
Different kinds of image corresponding θ values have different noising effects. For example, this paper
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used θ = 4 to reduce boat image noise. When θ = 4, the marginal probability density function of
bivariate PDF fw (w1, w2) is calculated as follows

fw1(x) =
4γ4

π

∫ +∞

0

1

(γ2 + x2 + y2)
3 dy. (3)

Using the following identity in [23]

∫ +∞

0

yµ−1

(p + qyv)n+1 dy =
1

vpn+1

(
p
q

) µ
v Γ

( µ
v
)

Γ
(
n + 1− µ

v
)

Γ (n + 1)
. (4)

The solution of integral in (3) is as

fw1(x) =
2γ4

π

Γ
(

1
2

)
Γ
( 5

2
)

Γ (3)
1

(γ2 + x2)
5
2

(5)

where the gamma function

Γ (t) =
∫ +∞

0
xt−1e−tdx.

Similarly, the marginal density of w2 can be obtained. Because the product of two marginal
densities is not equal to the joint density, this indicates that w1 and w2 are dependent. To motivate this
model, see Figure 2. The solid line showed the fitted curve of the original high-band coefficients of
boat image from the first scale, obtained by employing and the marginal PDF in (5) and DTCWT in [8],
and the dispersion parameter γ values for θ = 4 were estimated by local marginal standard deviations
σ rearranging (7) which are described later. The dashed line shows the fitted curve by Gaussian
probability density function (PDF). Observe that the normalized histogram is well approximated by
the marginal PDF of the bivariate PDF in (5) .

The independent bivariate Gaussian PDF of noise nk is.

fnk (n1, n2) =
1

2πσ2
n

exp(−
n2

1 + n2
2

2σ2
n

) (6)

where σ2
n is the variance of Gaussian noise.

Figure 2. Histogram of the high-band dual-tree complex wavelet coefficients of boat image. Solid line:
fitted curve of the same coefficients scaled by the proposed marginal PDF, for θ = 4. Dashed line: fitted
curve of Gaussian PDF.

The parameters γ for the bivariate PDF in (2) are calculated using the marginal variance σ2 of the
kth wavelet coefficient as
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σ2 = D (w1) =
∫ +∞

−∞

∫ +∞

−∞

θγθw2
1

2π(γ2 + w2
1 + w2

2)
θ+2

2

dw1dw2 =
γ2

θ − 2
(7)

where θ > 2. When θ ≤ 2, the marginal variance does not exist.
The local marginal variance σ2 of the kth coefficient is calculated using the central square window

Λ as the following [8]

σ̂2 = max(0,
1

NΛ
∑

y1∈Λ
y2

1 − σ̂2
n) (8)

where NΛ is number of points in window Λ, σ2
n be the noise marginal variance.

The estimator in [24] is used to estimate the noise variance σ2
n

σ̂n =
median

(∣∣yj
∣∣)

0.6745
, yj ∈ subband HH. (9)

Rearranging (7), the estimator of the parameter γ for the bivariate PDF is derived as

γ̂2 = (θ − 2)max(0,
1

NΛ
∑

y1∈Λ
y2

1 − σ̂2
n). (10)

The standard maximum a posteriori (MAP) estimator of w for the observation y is

ŵ = arg max
w

p(w|y). (11)

It is just sufficient to maximize pn(y|w)pw(w)

ŵ = arg max
w

[pn(y|w)pw(w)]

= arg max
w

[pn(y−w)pw(w)]. (12)

The MAP estimator in (2) can also be calculated as

ŵ = arg max
w

[log pn(y−w) + log pw(w)]. (13)

The probability density functions of signal and noise defined in (2) and (6) are substituted into (13),
respectively, we get

ŵ = arg max
w

[L(w1, w2)] (14)

where

L(w1, w2) = −
(y1 − w1)

2 + (y2 − w2)
2

2σ2
n

− θ + 2
2

log(γ2 + w2
1 + w2

2)

The solution to (14) can be obtained by solving the following equations:

∂L(w1, w2)

∂w1
=

y1 − w1

σ2
n
− (θ + 2)

w1

γ2 + w2
1 + w2

2
= 0 (15)

∂L(w1, w2)

∂w2
=

y2 − w2

σ2
n
− (θ + 2)

w2

γ2 + w2
1 + w2

2
= 0 (16)

Rearranging (15) and (16), we get w2 = w1y2
/

y1, and by substituting w2 into (15), it is rewritten as(
y2

1 + y2
2

)
w3

1 − y1

(
y2

1 + y2
2

)
w2

1 +
[
γ2y2

1 + (θ + 2)σ2
ny2

1

]
w1 − γ2y3

1 = 0. (17)
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According to the method of [25], the real solution of the cubic equation in Equation (17) is as follows

w1 =
y1

3
+

3

√
−p +

√
p2 + q3y1 +

3

√
−p−

√
p2 + q3y1 (18)

where

p =
−18γ2 + 9(θ + 2)σ2

n

54
(
y2

1 + y2
2
) − 1

27

q =
γ2 + (θ + 2)σ2

n

3
(
y2

1 + y2
2
) − 1

9
.

The shrinkage function is obtained as following

ŵ1 = (
1
3
+

3

√
−p +

√
p2 + q3 +

3

√
−p−

√
p2 + q3)+ · y1 (19)

where (g)+ is defined as

(g)+ =

{
0, if g < 0

g, otherwise.

Figure 3 showed the bivariate shrinkage function figure in (19), as shown in the figure, there was
a dead zone (the dead zone is the area where the estimate is zero), that is,

deadzone =

{
(y1, y2) :

1
3
+

3

√
−p +

√
p2 + q3 +

3

√
−p−

√
p2 + q3 ≤ 0

}
.

The denoising image was obtained by inverse DTCWT of the estimated wavelet coefficients
by (19). The block diagram showing the proposed de-noising process steps was given in Figure 4.

The denoising algorithm is described as follows:

(1) First implement the DTCWT to get yk.
(2) Calculate σ̂2

n using Equation (9).
(3) Estimate marginal variance σ2 using Equation (8).
(4) Calculate the parameter γ̂2 using Equation (10).
(5) Estimate the w1 using Equation (19) with the L× L local window.
(6) Reconstruct the estimated image by ŵ1.

Figure 3. New bivariate shrinkage function derived from the model proposed in (2).

Figure 4. Block diagram of the proposed denoising method.
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3. Experimental Results

In the experiments, the proposed density is used to give the algorithm, and it is compared with
other famous image restoration models such as using Gaussian probability density function (PDF) [2],
using the GSM (Gaussian scale mixture) algorithm [3], using non Gaussian probability density function
(PDF) [8], using the tight frame in [6]. The results show that the denoising effect of the new model is
effective compared with the above methods. Table 1 show the performance of the proposed algorithm
and other literature methods. The peak signal-to-noise ratio(PSNR) is used to test the performance of
these algorithms. To do this, we use different noise levels σ2

n for the Barbara, boat, Lena images.
Let s, d represent the original image and the denoised image. The root mean-square (rms) error is

determined by

rms =

√
1
N ∑

k
(sk − dk)

2 (20)

where N is the number of pixels. The PSNR is determined by

PSNR = 20 log10

(
255
rms

)
. (21)

The proposed algorithm in this paper uses the filter in [8] and the DTCWT in [18,19], which are
tabulated in “ Proposed-Method" column of Table 1. The number of decomposition levels is 5,
using 7× 7 window size NΛ. The parameter θ of the shrinkage function in (19) affects the noising
effect. As the parameter θ values are manually selected prior to running a simulation, the user may
have to experiment with different values to achieve the highest increase in noise removal effect. In our
experiments, the parameter θ takes 11 when the standard deviation σn = 10, 15, and θ takes 3 when
the standard deviation σn = 20, 25, 30 for lena image. The parameter θ takes 11 for all noise levels of
the Barbara image, and the parameter θ takes 4 for all noise levels of the Boat image. The PSNR is the
average value of the data obtained by running 100 times the proposed algorithm . We also compare
the algorithm with other methods reported in the literature. Here, we give the results compared with
the other four methods. In Table 1, the PSNR values using the denoising algorithm in [2] with the
exponential prior are tabulated in “Method in [2]” column, the PSNR values using the GSM (Gaussian
scale mixture) algorithm described in [3] are tabulated in “Method in [3]” column, the PSNR values
with the DTCWT in [8] are tabulated in “Method in [8]” column, and the PSNR values with the tight
frame in [6] are tabulated in “Method in [6]” column, separately. We indeed found out that a new
model improves the denoising performance . In [8], the Matlab implementation for that algorithm takes
25 s for a 512 × 512 image on 450-MHz Pentium II, the Matlab program for the proposed algorithm
takes 2.51 s for a 512 × 512 image on core(TM) i3 M 350.

The denoised image using a 512 × 512 Barbara image is shown in Figure 5. The original and the
noisy images are shown in Figure 5a,b. The denoised image using the method in [8] was illustrated
in Figure 5c and had PSNR value of 28.52 dB, and the denoised image using the proposed method
was illustrated in Figure 5d and had PSNR value of 28.7222 dB, with the Gaussian noise standard
deviation 25, respectively. Other denoised image using a 512 × 512 boat image is shown in Figure 6.
The original and the noisy images are shown in Figure 6a,b. The denoised image using the method
in [8] was illustrated in Figure 6c and had PSNR value of 28.93 dB, and the denoised image using the
proposed method was illustrated in Figure 6d and had PSNR value of 29.0215 dB, with the Gaussian
noise standard deviation 25, respectively.



Symmetry 2020, 12, 1909 7 of 10

Table 1. Peak signal-to-noise ratio values of denoised images different test images and noise levels (σn)

of noisy.

Noisy Method in [2] Method in [6] Method in [3] Method in [8] Proposed Method

Barbara
σn = 10 28.13 31.96 32.73 34.03 33.29 33.4417
σn = 15 24.61 29.57 30.56 31.86 31.17 31.3435
σn = 20 22.11 27.91 28.80 30.32 29.66 29.8558
σn = 25 20.17 26.72 27.45 29.13 28.52 28.7222
σn = 30 18.59 25.77 26.36 28.10 27.61 27.8130

boat
σn = 10 28.13 32.22 33.20 33.58 32.99 33.1018
σn = 15 24.61 30.37 31.61 31.70 31.23 31.3226
σn = 20 22.11 28.97 30.28 30.38 29.94 30.0276
σn = 25 20.17 27.88 29.17 29.37 28.93 29.0215
σn = 30 18.59 27.03 28.14 28.51 28.12 28.2095

Lena
σn = 10 28.13 34.07 34.92 35.61 35.29 35.3183
σn = 15 24.61 32.20 33.24 33.90 33.57 33.5090
σn = 20 22.11 30.86 31.99 32.66 32.33 32.2410
σn = 25 20.17 29.86 31.00 31.69 31.35 31.2753
σn = 30 18.59 29.02 30.14 30.91 30.54 30.4862

(a) (b)

(c) (d)

Figure 5. (a) Original image. (b) Noisy image with PSNR=20.17dB (σn = 25). (c) Denoised image
using the method [8]: PSNR = 28.52 dB. (d) Denoised image using new bivariate shrinkage function
given in (19): PSNR = 28.7222 dB.
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(a) (b)

(c) (d)

Figure 6. (a) Original image. (b) Noisy image with PSNR=20.17dB (σn = 25). (c) Denoised image
using the method [8]: PSNR = 28.93 dB. (d) Denoised image using new bivariate shrinkage function
given in (19): PSNR = 29.0215 dB.

4. Conclusions

In this paper, a novel bivariate symmetric probability density function (PDF) was proposed that
was more suitable for actual images than Gaussian probability density function. The closed expression
for the parameter γ of the bivariate PDF is derived. Based on the dependence of dual-tree complex
wavelet subbands, a new noise reduction algorithm is proposed. The parameter θ values in this
algorithm can not only take integers, but also take any real number greater than 2. Three kinds of
images with different texture features were used to test the effectiveness of the proposed algorithm.
The experiments show that the parameter θ values may exist corresponding optimal values for noise
removal with different noise levels for images, it is natural to ask which values are best suited for the
task. The calculation method of the optimal parameter θ values for each noise level image are explored.
Our results indicate that the algorithm produces denoised images with less ringing artifacts at less
computational complexity. The experimental results show that considering the statistical dependencies
between wavelet coefficients and its other neighbors can significantly improve the noise removal
effect. By improving the statistical dependencies method and considering the inter scale and intra
scale dependencies of wavelet coefficients [26–30], the work of the paper will be further developed.
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