
symmetryS S

Article

Quasi-Delay-Insensitive Implementation of
Approximate Addition

Padmanabhan Balasubramanian 1,* and Nikos E. Mastorakis 2

1 School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore

2 Department of Industrial Engineering, Technical University of Sofia, Bulevard Sveti, Klimenti Ohridski 8,
1000 Sofia, Bulgaria; mastor@tu-sofia.bg

* Correspondence: balasubramanian@ntu.edu.sg; Tel.: +65-6790-4745

Received: 10 October 2020; Accepted: 19 November 2020; Published: 20 November 2020 ����������
�������

Abstract: Asynchronous quasi-delay-insensitive (QDI) implementation of approximate addition
is described in this article. The objective is to provide an insight into the optimization in design
metrics that can be achieved with approximate addition compared to accurate addition based on a
QDI implementation by considering a practical digital image processing application. For the QDI
implementation, some approximate adder architectures are considered which are deemed suitable
for both ASIC and FPGA based implementations. The accurate and approximate adders considered
are of size 32-bits. The delay-insensitive dual-rail code was used for data encoding, and four-phase
return-to-zero (RTZ) and return-to-one (RTO) handshake protocols were used separately for data
communication. The implementations used a 32/28-nm complementary metal oxide semiconductor
(CMOS) technology. The simulation results show that an approximate adder HOERAA achieves a
19.7% reduction in cycle time, a 12.5% reduction in area, and an 17.7% reduction in energy compared
to the accurate adder for RTZ handshaking. For RTO handshaking, HOERAA achieves an 18.7%
reduction in cycle time, a 12.4% reduction in area, and a 16.6% reduction in energy compared to
the accurate adder. Another approximate adder HEAA achieves a 19.7% reduction in cycle time,
a 12.9% reduction in area, and a 20.2% reduction in energy, compared to the accurate adder for RTZ
handshaking. For RTO handshaking, HEAA achieves an 18.7% reduction in cycle time, a 12.9%
reduction in area, and a 19.2% reduction in energy compared to the accurate adder. Nevertheless,
the RTO handshaking is preferable to RTZ handshaking as the former facilitates slightly better
optimizations in design metrics compared to the latter. The mean absolute error (MAE) and the
root mean square error (RMSE), which are popular error metrics used in approximate computing,
were calculated for the approximate adders and are given for a comparison. While the MAE of
HOERAA and HEAA are comparable, HOERAA has 8.6% reduced RMSE compared to HEAA. Digital
image processing results based on accurate and approximate additions are also given, to substantiate
the usefulness of approximate addition.

Keywords: approximate addition; asynchronous circuits; high speed; energy-efficient; CMOS

1. Introduction

Advancement in battery technology has not kept pace with the advancement of semiconductor
technology, and hence the energy efficiency of electronic circuits and systems deployed in portable and
mobile applications is an important concern. To achieve improvement in the energy efficiency,
approximate computing is considered to be an attractive alternative to conventional accurate
computing [1]. Approximate computing has the potential to enable simultaneous reductions in all the
design metrics such as delay, area, and power/energy [2], while providing an acceptable compromise in

Symmetry 2020, 12, 1919; doi:10.3390/sym12111919 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-9412-4773
http://dx.doi.org/10.3390/sym12111919
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/11/1919?type=check_update&version=2

Symmetry 2020, 12, 1919 2 of 20

the accuracy of results. The case for approximate computing is pertinent, because practical multimedia
applications [3] involving digital signal processing, such as digital image or video or audio processing
are naturally resilient to inaccuracies, because a minor distortion in an image or a video frame or a
feeble noise in an audio are not practically discernible by humans.

Approximate computing covers hardware [4], software [5], and memories [6], and with respect to
hardware, approximate computing includes approximate arithmetic circuits [7] and approximate logic
circuits [8]. With respect to approximate arithmetic circuits, the primary focus has been on the design
of approximate adders and multipliers. This is because addition and multiplication form the basis
of computer arithmetic, and they are fundamental operations which are frequently encountered in
practically all electronics and communication systems.

Thus far, many approximate adders have been presented in the literature, and they primarily
correspond to the synchronous design method [7]. Among them, some of the approximate adders
are ASIC based involving either a full-custom transistor level implementation or a semi-custom gate
level implementation, while a few approximate adders [9,10] correspond to a pure FPGA based
design. However, some approximate adders are suitable for both ASIC and FPGA implementations,
which include LOA [11], LOAWA [12], APPROX5 [13], HEAA [14], OLOCA [15] and HOERAA [16],
as noted in [16]. A brief preliminary work [17] discussed the asynchronous quasi-delay-insensitive
(QDI) implementation of just the LOA architecture, by assuming arbitrary sizes of accurate and
inaccurate adder parts. However, the error parameters corresponding to the LOA architecture were not
provided, and no practical application was considered to demonstrate the usefulness of approximate
addition. In contrast, this article makes the following contributions:

• Asynchronous QDI implementation of approximate addition based on different approximate
adder architectures, such as LOA, LOAWA, APPROX5, HEAA, OLOCA and HOERAA is described
alongside the accurate addition.

• Design metrics of the accurate QDI adder and different approximate QDI adders are estimated
and compared by considering a delay-insensitive dual-rail data encoding and return-to-zero (RTZ)
and return-to-one (RTO) handshaking. The implementations use a 32/28-nm complementary
metal oxide semiconductor (CMOS) process technology.

• Popular error metrics widely used in approximate computing are calculated for the approximate
adders and provided for a comparison. The error distribution of the approximate adders is also
portrayed. The implementation of the adders and their error metrics correspond to a digital image
processing application.

• A digital image processing application is considered to demonstrate the practical usefulness of
approximate addition vis-à-vis the accurate addition.

The above contributions would be useful, because this work attempts to showcase in detail
the twin advantages of approximate computing and an asynchronous QDI implementation.
While approximate arithmetic could lead to an enhanced energy efficiency compared to accurate
arithmetic, an asynchronous QDI implementation is bestowed with many advantages, such as natural
resilience to electromagnetic interference [18], innate tolerance to process, temperature, supply and
threshold voltage variations [19], inherent resistance to power analysis attacks [20], and self-checking
ability [21], all of which bodes well for modern electronic designs.

The rest of the article is organized as follows. Section 2 discusses the fundamentals of QDI circuit
design. Section 3 describes the QDI implementation of accurate and approximate adders based on
RTZ and RTO handshaking. Section 4 presents the implementation results. The error metrics of the
approximate adders are given in Section 5, and the digital image processing results corresponding to
accurate and approximate additions are given in Section 6. Section 7 concludes the article.

Symmetry 2020, 12, 1919 3 of 20

2. QDI Circuit Design—Fundamentals

QDI circuits are the practically realizable delay-insensitive (DI) circuits. QDI circuits incorporate
the isochronicity assumption [22], which is implicit in an isochronic fork. An isochronic fork implies
that when two or more wires branch out from an electrical node, any signal transition on the node is
assumed to appear concurrently on all the wires forking out from that node. However, not all of the
nodes in a QDI circuit have to be isochronic, but the isochronic fork assumption is generally imposed
on all the primary inputs associated with a QDI circuit stage. This is because the primary inputs are
given to a QDI circuit and also to a completion detector. Hence, the primary inputs are meant to reach
a QDI circuit, as well as the completion detector simultaneously through isochronic nodes. In general,
the isochronic fork assumption is restricted to small circuit areas and they are shown to be realizable
even in nanoscale design geometries [23]. Therefore, QDI circuits are also realizable in nanoscale
design geometries.

The block schematic of a QDI asynchronous circuit stage is shown in Figure 1. A QDI circuit stage
comprises a current stage register bank that receives the inputs, a completion detector that indicates,
i.e., acknowledges the receipt of all the inputs, and a QDI circuit that does the processing. Inputs are
supplied from the current stage register bank to the QDI circuit, as well as to the completion detector.
The next stage register bank, which receives the outputs, would serve as the current stage register bank
for the successive QDI circuit stage. Acknowledge input (AI) and acknowledge output (AO) are the
handshake signals that are exchanged between the current and next stage register banks. AI is the
Boolean complement of AO and vice versa.

Symmetry 2020, 12, x FOR PEER REVIEW 3 of 20

assumed to appear concurrently on all the wires forking out from that node. However, not all of the
nodes in a QDI circuit have to be isochronic, but the isochronic fork assumption is generally imposed
on all the primary inputs associated with a QDI circuit stage. This is because the primary inputs are
given to a QDI circuit and also to a completion detector. Hence, the primary inputs are meant to reach
a QDI circuit, as well as the completion detector simultaneously through isochronic nodes. In general,
the isochronic fork assumption is restricted to small circuit areas and they are shown to be realizable
even in nanoscale design geometries [23]. Therefore, QDI circuits are also realizable in nanoscale
design geometries.

The block schematic of a QDI asynchronous circuit stage is shown in Figure 1. A QDI circuit
stage comprises a current stage register bank that receives the inputs, a completion detector that
indicates i.e., acknowledges the receipt of all the inputs, and a QDI circuit that does the processing.
Inputs are supplied from the current stage register bank to the QDI circuit, as well as to the
completion detector. The next stage register bank, which receives the outputs, would serve as the
current stage register bank for the successive QDI circuit stage. Acknowledge input (AI) and
acknowledge output (AO) are the handshake signals that are exchanged between the current and
next stage register banks. AI is the Boolean complement of AO and vice versa.

Figure 1. Block schematic of a quasi-delay-insensitive (QDI) circuit stage. The critical data path is
shown via a dashed red line.

In a synchronous circuit, a register bank would comprise flip-flops. In a QDI circuit, a current or
next stage register bank would consist of 2-input C-elements. The C-element [24] will output binary
1 if all its inputs are one and output binary 0 if all its inputs are zero. The C-element will maintain its
existing steady state if its inputs are not the same. The logic symbol, and gate level and transistor
level realizations of a 2-input C-element are shown in Figure 2, where A and B denote the inputs and
Y denotes the output. Incorporating feedback in an AO222 complex gate would help to realize a 2-
input C-element.

Figure 2. (a) Logic symbol, (b) gate level realization, and (c) transistor level realization of C-element.

Figure 1. Block schematic of a quasi-delay-insensitive (QDI) circuit stage. The critical data path is
shown via a dashed red line.

In a synchronous circuit, a register bank would comprise flip-flops. In a QDI circuit, a current or
next stage register bank would consist of 2-input C-elements. The C-element [24] will output binary
1 if all its inputs are one and output binary 0 if all its inputs are zero. The C-element will maintain
its existing steady state if its inputs are not the same. The logic symbol, and gate level and transistor
level realizations of a 2-input C-element are shown in Figure 2, where A and B denote the inputs
and Y denotes the output. Incorporating feedback in an AO222 complex gate would help to realize a
2-input C-element.

Symmetry 2020, 12, 1919 4 of 20

Symmetry 2020, 12, x FOR PEER REVIEW 3 of 20

assumed to appear concurrently on all the wires forking out from that node. However, not all of the
nodes in a QDI circuit have to be isochronic, but the isochronic fork assumption is generally imposed
on all the primary inputs associated with a QDI circuit stage. This is because the primary inputs are
given to a QDI circuit and also to a completion detector. Hence, the primary inputs are meant to reach
a QDI circuit, as well as the completion detector simultaneously through isochronic nodes. In general,
the isochronic fork assumption is restricted to small circuit areas and they are shown to be realizable
even in nanoscale design geometries [23]. Therefore, QDI circuits are also realizable in nanoscale
design geometries.

The block schematic of a QDI asynchronous circuit stage is shown in Figure 1. A QDI circuit
stage comprises a current stage register bank that receives the inputs, a completion detector that
indicates i.e., acknowledges the receipt of all the inputs, and a QDI circuit that does the processing.
Inputs are supplied from the current stage register bank to the QDI circuit, as well as to the
completion detector. The next stage register bank, which receives the outputs, would serve as the
current stage register bank for the successive QDI circuit stage. Acknowledge input (AI) and
acknowledge output (AO) are the handshake signals that are exchanged between the current and
next stage register banks. AI is the Boolean complement of AO and vice versa.

Figure 1. Block schematic of a quasi-delay-insensitive (QDI) circuit stage. The critical data path is
shown via a dashed red line.

In a synchronous circuit, a register bank would comprise flip-flops. In a QDI circuit, a current or
next stage register bank would consist of 2-input C-elements. The C-element [24] will output binary
1 if all its inputs are one and output binary 0 if all its inputs are zero. The C-element will maintain its
existing steady state if its inputs are not the same. The logic symbol, and gate level and transistor
level realizations of a 2-input C-element are shown in Figure 2, where A and B denote the inputs and
Y denotes the output. Incorporating feedback in an AO222 complex gate would help to realize a 2-
input C-element.

Figure 2. (a) Logic symbol, (b) gate level realization, and (c) transistor level realization of C-element. Figure 2. (a) Logic symbol, (b) gate level realization, and (c) transistor level realization of C-element.

2.1. Delay-Insensitive Data Encoding and Four-Phase Handshaking

QDI circuits generally adopt an m-of-n encoding scheme for data representation and a four-phase
handshake protocol for data communication. The dual-rail or 1-of-2 code is the simplest and widely
used m-of-n code [25]. With reference to Figure 1, all the inputs given to a QDI circuit and all the outputs
produced by it are assumed to be dual-rail encoded here. Dual-rail encoding of data is performed
according to the handshake protocol used. There are two four-phase handshake protocols available
namely return-to-zero (RTZ) [26] and return-to-one (RTO) [27].

Based on RTZ handshaking, an input I is encoded into two wires as say I1 and I0, where I = 1 is
encoded as I1 = 1 and I0 = 0, and I = 0 is encoded as I0 = 1 and I1 = 0. These two assignments are called
data. I1 = I0 = 0 is called the spacer, and I1 = I0 = 1 is considered to be indeterminate or invalid.

Both RTZ and RTO handshake protocols involve four phases to complete a data transaction.
According to RTZ handshaking, in the first phase, the dual-rail data bus initially assumes the spacer
and hence AI = 1. After the current stage register bank sends data, rising signal transitions, i.e., 0 to 1
would occur on one of the rails of each dual-rail encoded input of the data bus. In the second phase,
the next stage register bank, after receiving the processed data from the QDI circuit, would drive AO
to 1. In the third phase, the current stage register bank would wait for AI to become 0, and after this
happens, the data bus would once again assume the spacer. In the fourth phase, after a finite and
positive but unbounded time, the next stage register bank would receive the spacer from the QDI
circuit and would drive AO to 0. Eventually, AI will assume 1. With this, one data transaction is said
to be completed. In RTZ handshaking, the application of data is followed by the application of the
spacer, and so on.

Based on RTO handshaking, an input I is encoded into two wires as say I1 and I0, where I = 1 is
encoded as I1 = 0 and I0 = 1, and I = 0 is encoded as I0 = 0 and I1 = 1. These two assignments are called
data. I1 = I0 = 1 is called the spacer, and I1 = I0 = 0 is considered to be indeterminate or invalid.

According to RTO handshaking, in the first phase, initially AI = 1. The current stage register bank
first sends the spacer, and, as a result, rising signal transitions will occur on all the rails of the data bus.
In the second phase, the next stage register bank, after receiving the spacer from the QDI circuit would
drive AO to 1. In the third phase, the current stage register bank would wait for AI to assume 0, and,
after this happens, the data bus would send the data by permitting falling signal transitions, i.e., 1 to 0
to occur on one of the rails of each dual-rail encoded input of the data bus. In the fourth phase, after a
finite and positive (but unbounded) time, the next stage register bank would receive the processed
data from the QDI circuit and subsequently drive AO to 0. Eventually, AI will assume 1, and with this,
one data transaction is said to be completed. In RTO handshaking, the application of the spacer is
followed by the application of data, and so on.

Regardless of whether the handshake protocol used is RTZ or RTO, the spacer separates two input
data. The cycle time, which is given by the sum of the critical path delays encountered in processing a
data (i.e., forward latency) and the spacer (i.e., reverse latency), governs the speed of a QDI circuit.

Symmetry 2020, 12, 1919 5 of 20

The critical data path is highlighted in Figure 1. The cycle time corresponds to the time taken for one
data transaction, and it determines the operating speed of a QDI circuit.

2.2. Kinds of QDI Circuits

There are three kinds of QDI circuits namely strong-indication and weak-indication [28], and early
output [29]. Strong-indication circuits require all the inputs to process and produce all the outputs.
Weak-indication circuits may process and produce all but one of the outputs after receiving all but
one of the inputs. However, only after receiving the last input, they can process and produce the last
output. Early output circuits can process and produce all the outputs after receiving a subset of the
inputs. Nevertheless, the completion detector associated with a QDI circuit, as shown in Figure 1,
would acknowledge the late arriving inputs. The early output nature is manifested in an early output
circuit for the application of data or the spacer or sometimes for both.

3. QDI Implementation of Accurate and Approximate Adders

Generic (single-rail) block schematics of the accurate adder and the approximate adders LOA,
LOAWA, APPROX5, HEAA, OLOCA and HOERAA are shown in Figure 3, where N represents the
adder width. The approximate adders consist of an inaccurate part, which is of size L bits, and an
accurate part, which is of size (N–L) bits. The inaccurate part is less significant, while the accurate part
is more significant. The accurate and inaccurate parts of the approximate adders are highlighted in
blue and red, respectively, in Figure 3.

In Figure 3, A and B represent the adder inputs and SUM represents the adder output. The subscript
0 denotes the least significant bit of the adder inputs and output, subscript (N–1) denotes the most
significant bit of the adder inputs, and subscript N denotes the most significant sum bit.

For the QDI implementation of accurate and approximate adders, whose schematics are shown
in Figure 3, we encoded all the adder inputs and outputs using dual-rail encoding corresponding
to RTZ and RTO handshaking separately, as discussed in Section 2. We uniformly considered the
adder size as 32-bits. We allotted 10 bits to the inaccurate part and 22 bits to the accurate part of
the approximate adders. This is because, for the digital image processing application that would be
discussed in Section 6, we found that an allocation of 10-bits to the inaccurate part yielded visually
acceptable results for HOERAA, meaning that an image reproduced using approximate addition with
a 10-bit inaccurate part was rather similar to the image reproduced via accurate addition.

Increasing the size of the inaccurate part beyond 10 bits affected the quality of the image
reproduced with HOERAA-based approximate addition, so we restricted the size of the inaccurate part
of approximate adders to 10 bits. Decreasing the size of the inaccurate part below 10 bits would help to
improve the quality of the image reproduced with approximate addition; however, this would also
reduce the savings in design metrics achievable compared to accurate addition. Hence, an optimum
input partition should be chosen to strike an acceptable compromise between the quality of images
reproduced and the potential reductions in design metrics achievable with approximate addition
compared to accurate addition. Given this, we uniformly considered a 22-10 input partition for the
approximate adders corresponding to the image processing application. Digital image processing shall
be discussed in Section 6, and, in this section, we discuss the QDI implementation of accurate and
approximate adders.

Symmetry 2020, 12, 1919 6 of 20
Symmetry 2020, 12, x FOR PEER REVIEW 6 of 20

Figure 3. Block schematics of accurate and approximate adders.

Symmetry 2020, 12, 1919 7 of 20

While implementing a QDI circuit, the logic decomposition and optimization have to be performed
safely [30,31] to maintain the quasi-delay-insensitivity. Otherwise, gate and wire orphans [32] may result,
which could affect the quasi-delay-insensitivity. In a QDI asynchronous circuit, an unacknowledged
signal transition on an intermediate gate output is called as gate orphan and an unacknowledged signal
transition on a wire is called a wire orphan. Wire orphans are usually overcome through the isochronic
fork assumption. However, gate orphans may become problematic and to overcome them additional
timing assumptions may have to be incorporated which might affect the quasi-delay-insensitivity.
Hence, a safe logic decomposition and optimization is necessary to avoid gate orphans. Gate and wire
orphans have been explained through circuit examples in [33]—an interested reader may refer to the
same for the details.

We used the early output half adder of [34] and the early output full adder of [35] to realize the
accurate adder and accurate parts of the approximate adders shown in Figure 3. Early output half
adder corresponding to RTZ and RTO handshaking are shown in Figure 4a,b respectively, where (P1,
P0) and (Q1, Q0) represent its dual-rail inputs, and (SUM1, SUM0) and (COUT1, COUT0) represent its
dual-rail outputs.Symmetry 2020, 12, x FOR PEER REVIEW 8 of 20

Figure 4. Early output half adder corresponding to: (a) return-to-zero (RTZ) handshaking; and (b)

return-to-one (RTO) handshaking.

Early output full adder corresponding to RTZ and RTO handshaking are shown in Figure 5a,b

respectively, where (X1, X0), (Y1, Y0) and (CIN1, CIN0) represent its dual-rail inputs, and (SUM1,

SUM0) and (COUT1, COUT0) represent its dual-rail outputs.

A QDI circuit corresponding to RTZ handshaking can be transformed into one that corresponds

to RTO handshaking and vice versa by replacing all the gates, excepting the C-elements, by their

respective duals—this principle has been proved in [36], and an interested reader may refer to the

same for the details.

Figure 5. Early output full adder corresponding to: (a) RTZ handshaking; and (b) RTO handshaking.

The accurate and approximate adders are QDI and are of early output type. The accurate part of

LOAWA requires a cascade of early output full adders and a half adder. The accurate parts of LOA,

APPROX5, HEAA, OLOCA, and HOERAA require a cascade of only early output full adders. The 2-

input AND function shown in Figure 3 is realized as an early output logic as shown in Figure 6a,b,

which correspond to RTZ and RTO handshaking. The 2-input OR function shown in Figure 3 is

realized as an early output logic as shown in Figure 6c,d, which correspond to RTZ and RTO

handshaking, respectively.

Figure 4. Early output half adder corresponding to: (a) return-to-zero (RTZ) handshaking; and (b) return-
to-one (RTO) handshaking.

Early output full adder corresponding to RTZ and RTO handshaking are shown in Figure 5a,b
respectively, where (X1, X0), (Y1, Y0) and (CIN1, CIN0) represent its dual-rail inputs, and (SUM1,
SUM0) and (COUT1, COUT0) represent its dual-rail outputs.

A QDI circuit corresponding to RTZ handshaking can be transformed into one that corresponds
to RTO handshaking and vice versa by replacing all the gates, excepting the C-elements, by their
respective duals—this principle has been proved in [36], and an interested reader may refer to the
same for the details.

Symmetry 2020, 12, 1919 8 of 20

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 20

Figure 4. Early output half adder corresponding to: (a) return-to-zero (RTZ) handshaking; and (b)
return-to-one (RTO) handshaking.

Early output full adder corresponding to RTZ and RTO handshaking are shown in Figure 5a,b
respectively, where (X1, X0), (Y1, Y0) and (CIN1, CIN0) represent its dual-rail inputs, and (SUM1,
SUM0) and (COUT1, COUT0) represent its dual-rail outputs.

A QDI circuit corresponding to RTZ handshaking can be transformed into one that corresponds
to RTO handshaking and vice versa by replacing all the gates, excepting the C-elements, by their
respective duals—this principle has been proved in [36], and an interested reader may refer to the
same for the details.

Figure 5. Early output full adder corresponding to: (a) RTZ handshaking; and (b) RTO handshaking.

The accurate and approximate adders are QDI and are of early output type. The accurate part of
LOAWA requires a cascade of early output full adders and a half adder. The accurate parts of LOA,
APPROX5, HEAA, OLOCA, and HOERAA require a cascade of only early output full adders. The 2-
input AND function shown in Figure 3 is realized as an early output logic as shown in Figure 6a,b,
which correspond to RTZ and RTO handshaking. The 2-input OR function shown in Figure 3 is
realized as an early output logic as shown in Figure 6c,d, which correspond to RTZ and RTO
handshaking, respectively.

Figure 5. Early output full adder corresponding to: (a) RTZ handshaking; and (b) RTO handshaking.

The accurate and approximate adders are QDI and are of early output type. The accurate part
of LOAWA requires a cascade of early output full adders and a half adder. The accurate parts
of LOA, APPROX5, HEAA, OLOCA, and HOERAA require a cascade of only early output full
adders. The 2-input AND function shown in Figure 3 is realized as an early output logic as shown
in Figure 6a,b, which correspond to RTZ and RTO handshaking. The 2-input OR function shown in
Figure 3 is realized as an early output logic as shown in Figure 6c,d, which correspond to RTZ and
RTO handshaking, respectively.Symmetry 2020, 12, x FOR PEER REVIEW 9 of 20

Figure 6. Early output realization of a 2-input AND function corresponding to: (a) RTZ handshaking;
and (b) RTO handshaking, where (P1, P0) and (Q1, Q0) are the dual-rail inputs and (R1, R0) is the
dual-rail output. Early output realization of a 2-input OR function corresponding to: (c) RTZ
handshaking; and (d) RTO handshaking, where (S1, S0) and (T1, T0) represent the dual-rail inputs
and (U1, U0) represents the dual-rail output.

In the case of LOA, shown in Figure 3b, 2-input AND and OR functions are used in the inaccurate
part, and they were realized as early output circuits as shown in Figure 6. In the case of LOAWA,
only the 2-input OR function is used in the inaccurate part, and it was realized as shown in Figure
6c,d.

With respect to APPROX5 (Figure 3d), in the inaccurate part, the addend bits BL–1 up to B0 are
directly forwarded as the respective sum bits viz. SUM L–1 up to SUM0, and AL–2 up to A0 are discarded.
Only AL–1 is given as the carry input to the accurate part in APPROX5. Given that a 22–10 input
partition has been used for all the approximate adders considering a digital image processing
application, therefore B9 up to B0 are forwarded as the respective sum bits SUM9 up to SUM0. This
means that based on dual-rail encoding, B91 up to B01 are forwarded as SUM91 up to SUM01, and B90
up to B00 are forwarded as SUM90 up to SUM00, by using a non-inverting buffer for each encoded sum
rail. (A81, A80) up to (A01, A00) are however discarded.

The logic corresponding to the most significant sum bit in the inaccurate part of HEAA (Figure
3e) incorporates a 2:1 multiplexer. Multiplexers are generally not used in QDI circuit designs, because
any signal transitions on their inputs may immediately result in signal transitions on their outputs
and this may give rise to gate orphan(s). As already mentioned, gate orphan(s) should be avoided in
QDI circuits. Hence, SUM9 of HEAA i.e., SUM91 and SUM90 are realized in early output style after
logic simplification, as shown in Figure 7a,b, which correspond to RTZ and RTO handshaking,
respectively. The equations for SUM91 and SUM90 are given below.

SUMଽଵ = (Aଽଵ + Bଽଵ)(AଽଵBଽଵതതതതതതതതത) = AଽଵBଽ + AଽBଽଵ (1)

SUMଽ = (Aଽଵ + Bଽଵതതതതതതതതതതതതത) + AଽଵBଽଵ = AଽBଽ + AଽଵBଽଵ (2)

Figure 6. Early output realization of a 2-input AND function corresponding to: (a) RTZ handshaking;
and (b) RTO handshaking, where (P1, P0) and (Q1, Q0) are the dual-rail inputs and (R1, R0) is
the dual-rail output. Early output realization of a 2-input OR function corresponding to: (c) RTZ
handshaking; and (d) RTO handshaking, where (S1, S0) and (T1, T0) represent the dual-rail inputs and
(U1, U0) represents the dual-rail output.

In the case of LOA, shown in Figure 3b, 2-input AND and OR functions are used in the inaccurate
part, and they were realized as early output circuits as shown in Figure 6. In the case of LOAWA,
only the 2-input OR function is used in the inaccurate part, and it was realized as shown in Figure 6c,d.

Symmetry 2020, 12, 1919 9 of 20

With respect to APPROX5 (Figure 3d), in the inaccurate part, the addend bits BL–1 up to B0

are directly forwarded as the respective sum bits viz. SUM L–1 up to SUM0, and AL–2 up to A0

are discarded. Only AL–1 is given as the carry input to the accurate part in APPROX5. Given that
a 22–10 input partition has been used for all the approximate adders considering a digital image
processing application, therefore B9 up to B0 are forwarded as the respective sum bits SUM9 up to
SUM0. This means that based on dual-rail encoding, B91 up to B01 are forwarded as SUM91 up to
SUM01, and B90 up to B00 are forwarded as SUM90 up to SUM00, by using a non-inverting buffer for
each encoded sum rail. (A81, A80) up to (A01, A00) are however discarded.

The logic corresponding to the most significant sum bit in the inaccurate part of HEAA (Figure 3e)
incorporates a 2:1 multiplexer. Multiplexers are generally not used in QDI circuit designs, because any
signal transitions on their inputs may immediately result in signal transitions on their outputs and
this may give rise to gate orphan(s). As already mentioned, gate orphan(s) should be avoided in QDI
circuits. Hence, SUM9 of HEAA, i.e., SUM91 and SUM90 are realized in early output style after logic
simplification, as shown in Figure 7a,b, which correspond to RTZ and RTO handshaking, respectively.
The equations for SUM91 and SUM90 are given below.

SUM91 = (A91 + B91)
(
A91B91

)
= A91B90 + A90B91 (1)

SUM90 =
(
A91 + B91

)
+ A91B91 = A90B90 + A91B91 (2)

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 20

Figure 7. Early output logic realization of the most significant sum bit in the inaccurate part of HEAA
corresponding to: (a) RTZ handshaking, and (b) RTO handshaking.

In the case of OLOCA, the 2-input AND and OR functions are realized as shown in Figure 6a,c
with respect to RTZ handshaking, and as shown in Figure 6b,d with respect to RTO handshaking.
For the 22–10 input partition, and based on the OLOCA architecture, eight less significant sum bits
in the inaccurate part are assigned a constant 1. This means that based on dual-rail encoding and RTZ
handshaking, SUM71 to SUM01 should assume a constant 1 for the application of data and should
assume 0 for the application of the spacer. This is realized by using a dedicated non-inverting buffer
to connect each sum rail viz. SUM71 to SUM01 to the ACKIN signal. This would ensure that when
ACKIN is 1 during the application of data, SUM71 to SUM01 will assume 1, and when ACKIN is 0
during the application of the spacer, SUM71 to SUM01 will assume 0. With respect to SUM70 to SUM00,
they should always be 0. This is ensured by connecting each of these sum rails individually to TIEL
(i.e., a tie-to-logic low) standard cells so that SUM70 to SUM00 will always remain 0. Considering RTO
handshaking, SUM71 to SUM01 are individually connected to the ACKIN signal through dedicated
non-inverting buffers, as done for RTZ handshaking. However, SUM70 to SUM00 are individually
connected to TIEH (i.e., tie-to-logic high) standard cells so that SUM70 to SUM00 will always remain 1.

HOERAA, which is shown in Figure 3g, is similar to OLOCA, with respect to the assignment of
a constant one to the less significant sum bits SUM7 to SUM0. Hence, the circuits used for OLOCA
with respect to these eight less significant sum bits are maintained the same for HOERAA for RTZ
and RTO handshaking. Considering the most significant sum bit in the inaccurate part of HOERAA
viz. SUM9, again a 2:1 multiplexer is involved as is the case with HEAA discussed earlier. Therefore,
SUM9 of HOERAA, i.e., SUM91 and SUM90 after dual-rail encoding, was realized in an early output
style after logic simplification, as described for HEAA, and this is shown in Figure 8a,b with respect
to RTZ and RTO handshaking.

Figure 7. Early output logic realization of the most significant sum bit in the inaccurate part of HEAA
corresponding to: (a) RTZ handshaking, and (b) RTO handshaking.

In the case of OLOCA, the 2-input AND and OR functions are realized as shown in Figure 6a,c
with respect to RTZ handshaking, and as shown in Figure 6b,d with respect to RTO handshaking.
For the 22–10 input partition, and based on the OLOCA architecture, eight less significant sum bits in
the inaccurate part are assigned a constant 1. This means that based on dual-rail encoding and RTZ
handshaking, SUM71 to SUM01 should assume a constant 1 for the application of data and should
assume 0 for the application of the spacer. This is realized by using a dedicated non-inverting buffer
to connect each sum rail viz. SUM71 to SUM01 to the ACKIN signal. This would ensure that when
ACKIN is 1 during the application of data, SUM71 to SUM01 will assume 1, and when ACKIN is 0
during the application of the spacer, SUM71 to SUM01 will assume 0. With respect to SUM70 to SUM00,
they should always be 0. This is ensured by connecting each of these sum rails individually to TIEL
(i.e., a tie-to-logic low) standard cells so that SUM70 to SUM00 will always remain 0. Considering RTO
handshaking, SUM71 to SUM01 are individually connected to the ACKIN signal through dedicated
non-inverting buffers, as done for RTZ handshaking. However, SUM70 to SUM00 are individually
connected to TIEH (i.e., tie-to-logic high) standard cells so that SUM70 to SUM00 will always remain 1.

HOERAA, which is shown in Figure 3g, is similar to OLOCA, with respect to the assignment of a
constant one to the less significant sum bits SUM7 to SUM0. Hence, the circuits used for OLOCA with

Symmetry 2020, 12, 1919 10 of 20

respect to these eight less significant sum bits are maintained the same for HOERAA for RTZ and RTO
handshaking. Considering the most significant sum bit in the inaccurate part of HOERAA viz. SUM9,
again a 2:1 multiplexer is involved as is the case with HEAA discussed earlier. Therefore, SUM9 of
HOERAA, i.e., SUM91 and SUM90 after dual-rail encoding, was realized in an early output style after
logic simplification, as described for HEAA, and this is shown in Figure 8a,b with respect to RTZ and
RTO handshaking.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 20

Figure 8. Early output logic realization of the most significant sum bit in the inaccurate part of
HOERAA corresponding to: (a) RTZ handshaking, and (b) RTO handshaking.

4. Implementation Results

Accurate and approximate 32-bit adders were realized as QDI circuits using a 32/28-nm CMOS
technology [37], corresponding to RTZ and RTO handshake schemes separately. As mentioned
earlier, the approximate adders comprise a 22-bit accurate part and a 10-bit inaccurate part, as this
input partition suits the digital image processing application. Excepting the 2-input C-element that
was custom realized as shown in Figure 2c, the remaining gates used to construct the adders were
utilized from the standard cell library. A typical-case PVT specification with a recommended supply
voltage of 1.05 V and an operating junction temperature of 25 °C was considered for the simulations.
All the sum bits were assigned a fanout-of-4 (FO-4) drive strength. The functional simulations were
performed by supplying about a thousand random input vectors to the adders at a latency of 5ns and
their switching activity profile were saved as value change dump (.vcd) files. The .vcd files were then
used to estimate the average power dissipation.

The forward latency of a QDI asynchronous circuit is equivalent to the critical path delay of a
synchronous circuit, and it can be directly estimated. The reverse latency may be equal to or less than
the forward latency. For example, if an adder is constructed using strong-indication full and half
adders, then its forward latency and reverse latency will be the same, which is equal to the worst-
case delay. On the other hand, supposing if an adder is constructed using early output full and half
adders, and if quasi-delay-insensitivity is maintained, then its forward latency would be data-
dependent and its reverse latency would be a constant, which equates to the sum of the propagation
delays of only two adjacent full adders. Since we used early output full adder and early output half
adder to realize the accurate adder and the accurate parts of the approximate adders; therefore, the
reverse latency would be a bare minimum, which is equal to the sum of the propagation delays of
just two full adders. The reverse latency is estimated based on the gate-level timing information
generated by the static timing analyzer. Nevertheless, as mentioned previously, the cycle time is the
main timing parameter of interest in a QDI circuit, which is given by the sum of forward and reverse
latencies. The forward latency, cycle time and area are given in Table 1 for the accurate and
approximate QDI adders with respect to RTZ and RTO handshaking.

Figure 8. Early output logic realization of the most significant sum bit in the inaccurate part of HOERAA
corresponding to: (a) RTZ handshaking, and (b) RTO handshaking.

4. Implementation Results

Accurate and approximate 32-bit adders were realized as QDI circuits using a 32/28-nm CMOS
technology [37], corresponding to RTZ and RTO handshake schemes separately. As mentioned earlier,
the approximate adders comprise a 22-bit accurate part and a 10-bit inaccurate part, as this input
partition suits the digital image processing application. Excepting the 2-input C-element that was
custom realized as shown in Figure 2c, the remaining gates used to construct the adders were utilized
from the standard cell library. A typical-case PVT specification with a recommended supply voltage of
1.05 V and an operating junction temperature of 25 ◦C was considered for the simulations. All the sum
bits were assigned a fanout-of-4 (FO-4) drive strength. The functional simulations were performed by
supplying about a thousand random input vectors to the adders at a latency of 5ns and their switching
activity profile were saved as value change dump (.vcd) files. The .vcd files were then used to estimate
the average power dissipation.

The forward latency of a QDI asynchronous circuit is equivalent to the critical path delay of a
synchronous circuit, and it can be directly estimated. The reverse latency may be equal to or less than
the forward latency. For example, if an adder is constructed using strong-indication full and half
adders, then its forward latency and reverse latency will be the same, which is equal to the worst-case
delay. On the other hand, supposing if an adder is constructed using early output full and half adders,
and if quasi-delay-insensitivity is maintained, then its forward latency would be data-dependent and
its reverse latency would be a constant, which equates to the sum of the propagation delays of only
two adjacent full adders. Since we used early output full adder and early output half adder to realize

Symmetry 2020, 12, 1919 11 of 20

the accurate adder and the accurate parts of the approximate adders; therefore, the reverse latency
would be a bare minimum, which is equal to the sum of the propagation delays of just two full adders.
The reverse latency is estimated based on the gate-level timing information generated by the static
timing analyzer. Nevertheless, as mentioned previously, the cycle time is the main timing parameter of
interest in a QDI circuit, which is given by the sum of forward and reverse latencies. The forward
latency, cycle time and area are given in Table 1 for the accurate and approximate QDI adders with
respect to RTZ and RTO handshaking.

Table 1. Design metrics of accurate and approximate 32-bit QDI adders, implemented using a 32/28-nm
complementary metal oxide semiconductor (CMOS) technology.

Handshake
Scheme Name of Adder Forward Latency

(ns)
Cycle Time

(ns)
Area

(µm2)
Energy, i.e., PCTP

(fJ)

RTZ

Accurate 3.11 3.81 1628.55 15,468.60

LOA 2.36 3.06 1417.11 12,344.04
LOAWA 2.28 2.98 1394.74 12,012.38

APPROX5 2.36 3.06 1413.04 12,344.04
HEAA 2.36 3.06 1418.12 12,344.04

OLOCA 2.36 3.06 1411.01 12,729.60
HOERAA 2.36 3.06 1424.99 12,732.66

RTO

Accurate 2.94 3.64 1628.55 14,771.12

LOA 2.25 2.96 1417.11 11,937.68
LOAWA 2.17 2.87 1394.74 11,566.10

APPROX5 2.25 2.96 1413.04 11,937.68
HEAA 2.25 2.96 1418.12 11,937.68

OLOCA 2.25 2.96 1411.01 12,310.64
HOERAA 2.25 2.96 1427.02 12,316.56

A well-known low power figure-of-merit for a digital logic design is the power-delay product [38],
which is also called, energy. We are interested in estimating the delay, energy, and area, because
approximate computing has the potential to enable simultaneous optimizations of all these design
metrics compared to accurate computing. In synchronous circuits, the delay refers to the critical path
delay, whereas in QDI asynchronous circuits, the delay refers to the cycle time. This is because in a
QDI circuit, the cycle time defines the operating speed. The energy of QDI circuits is the product of
power and cycle time, which is also given in Table 1 for the RTZ and RTO handshake schemes.

Some general inferences can be drawn from Table 1. Firstly, we see that compared to the accurate
adder, the approximate adders have less cycle time, occupy less area, and are more energy-efficient—this
is true for both RTZ and RTO handshaking. The accurate adder is 32 bits in size, whereas the accurate
part of the approximate adders is only 22 bits in size. Moreover, there is either no connection
or just a small logical connection between the accurate and inaccurate parts of the approximate
adders, depending upon their architectures. The reduced size of the accurate part of approximate
adders reduces the forward latency of the approximate adders, although the reverse latency of the
accurate adder and the approximate adders are practically the same, which is equal to the propagation
delays of two adjacent full adders. The inaccurate parts of the approximate adders have reduced
logic compared to the accurate adder, and, as a result, the approximate adders require less area
for implementation compared to the accurate adder. Eventually, the approximate adders are more
energy-efficient compared to the accurate adder, and this is mainly due to a significant reduction in
their cycle time. Secondly, the RTO handshaking consistently leads to reductions in cycle time, area,
and energy, compared to RTZ handshaking. This has been discussed in prior works [35,39], where it
was noted that, for QDI multipliers and adders, RTO handshaking enables better reductions in the
design metrics compared to RTZ handshaking.

Symmetry 2020, 12, 1919 12 of 20

Among the approximate adders, LOAWA has the least cycle time, area, and energy for both
RTZ and RTO handshaking. However, LOAWA does not have reduced error metrics compared to its
counterparts, as will be discussed in the next section. Further, LOAWA did not lead to a better digital
image processing result compared to its counterparts. Excluding LOAWA, all the other approximate
adders have the same cycle time. In the case of LOAWA, there is no carry input to the accurate part
and so an early output half adder can be used for the addition of the least significant input bit-pair
in the accurate part. For the other approximate adders, there is a carry input given to their accurate
part, and, hence, an early output full adder has to be used for the addition of the least significant
input bit-pair including the incoming carry in the accurate part. The critical path delay of the early
output half adder shown in Figure 4a is equal to the propagation delay of a 2-input AND or OR gate,
whereas the critical path delay of the early output full adder shown in Figure 5a is equal to the sum of
the propagation delays of two AO22 complex gates. This is the reason why LOAWA has a relatively
reduced forward latency and cycle time, because it has an early output half adder in the least significant
bit position of the accurate part, while its counterparts have an early output full adder in the same bit
position, thus experiencing more latency and resulting in a somewhat higher cycle time. Excluding
LOAWA, all the other approximate adders have the same cycle time, and, among these, HOERAA has
reduced error metrics and, thus, facilitates better digital image processing, as will be discussed in the
next section. The area and energy metrics of HOERAA and the other approximate adders (excluding
LOAWA) are rather comparable, and there is no significant difference.

It is noted from Table 1 that, based on RTZ handshaking, HOERAA reports a 19.7% reduction in
cycle time, a 12.5% reduction in area, and an 17.7% reduction in energy, compared to the accurate adder.
Based on RTO handshaking, HOERAA achieves an 18.7% reduction in cycle time, a 12.4% reduction in
area, and a 16.6% reduction in energy compared to the accurate adder.

5. Error Metrics of Approximate Adders

The mean absolute error (MAE), also called the mean error distance, and the root mean square
error (RMSE) are popular metrics often used in approximate computing [40]. To estimate these error
metrics for the approximate adders Python models of accurate and approximate adders were developed.
A 32-bit addition would have a total of 264 distinct input vectors, which is computationally intensive to
consider. Hence, we generated one million random input vectors, and supplied them to the accurate
and approximate adders. For each input supplied, the absolute difference between the sum produced
by an approximate adder and the sum produced by the accurate adder was calculated, which is also
called the error magnitude. The error magnitude may be positive or negative or nil. The absolute
error was computed individually for each approximate adder for each input vector supplied, and
the mean of the absolute errors corresponding to a million random input vectors was calculated
using Equation (3). The RMSE was calculated using Equation (4). MAE and RMSE calculated for
the approximate adders are given in Table 2. From Table 2, it is seen that HOERAA has almost the
same MAE as HEAA. However, HOERAA has 8.6% reduced RMSE compared to HEAA. Hence, in
terms of the error metrics, HOERAA is preferable to its counterparts. The reduced MAE and RMSE
of HOERAA leads to better digital image processing results, with an improved signal-to-noise ratio
compared to the other approximate adders, and this shall be discussed in the next section.

MAE =
1

22N

∑
22N
−1

j=0

∣∣∣ej
∣∣∣ = ∑

δ|eδ|·Pδ. (3)

RMSE =

√
1

22N

∑
22N−1
j=0 e2

j =
√∑

δe2
δ
·Pδ. (4)

Symmetry 2020, 12, 1919 13 of 20

Table 2. Error metrics of various 32-bit approximate adders considering a 22–10 input partition.

Approximate Adder MAE RMSE

LOA 191.75 255.95
LOAWA 255.47 361.61

APPROX5 256.20 295.82
HEAA 127.64 180.80

OLOCA 207.92 276.46
HOERAA 127.99 165.32

In the above equations, ‘N’ denotes the adder size, ‘e’ is the error distance which is the absolute
difference between the accurate and approximate adder sums, ‘P’ denotes the probability of an error
value occurrence, and ‘δ’ is the set of all error values.

To analyze how HOERAA achieves reduced error metrics compared to its counterparts, we worked
out the error distribution of the approximate adders, which is shown in Figure 9. The error distribution
curve is a plot of the error magnitudes (given in the X-axis) as a function of their percentage occurrence
(given in the Y-axis), corresponding to the application of a million random input vectors. The absolute
difference between the sum produced by an approximate adder and the sum produced by the accurate
adder for an input vector may result in zero or a positive or a negative value. A red dot is used to
represent the average of the absolute errors calculated for the approximate adders. Importantly, it is
noted from Figure 9 that among the approximate adders, APPROX5 and HOERAA have a rather
symmetric error distribution about zero. However, the error magnitude of APPROX5 remains constantly
high for several input vectors, but the error magnitude of HOERAA gradually increases towards zero,
and then gradually decreases away from zero. HOERAA has the peak error for only a few input
vectors compared to APPROX5, which has the peak error for several input vectors. This explains why
MAE and RMSE of HOERAA are lesser than MAE and RMSE of APPROX5. In the case of HOERAA,
the slope of the error distribution curve in the negative error direction is slightly greater than the slope
of the error distribution in the positive error direction, so the average of the absolute errors is tilted
towards the negative error direction. Among the approximate adders, HOERAA resembles a Gaussian
error distribution, and HOERAA has reduced error metrics compared to the other approximate adders,
as seen in Table 2. This suggests that HOERAA is better suited for practical applications.

Symmetry 2020, 12, x FOR PEER REVIEW 14 of 20

To analyze how HOERAA achieves reduced error metrics compared to its counterparts, we
worked out the error distribution of the approximate adders, which is shown in Figure 9. The error
distribution curve is a plot of the error magnitudes (given in the X-axis) as a function of their
percentage occurrence (given in the Y-axis), corresponding to the application of a million random
input vectors. The absolute difference between the sum produced by an approximate adder and the
sum produced by the accurate adder for an input vector may result in zero or a positive or a negative
value. A red dot is used to represent the average of the absolute errors calculated for the approximate
adders. Importantly, it is noted from Figure 9 that among the approximate adders, APPROX5 and
HOERAA have a rather symmetric error distribution about zero. However, the error magnitude of
APPROX5 remains constantly high for several input vectors, but the error magnitude of HOERAA
gradually increases towards zero, and then gradually decreases away from zero. HOERAA has the
peak error for only a few input vectors compared to APPROX5, which has the peak error for several
input vectors. This explains why MAE and RMSE of HOERAA are lesser than MAE and RMSE of
APPROX5. In the case of HOERAA, the slope of the error distribution curve in the negative error
direction is slightly greater than the slope of the error distribution in the positive error direction, so
the average of the absolute errors is tilted towards the negative error direction. Among the
approximate adders, HOERAA resembles a Gaussian error distribution, and HOERAA has reduced
error metrics compared to the other approximate adders, as seen in Table 2. This suggests that
HOERAA is better suited for practical applications.

Figure 9. Error distribution plots of the approximate adders: (a) LOA; (b) LOAWA; (c) APPROX5; (d)
HEAA; (e) OLOCA; and (f) HOERAA.

6. Digital Image Processing Results

To evaluate the practical usefulness of HOERAA and to compare its performance with the other
approximate adders, we considered a digital image processing application. Many digital images with
a spatial resolution of 512×512 and a grayscale resolution of 8-bits were used for the experimentation.
We consider two images viz lena and cameraman here for illustration. We took an original image and
then reconstructed it after computing fast Fourier transform (FFT) and inverse FFT (IFFT), similar to
what was done in [41]. Integer FFT and IFFT computations were performed. In the FFT and IFFT
computations, only the addition operation was performed accurately or approximately, while the
multiplications were performed accurately. To perform accurate addition, we used the accurate
adder and to perform approximate addition, we used the approximate adder architectures discussed
in Section 3 individually.

Digital image processing was performed in the following manner. First, an original image was
translated into a matrix form, which was then processed by a standard, i.e., accurate system, which
computed accurate FFT, and it was subsequently reconstructed by computing accurate IFFT. The

Figure 9. Error distribution plots of the approximate adders: (a) LOA; (b) LOAWA; (c) APPROX5;
(d) HEAA; (e) OLOCA; and (f) HOERAA.

Symmetry 2020, 12, 1919 14 of 20

6. Digital Image Processing Results

To evaluate the practical usefulness of HOERAA and to compare its performance with the other
approximate adders, we considered a digital image processing application. Many digital images with
a spatial resolution of 512 × 512 and a grayscale resolution of 8-bits were used for the experimentation.
We consider two images viz lena and cameraman here for illustration. We took an original image and
then reconstructed it after computing fast Fourier transform (FFT) and inverse FFT (IFFT), similar to
what was done in [41]. Integer FFT and IFFT computations were performed. In the FFT and IFFT
computations, only the addition operation was performed accurately or approximately, while the
multiplications were performed accurately. To perform accurate addition, we used the accurate adder
and to perform approximate addition, we used the approximate adder architectures discussed in
Section 3 individually.

Digital image processing was performed in the following manner. First, an original image
was translated into a matrix form, which was then processed by a standard, i.e., accurate system,
which computed accurate FFT, and it was subsequently reconstructed by computing accurate IFFT.
The standard FFT and IFFT computations were done using the accurate 32-bit adder. The same original
image was then processed by an approximate system that computed approximate FFT, and the image
was reconstructed by computing approximate IFFT. Approximate adders of size 32-bits, which comprise
a 22-bit accurate part and a 10-bit inaccurate part, processed the addition operations of approximate
FFT and IFFT computations. The approximate additions involved in FFT and IFFT computations
correspond to the approximate adder architectures discussed in Section 3. The inputs given to the FFT
were scaled up by a constant integer, i.e., 47, and the outputs of the IFFT were scaled down by the same
constant to ensure that there is no data loss or overflow during the computation. The digital images
lena and cameraman reconstructed through accurate and approximate FFT and IFFT computations are
shown in Figures 10 and 11, respectively.

The lena images resulting from the use of the accurate adder is shown in Figure 10a, and the
approximate adders are shown in Figure 10b–g. In the images, considerable shaded regions are visible
in Figure 10b–d,f, while only small grains are seen in Figure 10e,g upon a close inspection.

The cameraman images resulting from the use of the accurate adder is shown in Figure 11a and
the approximate adders are shown in Figure 11b–g. In the images, considerable shaded regions are
visible in Figure 11b–d,f, moderate shades are visible in Figure 11e, and only slight shades are seen in
Figure 11g.

The peak signal-to-noise ratio (PSNR) is a popular figure-of-merit that is widely used in digital
signal processing [42], and we estimated the PSNR for all the reconstructed images. A high PSNR
is preferred, which implies less noise or distortion. Understandably, PSNR is infinite for the image
reconstructed using the accurate adder, and this is because no error (noise) is introduced in the
accurate computation.

The PSNR of lena images processed using approximate FFT and IFFT by utilizing different
approximate adders is as follows: Figure 10b (LOA)—32.5795; Figure 10c (LOAWA)—24.919; Figure 10d
(APPROX5)—31.8115; Figure 10e (HEAA)—30.684; Figure 10f (OLOCA)—32.1831; and Figure 10g
(HOERAA)—33.1214.

The PSNR of cameraman images processed using approximate FFT and IFFT by utilizing different
approximate adders is as follows: Figure 11b (LOA)—32.1966; Figure 11c (LOAWA)—25.0872;
Figure 11d (APPROX5)—31.306; Figure 11e (HEAA)—30.68; Figure 11f (OLOCA)—31.8063;
and Figure 11g (HOERAA)—32.73.

Symmetry 2020, 12, 1919 15 of 20

Symmetry 2020, 12, x FOR PEER REVIEW 15 of 20

standard FFT and IFFT computations were done using the accurate 32-bit adder. The same original
image was then processed by an approximate system that computed approximate FFT, and the image
was reconstructed by computing approximate IFFT. Approximate adders of size 32-bits, which
comprise a 22-bit accurate part and a 10-bit inaccurate part, processed the addition operations of
approximate FFT and IFFT computations. The approximate additions involved in FFT and IFFT
computations correspond to the approximate adder architectures discussed in Section 3. The inputs
given to the FFT were scaled up by a constant integer, i.e., 47, and the outputs of the IFFT were scaled
down by the same constant to ensure that there is no data loss or overflow during the computation.
The digital images lena and cameraman reconstructed through accurate and approximate FFT and
IFFT computations are shown in Figures 10 and 11, respectively.

Figure 10. lena image processed using accurate and approximate addition based inverse fast Fourier
transform (IFFT) and fast Fourier transform (FFT).

The lena images resulting from the use of the accurate adder is shown in Figure 10a, and the
approximate adders are shown in Figure 10b–g. In the images, considerable shaded regions are
visible in Figure 10b–d,f, while only small grains are seen in Figure 10e,g upon a close inspection.

The cameraman images resulting from the use of the accurate adder is shown in Figure 11a and
the approximate adders are shown in Figure 11b–g. In the images, considerable shaded regions are
visible in Figure 11b–d,f, moderate shades are visible in Figure 11e, and only slight shades are seen
in Figure 11g.

Figure 10. lena image processed using accurate and approximate addition based inverse fast Fourier
transform (IFFT) and fast Fourier transform (FFT).

With respect to digital image processing involving approximate computing, besides PSNR,
the structural similarity index metric (SSIM) [42] was also estimated in some of the literature [43].
While PSNR quantifies the absolute error, SSIM quantifies the perceived quality of digital images in
terms of the perceived change in structural information compared to a distortion-free image, which is
kept as the reference. Here, we measure the SSIM for images reconstructed using different approximate
adders by treating the image reconstructed using the accurate adder as the reference.

SSIM for lena images reconstructed through approximate FFT and IFFT by involving approximate
additions is given as follows: Figure 9b (LOA)—0.83993; Figure 9c (LOAWA)—0.82568; Figure 9d
(APPROX5)—0.83265; Figure 9e (HEAA)—0.9323; Figure 9f (OLOCA)—0.83437; and Figure 9g
(HOERAA)—0.91539. SSIM for cameraman images reconstructed through approximate FFT and IFFT
by involving approximate additions is given as follows: Figure 10b (LOA)—0.84435; Figure 10c
(LOAWA)—0.82436; Figure 10d (APPROX5)—0.83639; Figure 10e (HEAA)—0.92805; Figure 10f
(OLOCA)—0.84416; and Figure 10g (HOERAA)—0.91308.

Symmetry 2020, 12, 1919 16 of 20

Symmetry 2020, 12, x FOR PEER REVIEW 16 of 20

Figure 11. Cameraman image processed using accurate and approximate addition based IFFT and FFT.

The peak signal-to-noise ratio (PSNR) is a popular figure-of-merit that is widely used in digital
signal processing [42], and we estimated the PSNR for all the reconstructed images. A high PSNR is
preferred, which implies less noise or distortion. Understandably, PSNR is infinite for the image
reconstructed using the accurate adder, and this is because no error (noise) is introduced in the
accurate computation.

The PSNR of lena images processed using approximate FFT and IFFT by utilizing different
approximate adders is as follows: Figure 10b (LOA)—32.5795; Figure 10c (LOAWA)—24.919; Figure
10d (APPROX5)—31.8115; Figure 10e (HEAA)—30.684; Figure 10f (OLOCA)—32.1831; and Figure
10g (HOERAA)—33.1214.

The PSNR of cameraman images processed using approximate FFT and IFFT by utilizing different
approximate adders is as follows: Figure 11b (LOA)—32.1966; Figure 11c (LOAWA)—25.0872; Figure
11d (APPROX5)—31.306; Figure 11e (HEAA)—30.68; Figure 11f (OLOCA)—31.8063; and Figure 11g
(HOERAA)—32.73.

With respect to digital image processing involving approximate computing, besides PSNR, the
structural similarity index metric (SSIM) [42] was also estimated in some of the literature [43]. While
PSNR quantifies the absolute error, SSIM quantifies the perceived quality of digital images in terms
of the perceived change in structural information compared to a distortion-free image, which is kept
as the reference. Here, we measure the SSIM for images reconstructed using different approximate
adders by treating the image reconstructed using the accurate adder as the reference.

Figure 11. Cameraman image processed using accurate and approximate addition based IFFT and FFT.

From Figures 9 and 10, it is seen that HOERAA enables a better reproduction of the images
compared to the other approximate adders given the higher PSNR for the images reproduced using
HOERAA compared to the PSNR of the images reproduced using the other approximate adders.
However, HEAA is quite comparable to HOERAA. In terms of SSIM, HEAA is slightly better than
HOERAA although their SSIM values are rather close.

Besides lena and cameraman, which were used for illustration, many other digital images such as
woman_with_dark_hair, barbara, Einstein, boat, lake, and peppers_gray were also considered for processing
in the same manner as mentioned previously. PSNR and SSIM were also estimated for these images,
and they are given in Tables 3 and 4.

Symmetry 2020, 12, 1919 17 of 20

Table 3. Peak signal-to-noise ratio (PSNR) of various digital images obtained after processing by using
different approximate adders.

Approximate
Adder Used

PSNR

Woman_with_Dark_Hair Barbara Einstein Boat Lake Peppers_Gray

LOA 32.8121 32.4863 32.5567 32.5604 32.6313 32.6581
LOAWA 25.2304 25.1106 25.7325 24.8022 25.2703 25.1460

APPROX5 32.1200 31.6881 31.8320 31.8445 31.7789 31.8853
HEAA 30.8507 30.6490 31.0126 30.5959 30.6447 30.7053

OLOCA 32.3729 32.0496 32.1424 32.1698 32.1815 32.2262
HOERAA 33.2847 32.9709 33.1791 33.0211 32.9155 33.0998

Table 4. Structural similarity index metric (SSIM) of various digital images obtained after processing
by using different approximate adders.

Approximate
Adder Used

SSIM

Woman_with_Dark_Hair Barbara Einstein Boat Lake Peppers_Gray

LOA 0.8150 0.8527 0.8440 0.8602 0.8666 0.8447
LOAWA 0.7884 0.8396 0.8198 0.8464 0.8514 0.8302

APPROX5 0.8063 0.8450 0.8318 0.8462 0.8537 0.8284
HEAA 0.9174 0.9426 0.9370 0.9480 0.9485 0.9471

OLOCA 0.8096 0.8463 0.8373 0.8517 0.8587 0.8359
HOERAA 0.9028 0.9297 0.9226 0.9358 0.9394 0.9279

Tables 3 and 4 show a consistent trend in the performance characteristics of the approximate adders.
From Table 3, it is seen that HOERAA reports a higher PSNR compared to the other approximate
adders based on experimentation with many digital images, as was noted for lena and cameraman
earlier—this is thanks to its somewhat close to a Gaussian error distribution. From Table 4, it is seen
that HEAA reports greater SSIM compared to the other approximate adders for the different images,
which is consistent with the observation made for lena and cameraman earlier. However, HOERAA is
still comparable, and its SSIM is close to the SSIM of HEAA for all the images considered for processing.

7. Conclusions

QDI implementation of approximate adders was described in this article by utilizing a
delay-insensitive dual-rail encoding scheme and adopting four-phase RTZ and RTO handshaking.
We also calculated the popular error metrics of the approximate adders. The physical realization
of the approximate adders and the calculation of the error metrics correspond to a practical digital
image processing application. Among the approximate adders, HOERAA is preferable followed by
HEAA. It is noted that a QDI implementation of HOERAA facilitates a 19.7% reduction in cycle time,
a 12.5% reduction in area, and an 17.7% reduction in energy, compared to the accurate QDI adder
for RTZ handshaking. For RTO handshaking, HOERAA achieves an 18.7% reduction in cycle time,
a 12.4% reduction in area, and a 16.6% reduction in energy compared to the accurate adder. QDI
implementation of HEAA achieves a 19.7% reduction in cycle time, a 12.9% reduction in area, and a
20.2% reduction in energy compared to the accurate adder for RTZ handshaking. For RTO handshaking,
HEAA achieves an 18.7% reduction in cycle time, a 12.9% reduction in area, and a 19.2% reduction
in energy compared to the accurate adder. Nevertheless, the RTO handshaking is preferable to RTZ
handshaking as the former facilitates slightly better optimizations in design metrics compared to the
latter. We believe that this work would serve as a useful reference for practitioners and researchers in
approximate computing and asynchronous design.

Author Contributions: Conceptualization, P.B. and N.E.M.; methodology, P.B.; software, P.B.; validation, P.B.;
formal analysis, P.B. and N.E.M.; investigation, P.B.; resources, P.B. and N.E.M.; data curation, P.B.; writing—original
draft preparation, P.B.; visualization, P.B.; writing—review & editing, P.B., N.E.M. All authors have read and
agreed to the published version of the manuscript.

Symmetry 2020, 12, 1919 18 of 20

Funding: This research received no external funding.

Acknowledgments: The authors thank Raunaq Nayar of the School of Computer Science and Engineering at
Nanyang Technological University for his assistance with the estimation of error metrics and in obtaining the
digital image processing results.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Han, J.; Orshansky, M. Approximate computing: An emerging paradigm for energy-efficient design.
In Proceedings of the 18th IEEE European Test Symposium, Avignon, France, 27–31 May 2013.

2. Venkataramani, S.; Chakradhar, S.T.; Roy, K.; Raghunathan, A. Approximate computing and the quest for
computing efficiency. In Proceedings of the 52nd Design Automation Conference, San Francisco, CA, USA,
7–11 June 2015.

3. Breuer, M.A.; Zhu, H. Error-tolerance and multi-media. In Proceedings of the International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, Pasadena, CA, USA, 18–20 December 2006.

4. Shafique, M.; Hafiz, R.; Rehman, S.; El-Harouni, W.; Henkel, J. Cross-layer approximate computing: From logic
to architectures. In Proceedings of the 53rd Annual Design Automation Conference, Austin, TX, USA,
5–9 June 2016.

5. Sampson, A.; Deitl, W.; Fortuna, D.; Gnanapragasam, D.; Ceze, L.; Grossman, D. EnerJ: Approximate data
types for safe and general low-power computation. ACM SIGPLAN Not. 2011, 46, 164–174. [CrossRef]

6. Sampson, K.; Nelson, J.; Strauss, K.; Ceze, L. Approximate storage in solid-state memories. ACM Trans.
Comput. Syst. 2014, 32, 1–23. [CrossRef]

7. Jiang, H.; Liu, C.; Liu, L.; Lombardi, F.; Han, J. A review, classification, and comparative evaluation of
approximate arithmetic circuits. ACM J. Emerg. Technol. Comput. Syst. 2017, 13, 1–34. [CrossRef]

8. Venkataramani, S.; Sabne, A.; Kozhikkottu, V.; Roy, K.; Raghunathan, A. SALSA: Systematic logic synthesis
of approximate circuits. In Proceedings of the 49th Design Automation Conference, San Francisco, CA, USA,
3–7 June 2012.

9. Prabakaran, B.S.; Rehman, S.; Hanif, M.A.; Ullah, S.; Mazaheri, G.; Kumar, A.; Shafique, M. DeMAS: An
efficient design methodology for building approximate adders for FPGA-based systems. In Proceedings of
the Design, Automation and Test in Europe Conference, Dresden, Germany, 19–23 March 2018.

10. Perri, S.; Spagnolo, F.; Frustaci, F.; Corsonello, P. Efficient approximate adders for FPGA-based data-paths.
Electronics 2020, 9, 1529. [CrossRef]

11. Mahdiani, H.R.; Ahmadi, A.; Fakhraie, S.M.; Lucas, C. Bio-inspired computational blocks for efficient VLSI
implementation of soft-computing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57, 850–862.
[CrossRef]

12. Albicocco, P.; Cardarilli, G.C.; Nannarelli, A.; Petricca, M.; Re, M. Imprecise arithmetic for low power
image processing. In Proceedings of the 46th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 4–7 November 2012.

13. Gupta, V.; Mohapatra, D.; Raghunathan, A.; Roy, K. Low-power digital signal processing using approximate
adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 124–137. [CrossRef]

14. Balasubramanian, P.; Maskell, D. Hardware efficient approximate adder design. In Proceedings of the IEEE
Region 10 Conference, Jeju, Korea, 28–31 October 2018.

15. Dalloo, A.; Najafi, A.; Garcia-Ortiz, A. Systematic design of an approximate adder: The optimized lower part
constant-OR adder. IEEE Trans. VLSI Syst. 2018, 26, 1595–1599. [CrossRef]

16. Balasubramanian, P.; Maskell, D.L. Hardware optimized and error reduced approximate adder. Electronics
2019, 8, 1212. [CrossRef]

17. Balasubramanian, P.; Dang, C.; Maskell, D.L. Approximate quasi-delay-insensitive asynchronous adders:
Design and analysis. In Proceedings of the 60th IEEE International Midwest Symposium on Circuits and
Systems, Boston, MA, USA, 6–9 August 2017.

18. Bouesse, G.F.; Sicard, G.; Baixas, A.; Renaudin, M. Quasi delay insensitive asynchronous circuits for low EMI.
In Proceedings of the 4th International Workshop on Electromagnetic Compatibility of Integrated Circuits,
Angers, France, 31 March–2 April 2004.

http://dx.doi.org/10.1145/1993316.1993518
http://dx.doi.org/10.1145/2644808
http://dx.doi.org/10.1145/3094124
http://dx.doi.org/10.3390/electronics9091529
http://dx.doi.org/10.1109/TCSI.2009.2027626
http://dx.doi.org/10.1109/TCAD.2012.2217962
http://dx.doi.org/10.1109/TVLSI.2018.2822278
http://dx.doi.org/10.3390/electronics8111212

Symmetry 2020, 12, 1919 19 of 20

19. Nowick, S.M.; Singh, M. Asynchronous design—Part 1: Overview and recent advances. IEEE Des. Test 2015,
32, 5–18. [CrossRef]

20. Yu, Z.C.; Furber, S.B.; Plana, L.A. An investigation into the security of self-timed circuits. In Proceedings
of the 9th International Symposium on Asynchronous Circuits and Systems, Vancouver, BC, Canada,
12–15 May 2003.

21. David, I.; Ginosar, R.; Yoeli, M. Self-timed is self-checking. J. Electron. Test. 1995, 6, 219–228. [CrossRef]
22. Martin, A.J. The limitation to delay-insensitivity in asynchronous circuits. In Beauty is Our Business (Texts

and Monographs in Computer Science); Feijen, W.H.J., van Gasteren, A.J.M., Gries, D., Misra, J., Eds.; Springer:
New York, NY, USA, 1990; pp. 302–311.

23. Martin, A.J.; Prakash, P. Asynchronous nano-electronics: Preliminary investigation. In Proceedings of the
14th IEEE International Symposium on Asynchronous Circuits and Systems, Newcastle upon Tyne, UK,
7–11 April 2008.

24. Muller, D.E.; Bartky, S. A theory of asynchronous circuits. In Proceedings of the International Symposium on
the Theory of Switching (Part I), Cambridge, MA, USA, 2–5 April 1957.

25. Verhoeff, T. Delay-insensitive codes—An overview. Distrib. Comput. 1988, 3, 1–8. [CrossRef]
26. Sparsø, J.; Furber, S.B. Principles of Asynchronous Circuit Design: A Systems Perspective; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 2001; pp. 9–28.
27. Moreira, M.T.; Guazzelli, R.A.; Calazans, N.L.V. Return-to-one protocol for reducing static power in

C-elements of QDI circuits employing m-of-n codes. In Proceedings of the 25th Symposium on Integrated
Circuits and Systems Design, Brasilia, Brazil, 30 August–2 September 2012.

28. Seitz, C.L. System Timing. In Introduction to VLSI Systems; Mead, C., Conway, L., Eds.; Addison-Wesley:
Reading, MA, USA, 1980; pp. 218–262. ISBN 978-0201043587.

29. Brej, C.F.; Garside, J.D. Early output logic using anti-tokens. In Proceedings of the 12th International
Workshop on Logic and Synthesis, Laguna Beach, CA, USA, 28–30 May 2008.

30. Toms, W.B. Synthesis of Quasi-Delay-Insensitive Datapath Circuits. Ph.D. Thesis, The University of
Manchester, Manchester, UK, February 2006.

31. Balasubramanian, P.; Mastorakis, N.E. QDI decomposed DIMS method featuring
homogeneous/heterogeneous data encoding. In Recent Advances in Computers, Communications,
Applied Social Science and Mathematics; Mastorakis, N., Mladenov, V., Lepadatescu, B., Karimi, H.R.,
Helmis, C.G., Eds.; WSEAS Press: Athens, Greece, 2011; pp. 93–101. ISBN 978-1618040305.

32. Jeong, C.; Nowick, S.M. Block level relaxation for timing-robust asynchronous circuits based on eager
evaluation. In Proceedings of the 14th IEEE International Symposium on Asynchronous Circuits and
Systems, Newcastle upon Tyne, UK, 7–10 April 2008.

33. Balasubramanian, P. Comments on “Dual-rail asynchronous logic multi-level implementation”. Integr. VLSI J.
2016, 52, 34–40. [CrossRef]

34. Balasubramanian, P. A robust asynchronous early output full adder. WSEAS Trans. Circuits Syst. 2011, 10,
221–230.

35. Balasubramanian, P.; Maskell, D.L.; Mastorakis, N.E. Speed, energy and area optimized early output
quasi-delay-insensitive array multipliers. PLoS ONE 2020, 15, e0228343. [CrossRef] [PubMed]

36. Balasubramanian, P. Comparative evaluation of quasi-delay-insensitive asynchronous adders corresponding
to return-to-zero and return-to-one handshaking. Facta Univ. Ser. Electron. Energetics 2018, 31, 25–39.
[CrossRef]

37. Synopsys SAED_EDK32/28_CORE Databook, Revision 1.0.0. January 2012. Available online: https://www.
synopsys.com/community/university-program/teaching-resources.html (accessed on 17 September 2020).

38. Rabaey, J.M.; Chandrakasan, A.; Nikolic, B. Digital Integrated Circuits: A Design Perspective, 2nd ed.;
Pearson Education: London, UK, 2003; ISBN 978-0130909961.

39. Balasubramanian, P.; Yamashita, S. Area/latency optimized early output asynchronous full adders and
relative-timed ripple carry adders. SpringerPlus 2016, 5, 440. [CrossRef] [PubMed]

40. Liang, J.; Han, J.; Lombardi, F. New metrics for the reliability of approximate and probabilistic adders.
IEEE Trans. Comput. 2012, 62, 1760–1771. [CrossRef]

41. Zhu, N.; Goh, W.L.; Zhang, W.; Yeo, K.S.; Kong, Z.H. Design of low-power high-speed truncation-error-tolerant
adder and its application in digital signal processing. IEEE Trans. VLSI Syst. 2010, 18, 1225–1229.

42. Gibson, J.D.; Bovik, A. Handbook of Image and Video Processing; Academic Press: Cambridge, MA, USA, 2000.

http://dx.doi.org/10.1109/MDAT.2015.2413759
http://dx.doi.org/10.1007/BF00993088
http://dx.doi.org/10.1007/BF01788562
http://dx.doi.org/10.1016/j.vlsi.2015.08.001
http://dx.doi.org/10.1371/journal.pone.0228343
http://www.ncbi.nlm.nih.gov/pubmed/32012180
http://dx.doi.org/10.2298/FUEE1801025B
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html
http://dx.doi.org/10.1186/s40064-016-2074-z
http://www.ncbi.nlm.nih.gov/pubmed/27104128
http://dx.doi.org/10.1109/TC.2012.146

Symmetry 2020, 12, 1919 20 of 20

43. Soares, L.B.; da Rosa, M.M.A.; Diniz, C.M.; da Costa, E.A.C.; Bampi, S. Exploring power-performance-quality
tradeoff of approximate adders for energy efficient Sobel filtering. In Proceedings of the IEEE 9th Latin
American Symposium on Circuits and Systems, Puerto Vallarta, Mexico, 25–28 February 2018.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	QDI Circuit Design—Fundamentals
	Delay-Insensitive Data Encoding and Four-Phase Handshaking
	Kinds of QDI Circuits

	QDI Implementation of Accurate and Approximate Adders
	Implementation Results
	Error Metrics of Approximate Adders
	Digital Image Processing Results
	Conclusions
	References

