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Abstract: Herein, we present a new parallel extragradient method for solving systems of variational
inequalities and common fixed point problems for demicontractive mappings in real Hilbert spaces.
The algorithm determines the next iterate by computing a computationally inexpensive projection onto
a sub-level set which is constructed using a convex combination of finite functions and an Armijo
line-search procedure. A strong convergence result is proved without the need for the assumption
of Lipschitz continuity on the cost operators of the variational inequalities. Finally, some numerical
experiments are performed to illustrate the performance of the proposed method.
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1. Introduction

Let H be a real Hilbert space and C be a nonempty, closed, and convex subset of H. Let A : C → H
be an operator. The Variational Inequalities (VI) is defined as finding x∗ ∈ C such that

〈Ax∗, y− x∗〉 ≥ 0, ∀y ∈ C. (1)

The solution set of the VI (1) is denoted by VI(C, A). Mathematically, the VI is considered as
a powerful tool for studying many nonlinear problems arising in mechanics, optimization, control
network, equilibrium problems, etc.; see [1–3]. The problem of finding a common solution of a systems
of VI has received a lot of attention by many authors recently, see, e.g., in [4–10] and references therein.
This problem covers as special cases, convex feasibility problem, common equilibrium problem, etc.
In this paper, we consider the following common problem.

Problem 1. Find an element x∗ ∈ C such that

x∗ ∈
(

N⋂
i=1

VI(C, Ai)

)
∩

 M⋂
j=1

Fix(Tj)

 , (2)

where for i = 1, 2, . . . , N, Ai : H → H are pseudomonotonotone operators, j = 1, 2, . . . , M, Tj : H → H are
k j-demicontractive mappings, Fix(Tj) = {x ∈ H : Tjx = x} denotes the fixed point set of Tj.
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The motivation for considering Problem 1 lies in its possible applications to mathematical
models whose constraints can be expressed as the common variational inequalities and common
fixed point problems. This happen in particular, in network resource allocations, image processing,
Nash equilibrium problem, etc., see, e.g., in [11–14].
The simplest method for solving the VI (1) is the projection method of Goldstein [15] which is a natural
extension of the gradient projection method, and for x0 ∈ C, λ > 0 it is given by

xn+1 = PC(xn − λAxn), n ≥ 0. (3)

The projection method (3) converges weakly to a solution of VI (1) if and only if A satisfies some
strong conditions such as α-strongly monotone and L-Lipschitz continuous. When this condition is
relaxed, the method fails to convergence to any solution of the VI (1). Korpelevich [16] later introduced
an Extragradient Method (EgM) for solving the VI when A is monotone and L-Lipschitz continuous as
follows, for x0 ∈ C, {

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn), n ≥ 0,

where λ ∈
(

0, 1
L

)
. The EgM has been extended to infinite-dimensional spaces by many authors, see,

for instance, in [7,17–23]. More so, several modifications of the EgM have been introduced recently,
see in [24–30]. For finding a common element in the set of solution of monotone variational inequalities
and fixed point of k-demicontractive mapping, Mainge [14] introduced the following extragradient
method, for x0 ∈ C,

yn = PC(xn − λn Axn),

zn = PC(xn − λn Ayn),

xn+1 = [(1− α)I + αT]un, un = zn − γnBzn, n ≥ 0,

(4)

where {λn}, {γn} ⊂ (0, ∞), w ∈ [0, 1], A : C → H is a monotone and L-Lipschitz continuous,
T : H → H is a k-demicontractive mapping and B : H → H is β-strongly monotone operator with
β > 0. The author proved a strong convergence for the sequence generated by (4) provided the step
size λn satisfies

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
1
L

. (5)

Recently, Hieu et al. [31] modified (4) and introduced the following extragradient method for
approximating a common solution of VI and fixed point problem; given x0 ∈ C, compute xn+1 via

yn = PC(xn − λn Axn),

zn = PC(xn − ρn Ayn),

wn = PC(xn − ρn Azn),

xn+1 = (1− αn)un + αnTun, un = wn − γnBwn, n ≥ 0,

(6)

where {ρn}, {λn} ⊂ (0, ∞) such that 0 ≤ λn ≤ ρn, {αn} ⊂ (0, 1), A, T and B are as defined for
Algorithm (4). They also proved a strong convergence for the sequence generated by (6) with the aid
of (5). An obvious disadvantage in (4) and (6) which impedes their wide usage is the assumption that
the Lipschitz constant of A admits a simple estimate. Moreover, in many practical problems, the cost
operator may not satisfies Lipschitz condition.

On the other hand, for finding a common fixed point of quasi-nonexpansive mappings, Anh and
Hieu [11,32] proposed a parallel hybrid algorithm as follows,
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x0 ∈ C,

yi
n = αnxn + (1− αn)Tixn, i = 1, 2, . . . , N,

in = Argmax{‖yi
n − xn‖ : i = 1, 2, . . . , N}, ȳn := yin

n ,

Cn+1 = {v ∈ Cn : ‖v− ȳn‖ ≤ ‖v− xn‖},
xn+1 = PCn+1(x0).

(7)

Furthermore, Censor et al. [6] proposed a parallel hybrid-extragradient method for finite family
of variational inequalities as follows; choose x0 ∈ H, compute

yi
n = PCi (xn − λi

n Aixn),

zi
n = PCi (xn − λi

n Aiyi
n),

Ci
n = {z ∈ H : 〈xn − zi

n, z− xn − γi
n(zi

n − xn)〉 ≤ 0},
Qn = ∩N

i=1Ci
n,

Wn = {z ∈ H : 〈x0 − xn, z− xn〉 ≤ 0},
Cn+1 = PQn∩Wn x0.

(8)

Motivated by (7) and (8), Anh and Phuong [8] recently introduced the following Algorithm 1
parallel hybrid-extragradient method for solving variational inequalities and fixed point of
nonexpansive mappings.

Algorithm 1: PHEM

Initialization: Given x0 ∈ H, λn,i ∈
(

0, 1−a
Li

)
, where Li are the Lipschitz constant of Ai,

i = 1, 2, . . . , N, a ∈ (0, 1), {αn,i} ∈ (0, 1), {γn,i} ⊂ (0, 1
2 ), n ≥ 0.

Iterative steps: Compute in parallel

yi
n = PCi (xn − λi

n Aixn),

zi
n = PCi (xn − λi

n Aiyi
n),

ti
n = αn,ixn + (1− αn,i)Tizi

n,

Cn,i = {x ∈ Ci, 〈xn − ti
n, x− xn − γn,i(ti

n − xn)〉 ≤ 0},
Qn = ∩N

i=1Cn,i,

Wn = {x ∈ H : 〈x0 − xn, x− xn〉 ≤ 0},
xn+1 = PQn∩Wn x0, n = n + 1.

(9)

Meanwhile, Hieu [33] introduced a parallel hybrid-subgradient extragradient method which also
required finding a farthest element from the iterate xn as follows.

The author proved that the sequence generated by Algorithm 2 converges strongly to a solution
of the systems of VI.
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Algorithm 2: PHSEM

Initialization: Choose x0 ∈ H, 0 < λ < 1
L . Set n = 0. Step 1: Find N projections zi

n on Ci in
parallel, i.e.,

yi
n = PC(xn − λAixn), i = 1, . . . , N.

Step 2: Find N projections zi
n on half-spaces Ti

n in parallel, i.e.,

zi
n = PTi

n
(xn − λAiyi

n), i = 1, . . . , N,

where Ti
n = {v ∈ H : 〈xn − λAixn − yi

n, v− yi
n〉 ≤ 0}.

Step 3: Find the farthest element from xn among zi
n, i.e.,

in = argmax{‖zi
n − xn‖ : i = 1, . . . , N}, z̄n = zin

n .

Step 4: Construct the half-spaces Cn and Qn such that

Cn = {w ∈ H : ‖z̄n − w‖ ≤ ‖xn − w‖},
Qn = {w ∈ H : 〈w− xn, xn − x0〉 ≥ 0}.

Step 5: Find the next iterate via
xn+1 = PCn∩Qn x0.

Set n = n + 1 and go to Step 1.

However, it should be observed that at each step in the parallel hybrid-extragradient methods
mentioned above, one needs to calculate a projection onto the intersection of two sets Qn and Wn.
This can be computationally expensive when the feasible set is not simple. Moreover, the convergence
of the algorithms require prior knowledge of the Lipschitz constants of Ai which are very difficult to
estimate in practice.

Motivated by these results, in this paper, we introduce an efficient parallel-extragradient method
which does not requires the computation of projection onto Qn ∩Wn and the prior estimates of the
Lipschitz constants of Ai for i = 1, 2, . . . , N. In particular, we highlight some contributions in this paper
as follows.

• In our method, the involved cost operators Ai do not need to satisfy the Lipschitz condition.
Instead, we assumed that Ai are pseudomonotone and weakly sequentially continuous which is
more general than the monotone and Lipschitz continuous used in previous results.

• The sequence generated by our method converges strongly to a solution of (2) without the aid of
prior estimate of a Lipschitz constant.

• Furthermore, we performed only single projection onto C in parallel and our algorithm does not
need to find the farthest element from the iterate xn.

• More so, our algorithm does not require the computation of projection onto Qn ∩Wn which make
it easier for computations.

2. Preliminaries

In this section, we give some Definitions and basic results that will be used in our subsequent
analysis. Let H be a real Hilbert space. The weak and the strong convergence of {xn} ⊂ H to x ∈ H is
denoted by xn ⇀ x and xn → x as n→ ∞, respectively. Let C be a nonempty, closed, and convex subset
of H. The metric projection of x ∈ H onto C is defined as the necessary unique vector PC(x) satisfying

||x− PCx|| ≤ ||x− y|| ∀ y ∈ C.
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It is well known that PC has the following properties (see, e.g., in [34,35]).

(i) For each x ∈ H and z ∈ C,

z = PCx ⇔ 〈x− z, z− y〉 ≥ 0, ∀y ∈ C. (10)

(ii) For any x, y ∈ H,
〈PCx− PCy, x− y〉 ≥ ||PCx− PCy||2.

(iii) For any x ∈ H and y ∈ C,

||PCx− y||2 ≤ ||x− y||2 − ||x− PCx||2. (11)

Next, we state some classes of functions that play essential roles in our convergence analysis.

Definition 1. The operator A : C → H is said to be

1. β-strongly monotone if there exists β > 0 such that

〈Ax− Ay, x− y〉 ≥ β‖x− y‖ ∀x, y ∈ C;

2. monotone if
〈Ax− Ay, x− y〉 ≥ 0 ∀x, y ∈ C;

3. η-strongly pseudomonotone if there exists η > 0 such that

〈Ax, y− x〉 ≥ 0⇒ 〈Ay, y− x〉 ≥ γ‖x− y‖2,

for all x, y ∈ C;
4. pseudomonotone if for all x, y ∈ C

〈Ax, y− x〉 ≥ 0⇒ 〈Ay, y− x〉 ≥ 0;

5. L-Lipschitz continuous if there exists a constant L > 0 such that

‖Ax− Ay‖ ≤ L‖x− y‖, ∀x, y ∈ C.

When L ∈ (0, 1), then A is called a contraction;
6. weakly sequentially continuous if for any {xn} ⊂ H such that xn ⇀ x̄ implies Axn ⇀ Ax̄.

It is easy to see that (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4), but the converse implications do not hold in
general, see, for instance, in [21].

Lemma 1 ([36] Lemma 2.1). Consider the VIP (1) with C being a nonempty closed convex subset of H and
A : C → H is pseudomonotone and continuous. Then, x̄ ∈ VIP(C, A) if and only if

〈Ay, y− x̄〉 ≥ 0 ∀y ∈ C.

Definition 2 ([37]). A mapping T : H → H is called

(i) nonexpansive if
||Tu− Tv|| ≤ ||u− v||, ∀ u, v ∈ H;

(ii) quasi-nonexpansive mapping if F(T) 6= ∅ and

||Tu− z|| ≤ ||u− z||, ∀ u ∈ H, z ∈ F(T);
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(iii) µ-strictly pseudocontractive if there exists a constant µ ∈ [0, 1) such that

||Tu− Tv||2 ≤ ||u− v||2 + µ||(I − T)u− (I − T)v||2 ∀ u, v ∈ H;

(iv) κ-demicontractive mapping if there exists κ ∈ [0, 1) and F(T) 6= ∅ such that

||Tu− z||2 ≤ ||u− z||2 + κ||u− Tu||2, ∀ u ∈ H, z ∈ F(T).

It is easy to see that the class of demicontractive mappings contains the class of quasi-nonexpansive and
strictly pseudocontractive mappings. Due to this generality and its possible applications in applied analysis,
the class of demicontractive mapping has continue to attracts the attention of many authors in this decade.

A bounded linear operator A on H is said to be strongly positive if there exists a constant γ > 0
such that

〈x, Ax〉 ≥ γ‖x‖2, ∀x ∈ H.

It is known that when A is strongly positive bounded linear operator with 0 < ρ < 1
‖A‖ , then

‖I − ρA‖ ≤ 1− ργ.

For any real Hilbert space H, it is known that the following identities hold (see, e.g., in [38]).

Lemma 2. For all x, y, z ∈ H, then

(i) ||x + y||2 = ||x||2 + 2〈x, y〉+ ||y||2,
(ii) ||x + y||2 ≤ ||x||2 + 2〈y, x + y〉,
(iii) ||ηx + (1− η)y||2 = η||x||2 + (1− η)||y||2 − η(1− η)||x− y||2, ∀η ∈ [0, 1].

Lemma 3 ([24]). Let C be a nonempty closed convex subset of a real Hilbert space H and h be a real-valued
function on H. Suppose D = {x ∈ C : h(x) ≤ 0} is nonempty and h is Lipschitz continuous on C with
modulus ϑ > 0, then

dist(x, D) ≥ ϑ−1 max{h(x), 0} ∀x ∈ C.

Lemma 4 ([39]). Let {Γn} be a non-negative real sequence satisfying Γn+1 ≤ (1 − θn)Γn + θnbn,
where {θn} ⊂ (0, 1), ∑∞

n=0 θn = ∞ and {bn} is a sequence such that lim sup
n→∞

bn ≤ 0. Then, limn→∞ Γn = 0.

Lemma 5 ((Lemma 3.1) [37]). Let {an} be a sequence of real numbers such that there exists a subsequence
{ani} of {an} with ani < ani+1 for all i ∈ N. Consider the integer {mk} defined by

mk = max{j ≤ k : aj < aj+1}.

Then {mk} is a non-decreasing sequence verifying limn→∞ mn = ∞, and for all k ∈ N, the following
estimate holds,

amk ≤ amk+1, and ak ≤ amk+1.

3. Algorithm and Convergence Analysis

In this section, we describe our algorithm and prove its convergence under suitable conditions.
Let H be a real Hilbert space and C be a nonempty, closed, and convex subset of H. We suppose that
the following assumptions hold.
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Assumption 1.

(A1) For i = 1, 2, . . . , N, Ai : H → H are pseudomonotone, uniformly continuous and weakly sequentially
continuous operators;

(A2) For j = 1, 2, . . . , M, Tj : H → H are κj-demicontractive mappings with κ = max{κj : 1 ≤ j ≤ M}
such that I − Tj are demiclosed at zero;

(A3) f : H → H is an α-contraction mapping with α ∈ (0, 1);
(A4) For k = 1, 2, . . . , N, Bk : H → H are strongly positive bounded linear operators with coefficients γk > 0,

where γ = min{γk : 1 ≤ k ≤ N} and 0 < γ < γ
2α ;

(A5) The solution set

Sol =
N⋂

i=1

VI(C, Ai) ∩
M⋂

j=1

Fix(Tj)

is nonempty.

We now present our method as follows.

Remark 1. Observe that we are at a solution of Problem (2) if xn = yn = un. We will implicitly assume that
this does not occur after finitely many iterations so that our Algorithm 3 generates an infinitely sequence for
our analysis.

Algorithm 3: EFEM

Initialization: Choose σ ∈ (0, 1), ρ ∈ (0, 1), {αn}, {δn,j}M
j=0 ⊂ (0, 1). Let x1 ∈ C be given

arbitrarily and set n = 1.
Iterative step:

Step 1: For i = 1, 2, . . . , N, compute in parallel

yi
n = PC(xn − Aixn).

If θi(xn) = xn − yi
n = 0 : set xn = wn and do Step 3. Otherwise: do Step 2.

Step 2. Compute zi
n = xn − ρln θi(xn), where ln is the smallest non-negative integer satisfying

〈Aizi
n, θi(xn)〉 ≥

σ

2
‖θi(xn)‖2. (12)

Set wn = PDn(xn), where

Dn =

{
x ∈ H :

N

∑
i=1

βi
nhi

n(xn) ≤ 0

}
,

{βi
n}N

i=1 ⊂ (0, 1) such that
N
∑

i=1
βi

n = 1, and hi
n(x) = 〈Aizi

n, x− zi
n〉.

Step 3. Compute

un = δn,0wn +
M

∑
n=1

δn,jTjwn,

and

xn+1 = αnγ f (xn) +

(
I − αn

N

∑
k=1

ckBk

)
un, (13)

where {ck}N
k=1 ⊂ (0, 1) such that

N
∑

k=1
ck = 1.

Stopping criterion: If xn = yn = un, then stop; otherwise, set n := n + 1 and go back to Step 1.
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In order to prove the convergence of our algorithm, we assume that the control parameters satisfy
the following conditions.

Assumption 2.

(B1) lim
n→∞

αn = 0 and
∞
∑

n=0
αn = +∞;

(B2) lim infn→∞(δn,0 − κ) > 0.

We begin the convergence analysis of Algorithm 3 by proving some useful Lemmas.

Lemma 6. Let u∗ ∈ Sol and hi
n be as defined in Algorithm 3. Then hi

n(xn) ≥ ρln σ
2 ‖xn− yi

n‖2 and hi
n(u∗) ≤ 0.

In particular, if θi(xn) 6= 0, then hi
n(xn) > 0 for all n ∈ N.

Proof. As zi
n = xn − ρln(xn − yi

n) for i = 1, 2, . . . , N, then

hi
n(xn) = 〈Azi

n, xn − zi
n〉

= ρln〈Azi
n, xn − yi

n〉 (14)

≥ ρln σ

2
‖xn − yi

n‖2.

Furthermore, if xn 6= yi
n for i = 1, 2, . . . , N, then hi

n(xn) > 0. As u∗ ∈ Sol and Ai are
pseudomonotone, then

〈Ay, y− u∗〉 ≥ 0 ∀y ∈ C.

Therefore,
〈Azi

n, zi
n − u∗〉 ≥ 0. (15)

Therefore,
hi

n(u
∗) = 〈Azi

n, u∗ − zi
n〉 ≤ 0.

Remark 2. Lemma 6 shows that Dn 6= ∅ and so PDn is well defined. Consequently, Algorithm 3 is well defined.

Now we show that the sequence {xn} generated by Algorithm 3 is bounded.

Lemma 7. Let {xn} be the sequence generated by Algorithm 3. Then {xn} is bounded.

Proof. Let u∗ ∈ Sol, then from (11), we have

‖wn − u∗‖2 = ‖PDn xn − u∗‖2

≤ ‖xn − u∗‖2 − ‖PDn xn − xn‖2

= ‖xn − u∗‖2 − dist(xn, Dn)
2

≤ ‖xn − u∗‖2.

(16)
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Moreover, from Lemma 2 (iii), we get

‖un − u∗‖2 =

∥∥∥∥∥δn,0(wn − u∗)−
M

∑
j=1

δn,j(Tjwn − u∗)

∥∥∥∥∥
2

= δn,0‖wn − u∗‖2 +
M

∑
j=1

δn,j‖Tjwn − u∗‖2 − δn,0δn,j‖Tjwn − wn‖2

≤ δn,0‖wn − u∗‖2 +
M

∑
j=1

δn,j

(
‖wn − u∗‖2 + κj‖wn − Tjwn‖2)

)
− δn,0δn,j‖Tjwn − wn‖2 (17)

≤ ‖wn − u∗‖2 −
M

∑
j=1

(δn,0 − κ)δn,j‖wn − Tjwn‖2

≤ ‖xn − u∗‖2 −
M

∑
j=1

(δn,0 − κ)δn,j‖wn − Tjwn‖2.

This implies that
‖un − u∗‖ ≤ ‖xn − u∗‖.

Then from (13), we obtain

‖xn+1 − u∗‖ =

∥∥∥∥∥αnγ f (xn) +

(
1− αn

N

∑
k=0

ckBk

)
un − u∗

∥∥∥∥∥
=

∥∥∥∥∥αn

(
γ f (xn)−

N

∑
k=0

ckBku∗
)
+

(
I − αn

N

∑
k=0

ckBk

)
uk −

(
I − αn

N

∑
k=0

ckBk

)
u∗
∥∥∥∥∥

≤
∥∥∥∥∥
(

I − αn

N

∑
k=0

ckBk

)
(un − u∗)

∥∥∥∥∥+ αnγ‖ f (xn)− f (u∗)‖+ αn

∥∥∥∥∥γ f (u∗)−
N

∑
k=0

ckBku∗
∥∥∥∥∥

≤ (1− αn

N

∑
k=0

ckγk)‖un − u∗‖+ αnαγ‖xn − u∗‖+ αn

∥∥∥∥∥γ f (u∗)−
N

∑
k=0

ckBku∗
∥∥∥∥∥

≤ (1− αn

N

∑
k=0

ckγ)‖xn − u∗‖+ αnαγ‖xn − u∗‖+ αn

∥∥∥∥∥γ f (u∗)−
N

∑
k=0

ckBku∗
∥∥∥∥∥

= (1− αnγ)‖xn − u∗‖+ αnαγ‖xn − u∗‖+ αn

∥∥∥∥∥γ f (u∗)−
N

∑
k=0

ckBku∗
∥∥∥∥∥

= (1− αn(γ− αγ)‖xn − u∗‖+ αn(γ− αγ)
‖γ f (u∗)−∑N

k=0 ckBku∗‖
(γ− αγ)

≤ max

{
‖xn − u∗‖,

‖γ f (u∗)−∑N
k=0 ckBku∗‖

(γ− αγ)

}
.

By induction, we have

‖xn − u∗‖ ≤ max

{
‖x1 − u∗‖,

‖γ f (u∗)−∑N
k=0 ckBku∗‖

(γ− αγ)

}
.

This implies that {xn} is bounded.

Lemma 8. Let u∗ ∈ Sol and {xn} be the sequence generated by Algorithm 3, then {xn} satisfies the
following estimates.

(i)

‖wn − u∗‖2 ≤ ‖xn − u∗‖2 −
(

σρln

L

N

∑
i=1

βi
n‖xn − yi

n‖2

)
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for some L ≥ 0;
(ii)

sn+1 ≤ (1− an)sn + anbn

where

sn = ‖xn − u∗‖2, an =
2αn(γ− αγ)

1− αnαγ
,

bn = αn M +
〈γ f (u∗)−∑N

k=0 ckBku∗, xn+1 − u∗〉
γ− αnγ

,

for some M > 0.

Proof. As {xn} is bounded and Ai are continuous on bounded subsets of H, then {Aixn} are bounded,
and thus there exists some constants Li > 0 such that

‖Aixn‖ ≤
Li
2
∀n ∈ N, i = 1, 2, . . . , N.

Consequently,

‖Aixn‖ ≤
L
2

where L = max{Li, i = 1, 2, . . . , N}.

Therefore from Lemma 3, we have

dist(xn, Dn) ≥
2
L

N

∑
i=1

βi
nhi

n(xn), ∀n ≥ 0. (18)

Thus from (16) and (18), we get

‖wn − u∗‖2 = ‖xn − u∗‖2 − dist(xn, Dn)
2

≤ ‖wn − u∗‖2 −
(

2
L

N

∑
i=1

βi
nhi

n(xn)

)2

.

Hence from Lemma 6, we obtain

‖wn − u∗‖2 ≤ ‖xn − u∗‖2 −
(

σρln

L

N

∑
i=1

βi
n‖xn − yi

n‖2

)
.

This established (i).
Moreover, we have from Algorithm 3 that
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‖xn+1 − u∗‖2 = ‖αnγ f (xn) + (I − αn

N

∑
k=0

ckBk)un − u∗‖2

= ‖αn(γ f (xn)−
N

∑
k=0

ckBku∗) + (1− αn

N

∑
k=0

ckBk)un − (1− αn

N

∑
k=0

ckBk)u∗‖2

≤ ‖(1− αn

N

∑
k=0

ckBk)un − (1− αn

N

∑
k=0

ckBk)u∗‖2

+2αn〈γ f (xn)−
N

∑
k=0

ckBku∗, xn+1 − u∗〉

≤ (1− αn

N

∑
k=0

ckγk)
2‖un − u∗‖2 + 2αnγ〈 f (xn)− f (u∗), xn+1 − u∗〉

+2αn〈γ f (u∗)−
N

∑
k=0

ckBku∗, xn+1 − u∗〉

≤ (1− αn

N

∑
k=0

ckγ)2‖xn − u∗‖2 + 2αnαγ‖xn − u∗‖‖xn+1 − u∗‖

+2αn〈γ f (u∗)−
N

∑
k=0

ckBku∗, xn+1 − u∗〉

≤ (1− αnγ)2‖xn − u∗‖2 + αnγ(‖xn − u∗‖2 + ‖xn+1 − u∗‖2)

+2αn〈γ f (u∗)−
N

∑
k=0

ckBku∗, xn+1 − u∗〉.

Therefore, we obtain

‖xn+1 − u∗‖2 ≤ (1− αnγ)2 + αnαγ

1− αnαγ
‖xn − u∗‖2 +

2αn

1− αnαγ
〈γ f (u∗)−

N

∑
k=0

ckBku∗, xn+1 − u∗〉

=

(
1− 2αn(γ− αγ)

1− αnαγ

)
‖xn − u∗‖2 +

α2
nγ2

2− αnαγ
‖xn − u∗‖2

+
2αn

1− αnαγ
〈γ f (u∗)−

N

∑
k=0

ckBku∗, xn+1 − u∗〉

=

(
1− 2αn(γ− αγ)

1− αnαγ

)
‖xn − u∗‖2

+
2αn(γ− αγ)

1− αnαγ

(
αn M +

〈γ f (u∗)−∑N
k=0 ckBku∗, xn+1 − u∗〉
γ− αnγ

)
= (1− an)sn + anbn,

where the existence of M follows from the boundedness of {xn}. This completes the proof.

Lemma 9. Let {xnl} be a subsequence of {xn} generated by Algorithm 3 such that {xnl} converges weakly to
p ∈ H and liml→∞ ‖xnl − yi

nl
‖ = 0, for all i = 1, 2, . . . , N. Then

(i) 0 ≤ lim infl→∞〈Aixnl , x− xnl 〉, for all x ∈ C, i = 1, 2, . . . , N;
(ii) p ∈ ⋂N

i=1 VI(C, Ai).

Proof. (i) From the Definition of yi
n and (10), we have

〈xnl − Aixnl − yi
nl

, x− yi
nl
〉 ≤ 0, ∀x ∈ C, i = 1, 2, . . . , N.
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Thus,
〈xnl − yi

nl
, x− yi

nl
〉 ≤ 〈Aixnl , x− yi

nl
〉, ∀x ∈ C, i = 1, 2 . . . , N.

This implies that

〈xnl − yi
nl

, x− ynl 〉+ 〈Aixnl , yi
nl
− xnl 〉 ≤ 〈Axnl , x− xnl 〉, ∀x ∈ C, i = 1, 2, . . . , N. (19)

Fix x ∈ C and let l → ∞ in (19), since ‖yi
nl
− xnl‖ → 0, then

0 ≤ lim inf
l→∞

〈Aixnl , x− xnl 〉, ∀x ∈ C, i = 1, 2, . . . , N.

(ii) Suppose {ξl} is a decreasing sequence of non-negative numbers such that ξl → 0 as l → ∞. For
each ξl , we denote by Nl the smallest positive integer such that

〈Aixnl , x− xnl 〉+ ξl ≥ 0, ∀ l ≥ Nl , i = 1, 2, . . . , N,

where the existence of Nl follows from (i). This means that

〈Aixnl , x + ξlti
nl
− xnl 〉 ≥ 0, ∀ l ≥ Nl , i = 1, 2, . . . , N,

for some ti
nl
∈ H satisfying 1 = 〈Aixnl , ti

nl
〉 (since Aixnl 6= 0 for i = 1, 2, . . . , N). As Ai are

pseudomonotone, it follows from (i) that

〈Ai(x + ξlti
nl
), x + ξlti

nl
− xnl 〉 ≥ 0 ∀ l ≥ Nl , i = 1, 2, . . . , N. (20)

Furthermore, xnl ⇀ p as l → ∞ and Ai are weakly sequentially continuous, then Aixnl ⇀ Ai p for
i = 1, 2, . . . , N. Therefore,

0 < ‖Ai p‖ ≤ lim inf
l→∞

‖Aixnl‖, ∀i = 1, 2, . . . , N.

Moreover, {xNl} ⊂ {xnl} and ξl → 0 as l → ∞. Thus, we obtain

0 ≤ lim sup
l→∞

‖ξlti
nl
‖ = lim sup

l→∞

(
ξl

‖Aixnl‖

)
≤

lim supl→∞ ξl

lim infl→∞ ‖Aixnl‖
≤ 0
‖Ai p‖

= 0,

which implies that liml→∞ ‖ξlti
nl
‖ = 0. Thus, taking limit of (20) as l → ∞, we obtain

〈Aix, x− p〉 ≥ 0, ∀ i = 1, 2, . . . , N.

Using Lemma 1, we have p ∈ VI(C, Ai) for all i = 1, 2, . . . , N. Therefore p ∈ ⋂N
i=1 VI(C, Ai).

This completes the proof.

We now present our main result.

Theorem 1. Suppose {xn} is generated by Algorithm 3. Then {xn} converges strongly to a point z ∈ Sol.

Proof. Let u∗ ∈ Sol and put Γn = ‖xn − x∗‖2. We consider the following possible cases.
Case A: Assume that there exists n0 ∈ N such that {Γn} is monotonically decreasing for n ≥ n0.
Since {Γn} is bounded, then

Γn − Γn+1 → 0 as n→ ∞. (21)
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Moreover, from Lemma 8 (i), we have

‖xn+1 − u∗‖2 = ‖αnγ f (xn)− (1− αn

N

∑
n=0

ckBk)un − u∗‖2

= ‖αn(γ f (xn)−
N

∑
n=0

ckBku∗) + (1− αn

N

∑
n=0

ckBk)(un − u∗)‖2

≤ ‖(I − αn

N

∑
n=0

ckBk)(un − u∗)‖2 + 2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉

≤ (1− αn

N

∑
n=0

ckγk)‖un − u∗‖2 + 2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉 (22)

≤ (1− αn

N

∑
n=0

ckγ)‖wn − u∗‖2 + 2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉

≤ (1− αnγ)

[
‖xn − u∗‖2 − σρln

L

N

∑
i=1

βi
n‖xn − yi

n‖2

]

+2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉.

Therefore

(1− αnγ)
σρln

L

N

∑
i=1

βi
n‖xn − yi

n‖2 ≤ (1− αnγ)‖xn − u∗‖2 − ‖xn+1 − u∗‖2

+2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉.

As αn → 0 as n→ ∞ and from (21), we have

lim
n→∞

σρln

L

N

∑
i=1

βi
n‖xn − yi

n‖2 = 0. (23)

Furthermore, from (18), we obtain

‖xn+1 − u∗‖2 ≤ (1− αnγ)‖un − u∗‖2 + 2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉

≤ (1− αnγ)[‖xn − u∗‖2 −
M

∑
j=1

(δn,0 − κ)δn,j‖wn − Tjwn‖2]

+2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉.

This implies that

(1− αnγ)
M

∑
j=1

(δn,0 − κ)δn,j‖wn − Tjwn‖2 ≤ (1− αnγ)‖xn − u∗‖2 − ‖xn+1 − u∗‖2

+2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉.
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Therefore,

lim
n→∞

M

∑
j=1

(δn,0 − κj)δn,j‖wn − Tjwn‖ = 0.

Using condition (C2), we obtain

lim
n→∞

‖wn − Tjwn‖ = 0. (24)

Consequently,

‖un − wn‖ ≤ δn,0‖wn − wn‖+
M

∑
j=1

δn.j‖wn − Tjwn‖ → 0 as n→ ∞. (25)

Furthermore, from (11), we have

‖wn − u∗‖2 = ‖PDn(xn)− u∗‖2

≤ ‖xn − u∗‖2 − ‖wn − xn‖2.

Then, from (23), we have

‖wn − xn‖2 ≤ ‖xn − u∗‖2 − ‖wn − u∗‖2

= ‖xn − u∗‖2 − ‖xn+1 − u∗‖2 + ‖xn+1 − u∗‖2 − ‖wn − u∗‖2

≤ ‖xn − u∗‖2 − ‖xn+1 − u∗‖2 + ‖wn − u∗‖2 + 2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉

−‖wn − u∗‖2

= ‖xn − u∗‖2 − ‖xn+1 − u∗‖2 + 2αn〈γ f (xn)− αn

N

∑
n=0

ckBku∗, xn+1 − u∗〉.

Moreover, as αn → 0 as n→ ∞, then

lim
n→∞

‖wn − xn‖ = 0. (26)

From (25) and (26), we get

‖un − xn‖ ≤ ‖un − wn‖+ ‖wn − xn‖ → 0 as n→ ∞.

Therefore,

‖xn+1 − xn‖ = ‖αn(γ f (xn)−
N

∑
n=0

ckBkxn) + (I − αn

N

∑
n=0

)(un − xn)‖

≤ αn‖γ f (xn)−
N

∑
n=0

ckBkxn‖+ (1− αnγ)‖un − xn‖ → 0 as n→ ∞.

(27)

Now, we show that Ωw(xn) ⊂ Sol, where Ωw(xn) is the set of weak subsequential limits of {xn}.
Let p ∈ Ωw(xn), then there exists a subsequence {xnl} of {xn} such that xnl ⇀ p as l → ∞. Let {yi

nl
}

be subsequences of {yi
n} for i = 1, 2, . . . , N. From (23), we have

lim
l→∞

γmnl

N

∑
i=1

βnl‖xnl − yi
nl
‖ = 0, ∀i = 1, 2, . . . , N.
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Now we claim that
lim
l→∞
‖xnl − yi

nl
‖ = 0, ∀i = 1, 2, . . . , N.

Indeed, we consider two distinct cases depending on the behavior of subsequence {γmnl }.
(i) If lim infl→∞ γmnl > 0, then

0 ≤ ‖xnl − yi
nl
‖2 =

γmnl ‖xnl − ynl‖2

γmnl
.

This implies that

lim sup
l→∞

‖xnl − ynl‖
2 ≤ lim sup

l→∞

(
γmnl ‖xnl − ynl‖

2
)(

lim sup
l→∞

1
γmnl

)

= lim sup
l→∞

(
γmnl ‖xnl − ynl‖

2
)( 1

lim infl→∞ γmnl

)
= 0.

Therefore,
lim
l→∞
‖xnl − yi

nl
‖ = 0.

(ii) Suppose lim infl→∞ γmnl = 0. Then we may assume without loss of generality that liml→∞ γmnl = 0
and liml→∞ ‖xnl − ynl‖ = a > 0. Let us define z̄i

nl
= 1

t γmnl yi
nl
+
(

1− 1
t γmnl

)
xn for i = 1, 2, . . . , N.

This implies that z̄i
nl
− xn = 1

t γmnl (yi
nl
− xnl ) for i = 1, 2, . . . , N. Since {yi

nl
− xnl} are bounded and

liml→∞ γmnl = 0, then
lim
l→∞
‖z̄i

nl
− xnl‖ = 0.

As Ai are uniformly continuous, then

lim
l→∞
‖Ai z̄i

nl
− Aixnl‖ = 0, ∀i = 1, 2, . . . , N. (28)

Using (12) and from the Definition of z̄i
nl

for i = 1, 2, . . . , N, we know that

〈Ai z̄i
nl

, xnl − yi
nl
〉 < σ

2
‖xnl − yi

nl
‖, ∀i = 1, 2, . . . , N.

Therefore,

2〈Aixnl , xnl − yi
nl
〉+ 2〈Ai z̄i

nl
− Aixnl , xnl − yi

nl
〉 < σ‖xnl − yi

nl
‖2, ∀i = 1, 2, . . . , N.

Putting vi
nl
= xnl − Aixnl , for all i = 1, 2, . . . , N, we obtain

2〈xnl − vi
nl

, xnl − yi
nl
〉+ 2〈Ai z̄i

nl
− Aixnl , xnl − yi

nl
〉 < σ‖xnl − yi

nl
‖2, ∀i = 1, 2, . . . , N. (29)

Moreover, from Lemma 2 (i), we have

2〈xnl − ynl , xnl − yi
nl
〉 = ‖xnl − vi

nl
‖2 + ‖xnl − yi

nl
‖2 − ‖yi

nl
− vi

nl
‖2. (30)

Substituting (30) into (29), we have

‖xnl − vi
nl
‖2 − ‖yi

nl
− vi

nl
‖2 < (σ− 1)‖xnl − yi

nl
‖2 − 2〈Ai z̄i

nl
− Aixnl , xnl − yi

nl
〉.
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Passing limit to the last inequality as l → ∞ and using (28), we get

lim
l→∞

(
‖xnl − vi

nl
‖2 − ‖yi

nl
− vi

nl
‖2
)
≤ (σ− 1)a < 0.

For ε = −(σ−1)a
2 > 0, there exists m ∈ N such that

‖xnl − vi
nl
‖2 − ‖yi

nl
− vi

nl
‖2 ≤ (σ− 1)a + ε =

(σ− 1)a
2

< 0,

for all l ∈ N, n ≥ m, i = 1, 2, . . . , N. Therefore

‖xnl − vi
nl
‖2 < ‖yi

nl
− vi

nl
‖2, ∀l ∈ N, n ≥ m, i = 1, 2, . . . , N.

This contradicts the Definition of metric projection as yi
nl

= PC(xnl − Aixnl ). Thus a = 0.
Therefore, we obtain

lim
l→∞
‖xnl − yi

nl
‖ = 0, ∀i = 1, 2, . . . , N. (31)

Consequently from Lemma 9, we have p ∈ ⋂N
i=1 VI(C, Ai). Furthermore, as wn,l ⇀ p and

‖vnl ,j−wnl‖ → 0, then by the demi-closedness of Tj, j = 1, 2, . . . , M, we have that p ∈ Fix(Tj), for each
j = 1, 2, . . . , M. This means that p ∈ ⋂M

j=1 Fix(Tj). Therefore, p ∈ Sol, which show that Ωw(xn) ⊂ Sol.
We now show that {xn} converges strongly to a point u∗ ∈ Sol. As xnl ⇀ p and ‖xnl+1 − xnl‖ → 0 as
l → ∞, thenxnl+1 ⇀ p. Therefore,

lim sup
n→∞

〈γ f (u∗)−
N

∑
n=0

ckBku∗, xn+1 − u∗〉 = lim
l→∞
〈γ f (u∗)−

N

∑
n=0

ckBku∗, xnl+1 − u∗〉

= 〈γ f (u∗)−
N

∑
n=0

ckBku∗, p− u∗〉.

(32)

As p ∈ Sol, then it follows from (10) and (32) that

lim sup
n→∞

〈γ f (u∗)−
N

∑
n=0

ckBku∗, xn+1 − u∗〉 ≤ 0.

Therefore, using Lemma 4 and Lemma 8 (ii), we have that limn→∞ ‖xn − u∗‖ = 0. This implies
that {xn} converges strongly to u∗.

Case B: Suppose {Γn} is not monotonically decreasing. Let τ : N→ N for all n ≥ n0 (for some n0 large
enough) be defined by

τ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

Clearly τ is non-decreasing, τ(n)→ ∞ as n→ ∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.

As {xτ(n)} is bounded, there exists a subsequence of {xτ(n)} still denoted by {xτ(n)} which
converges weakly to p ∈ C. Following similar arguments as in Case A, we get

lim
n→∞

‖wτ(n) − xτ(n)‖ = lim
n→∞

‖uτ(n) − xτ(n)‖ = lim
n→∞

‖xτ(n)+1 − xτ(n)‖ = 0,

lim
n→∞

‖xτ(n) − yi
τ(n)‖ = 0, ∀i = 1, 2 . . . , N, lim

n→∞
‖vτ(n),j − wτ(n)‖ = 0, j = 1, 2, . . . , M,
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and Ωw(xτ(n)) ⊂ Sol, where Ωw(xτ(n)) is the set of weak subsequential limits of {xτ(n)}. Furthermore,

lim sup
n→∞

〈γ f (u∗)−
N

∑
n=0

ckBku∗, xτ(n)+1 − u∗〉 ≤ 0. (33)

From Lemma 8 (ii), we have

‖xτ(n)+1 − u∗‖2 ≤
(

1−
2ατ(n)(γ− αγ)

1− ατ(n)αγ

)
‖xτ(n) − u∗‖2

+
2αn(γ− αγ)

1− ατ(n)αγ

ατ(n)M +
〈γ f (u∗)−∑N

k=0 ckBku∗, xτ(n)+1 − u∗〉
γ− ατ(n)γ

 ,

(34)

for some M > 0. As 0 ≤ ‖xτ(n) − u∗‖2 ≤ ‖xτ(n)+1 − u∗‖2, then we get

‖xτ(n) − u∗‖2 ≤ ατ(n)M +
〈γ f (u∗)−∑N

k=0 ckBku∗, xτ(n)+1 − u∗〉
γ− ατ(n)γ

.

Then from (33) and the fact that ατ(n) → 0, we have

lim
n→∞

‖xτ(n) − u∗‖ = 0. (35)

Furthermore, for n ≥ n0, it is easy to see that Γn ≤ Γτ(n)+1. As a consequence, we get for all
sufficiently large n that 0 ≤ Γn ≤ Γτ(n)+1. Thus, limn→∞ ‖xn − u∗‖ = 0. Therefore, {xn} converges
strongly to u∗. Consequently, {yi

n}, {zi
n}, {wn} and {un} converges strongly to u∗. This completes

the proof.

Remark 3.

(i) Instead of finding the farthest element to the iterate xn, we construct a sub-level set using the convex
combination of the finite functions and perform a single projection onto the sub-level set. Note that this
projection can be calculated explicitly irrespective of the feasible set C.

(ii) We emphasize that the convergence of our Algorithm 3 is proved without using a prior estimate of any
Lipshitz constant. Moreover, the cost operators do not even need to satisfy the Lipschitz condition. Note that
the previous results of [6,8,33] and references therein cannot be applied in this situation.

(iii) We give an example of a finite family of Ai : H → H which does not satisfy Lipschitz condition.

Example 1. Let H = <n defined by <n = {x̄ = (x1, x2, . . . , xn), xl ∈ < : ∑n
l=1 |xl |2 < ∞} with

norm ‖ · ‖ : <n → [0.∞) defined by ‖x̄‖ :=
(
∑n

l=1 |xl |2
) 1

2 for arbitrary x̄ = (x1, x2, . . . , xn) ∈ <n.
Let Ci = C = {x̄ ∈ <n : ‖x̄‖ ≤ 1} and for i = 1, . . . , N, let Ai : C → H be defined by

Aix =

(
‖x‖+ i

‖x‖+ 1

)
x, i = 1, . . . , N.

It is clear that VI(C, Ai) 6= ∅ as 0 ∈ VI(C, Ai) for each i = 1, . . . , N. First, we show that Ai is
pseudomonotone and not Lipschitz continuous for i = 1, 2, . . . , N. Let u, v ∈ C be such that 〈Aiu, v− u〉 ≥ 0.
This means that 〈u, v− u〉 ≥ 0. Thus,
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〈Aiv, v− u〉 =

(
‖v‖+ i

‖v‖+ 1

)
〈v, v− u〉

>

(
‖v‖+ i

‖v‖+ 1

)
(〈v, v− u〉 − 〈u, v− u〉)

=

(
‖v‖+ i

‖v‖+ 1

)
‖v− u‖2 > 0.

Therefore, Ai is pseudomonotone for i = 1, . . . , N. To see that Ai is not L-Lipschitz continuous for
i = 1, 2, . . . , N, let u = (Li, 0, . . . , 0) and v = (0, 0, . . . , 0). Then,

‖Au− Av‖ = ‖Au‖ =
(
‖u‖+ i

‖u‖+ 1

)
‖u‖ =

(
Li +

i
Li + 1

)
Li.

Moreover, ‖Aiu− Aiv‖ ≤ Li‖u− v‖ implies that(
Li +

i
Li + 1

)
Li ≤ L2

i .

Thus, i
Li+1 ≤ 0, which is a contradiction. Therefore, Ai is not Lipschitz continuous for i = 1, . . . , N.

4. Numerical Experiments

In this section, we present some numerical experiments to illustrate the performance of the
proposed algorithm. We compare our Algorithm 3 with Algorithm 1 of Anh and Phuong [8],
Algorithm 2 of Hieu [33], Algorithm 1 of Suantai et al. [40], and other algorithms in the literature.
The projections onto Ci are computed explicitly. All codes are written with a HP PC with the following
specification: Intel(R)core i7-9700, CPU 3.00GHz, RAM 4.0GB, MATLAB version 9.9 (R2020b).

Example 2. First, we consider the variational inequalities with operators Ai : <m → <m for i = 1, 2, . . . , N,
defined by Ai(x) = Gi(x) + qi, where

Gi = SiST
i + Qi + Ri, i = 1, 2, . . . , N,

such that for each i, Si is a m×m matrix, Qi is a m×m skew symmetric matrix, Ri is a m×m diagonal matrix,
whose diagonal entries are non-negative (so Gi is positive definite) and qi is a vector in <m. The feasible set C
is given by Ci = C = {x ∈ <m : 〈x, a 〉 ≤ c}, where a ∈ <m is generated randomly and c is a positive real
number randomly in [1, m]. It is clear that for each i, Gi is monotone (hence, pseudomonotone) and Lipschitz
continuous with Lipschitz constant Li = max{‖Gi‖ : i = 1, 2, . . . , N}. The entries of matrices Si, Qi, Ri
are generated randomly and uniformly in [−m, m], diagonal entries of Ri are in [1, m] and qi is equal to the
zero vector. In this case, it is easy to see that the VI(C, Ai) = {0}. For j = 1, 2, . . . , M, let Tj : <m → <m

be defined by Tjx = x
2j , for j ∈ N. Then Tj is 0-demicontractive mapping, Fix(Tj) = {0} and (I − Tj) is

demiclosed at 0. Also for k = 1, 2, . . . , N, let Bk =
1
2k I, f = I (I being the identity operator on H), we choose

α = 1, γ = 1
8 , σ = 0.28, ρ = 0.36, λ = 1

4 , ck = 1
N

, δn,j =
1

M+1 , αn = 1
n+1 , βn,i =

1
N+1 , for all n ∈ N.

We compare Algorithm 3 with Algorithm 1 of Anh and Phuong [8], Algorithm 2 of Hieu [33], and Algorithm 1
of Suantai et al. [40]. We test the algorithms using the following parameters.

• Anh and Phuong alg.: λn,i =
0.99
2Li

, αn,i =
1

ni+1 , γn,i =
1
3 ,

• Hieu alg.: λ = 1
1.5L ,

• Suantai et al. alg.: ρ = 0.34, µ = 0.06,

and

Case I: m = 5, N = 5, M = 2, N = 1,
Case II: m = 10, N = 10, M = 5, N = 5,
Case III: m = 20, N = 15, M = 10, N = 10,
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Case IV: m = 50, N = 20, M = 5, N = 15.

We also use ‖xn − x∗‖ < 10−5 as stopping criterion for each algorithm and plot the graphs of Dn =

‖xn − x∗‖2 against the number of iteration. The computational results are shown in Table 1 and Figure 1.

Table 1. Computational result for Example 2.

Algorithm 3 Anh-Phuong [8] Hieu [33] Suantai et al. [40]

Case I No of Iter. 16 34 39 67
Time (sec) 0.0038 0.0034 0.0032 0.0061

Case II No of Iter. 15 63 107 98
Time (sec) 0.0020 0.0054 0.0100 0.0097

Case III No of Iter. 14 57 93 183
Time (sec) 0.0020 0.0053 0.0093 0.0236

Case IV No of Iter. 10 53 114 183
Time (sec) 0.0019 0.0047 0.0136 0.0244
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Figure 1. Example 2, From Top to Bottom: Case I, Case II, Case III, and Case IV.

Now, we consider the case when N = 1 with finite family of demicontractive mappings in infinite
dimensional spaces. In this example, we compare our algorithm with Algorithm 1 of Anh et al. [41]
and Algorithm 2.1 of Hieu [42].

Example 3. Let H = `2(<) and define A : H → H by Ax = 2
2+‖x‖ . It is easy to see that A is easy to

see that A is strongly pseudomonotone and Lipschitz continuous with L = 1
2 . We defined the feasible set

C = {x = (x1, x2, . . . ) ∈ `2 : ‖x‖ ≤ 1} and for j = 1, 2, . . . , M, Tj : H → H is defined by Tjx = −(1+j)
j x,

for j ∈ N. Then Tj is demicontractive mapping with κj =
1

1+2j , Fix(Tj) = {0} and (I − Tj) is demiclosed at

0. We choose N = 1, Bk =
1
2 I, f (x) = x

4 , σ = 0.02, ρ = 0.036, γ = 1
16 , αn = 1√

(n+1)
, δn,j =

1
M+1 , βi

n = 1,

ck = 1. For Anh et al. alg., we take λn = 1√
n+1

, αn = 1
2n+4 ; and for Hieu alg., we take λn = 1

n+1 , βi
n =

n
2n+i , γi

n = 1
M+1 (where i = j in this context). We test the algorithms for M = 5, 15, 20, 30 and study the
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behavior of the sequence generated by the algorithms using Dn = ‖xn − x∗‖ < 10−5 as stopping criterion.
The numerical results are shown in Table 2 and Figure 2.

Table 2. Computational result for Example 2.

Algorithm 3 Anh et al. [41] Hieu [42]

M = 5 No of Iter. 7 14 67
Time (sec) 5.836e-04 0.0014 0.0021

M = 15 No of Iter. 8 13 25
Time (sec) 6.300e-04 0.0014 0.0018

M = 20 No of Iter. 11 16 37
Time (sec) 0.0010 0.0033 0.0088

M = 30 No of Iter. 10 17 43
Time (sec) 7.583e-04 0.0018 0.0043
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Figure 2. Example 3, From Top to Bottom: M = 5, 15, 20, 30.

5. Conclusions

In this paper, we introduced a new efficient parallel extragradient method for solving systems
of variational inequalities involving common fixed point of demicontractive mappings in real
Hilbert spaces. The algorithm is designed such that its step size is determined by an Armijo
line search technique and a projection onto a sub-level set is computed for determining the next
iterate. A strong convergence result is proved under suitable conditions on the control parameters.
Finally, some numerical results were reported to show the performance of the proposed method with
respect to some other methods in the literature.
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