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Abstract: A new method of line shape calculations of hydrogen-like atoms in magnetized plasmas is
presented. This algorithm makes it possible to solve two fundamental problems in the broadening
theory: the analytical description of the radiation transition array between excited atomic states and an
account of a thermal ion motion effect on the line shapes formation. The solution to the first problem
is based on the semiclassical approach to dipole matrix elements calculations and the usage of the
specific symmetry properties of the Coulomb field. The second one is considered in terms of the kinetic
treatment of the frequency fluctuation model (FFM). As the result, one has a universal description
of line shapes under the action of the dynamic of ion’s microfield. The final line shape is obtained
by the convolution of the ionic line shape with the Voigt electron Doppler profile. The method is
applicable formally for large values of principal quantum numbers. However, the efficiency of the
results is demonstrated even for well known first members of the hydrogen Balmer series Dα and Dβ

lines. The comparison of obtained results with accurate quantum calculations is presented. The new
method may be of interest for investigations of spectral line shapes of hydrogen-like ions presented
in different kinds of hot ionized environments with the presence of a magnetic field, including So L
and divertor tokamak plasmas.

Keywords: Stark–Zeeman effect; Rydberg atom; plasma spectroscopy

1. Introduction

Hydrogen spectral lines are of permanent interest both from the fundamental point of view and
for applications in plasma diagnostics. Since the middle of the 20th century, a significant number
of works and monographs (e.g., [1–8]) have been accumulated on the spectra of hydrogen plasma.
However, the effect of a magnetic field on spectral lines remains a problem in plasma diagnostics.
Difficulties connected with the analysis of the Stark–Zeeman spectra relate to a hydrogen in external
crossed F electric and B magnetic fields.

Calculation of spectral line shape in plasmas is complicated by two serious problems. The first is
the complex structure of the dipole matrix elements, as well as the rapid growth of the array of radiative
transitions. The second is connected with the problem of the influence of an ion thermal motion on the
intensity profile. This paper shows how one can get around these difficulties. The complex expressions
for the transition probabilities can be simplified by using the semiclassical approximation for coordinate
matrix elements obtained by S.A. Gulyaev [9,10] and specific properties of the Wigner d-functions [11].
The thermal motion of ions can be taken into account using the FFM. It turns out that spectral line
shape in a plasma with moving ions is a functional of the static profile [12].
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The first attempt to provide a solution to this problem was made within the framework of
the classical mechanics [13]. The perturbed motion of the electron was reduced to an independent
precession of two vectors representing the combination of the angular momentum and the averaged
coordinate around two different axes. The quantum approach to this problem has become possible
thanks to the fundamental work of V.A. Fock [14], who showed that an electron in the Coulomb
field has enhanced O(4) (instead of common O(3)) symmetry. This fact leads to the existence of two
additional constant of motion J1,2, which are connected with the orbital momentum l by the simple
relation l = J1 + J2 A rigorous quantum consideration of this problem is given in [15]. In this work,
the authors used the O(4) symmetry properties of the Coulomb field to obtain the spectra of a hydrogen
atom in the external electric and magnetic fields. The Hamiltonian of this system is equal to

H =
p2

2
− Z

r
+ Fr +

1
2c

BL (1)

where p, r and L are the momentum, the coordinate and the angular momentum operators of the
electron, correspondingly, Z is the charge of nuclei. This formula and every other in this paper is
written in the atomic units. The perturbed part Fr + 1

2c BL can be rewritten in another way.

∆H = Fr +
1
2c

BL = E1J1 + E2J2 (2)

where
J1,2 =

1
2
(L±A) (3)

where 1 relates to + and 2 to −.
A is the specific constant of motion in the Coulomb field—the Runge–Lenz vector.

E1,2 =
1
2c

B∓ 3
2

nF (4)

We can do this, because in the Coulomb field there is connection between the Runge–Lenz vector
and the coordinate (this is valid only within the manifold of a fixed principal quantum number n):

A = − 2
3n

r (5)

The energy shift is equal to
∆ω = E1n′ + E2n′′ (6)

where n′ and n′′ are projections of (3) on the vectors (4).
Obviously, the vectors (3) are constants of motion in the Coulomb field. Moreover, they have the

angular momentum properties. Coming to the parabolic basis, there is the connection between the
parabolic quantum numbers n1, n2 and projections on the single direction [16]{

i2 − i1 = n1 − n2

i2 + i1 = m
(7)

where i1,2 are projections of (3) on the z direction (quantization axis) and m is the magnetic
quantum number.

Using the angular momentum properties of vectors (3), we can express the wave functions in the
representation of n, n′, n′′ in terms of the parabolic states.

|n, n′, n′′ >=
j

∑
i1=−j

j

∑
i2=−j

dj
i1n′(α1)d

j
i2n′′(α2)|ni1i2 > (8)
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where dj
m1m2(β) is the Wigner d-function.

j =
n− 1

2
(9)

In (8), α1,2 are the angles between vectors J1,2 and E1,2. We choose the reference frame in which
the direction of the magnetic field coincides with the z axis.

cosα1,2 =
1
2c B∓ 3

2 nFcosθ

E1,2
(10)

where θ is the angle between electric F and magnetic fields B.
The coordinate matrix elements in basis (8) has the following form

an̄n̄′ n̄′′
nn′n′′ =

j̄

∑
ī1=− j̄

j̄

∑
ī2=− j̄

j

∑
i1=−j

j

∑
i2=−j

d j̄
ī1n̄′(ᾱ1)d

j̄
ī2n̄′′(ᾱ2)d

j
i1n′(α1)d

j
i2n′′(α2)an̄ī1 ī2

ni1i2
(11)

where a = X, Y, Z (the intensity of radiation in the dipole approximation is proportional to the squared
absolute value of the coordinate matrix element).

Accurate quantum expressions for the matrix elements an̄ī1 ī2
ni1i2

in (11) were obtained by
Gordon [17,18] and have a very complicated structure. They contain the hyper-geometric series which
makes calculations for Rydberg atoms very cumbersome. The detailed analysis of computational
complexities and ways to get around them are presented in [19]. The array of radiative transitions
grows proportionally to n4. To carry out calculations for highly excited levels, the author of [9,10]
obtained the approximation of an̄ī1 ī2

ni1i2
and developed the method of the distribution of atomic transitions

into special groups. These results and the usage of the specific d-functions properties allow one
to simplify the complicated expression (11). The results for the Hnα (∆n = n − n̄ = 1) and Hnβ

(∆n = n− n̄ = 2) series are obtained in [20,21] .The basics of the approach to calculating these matrix
elements and the results (see Formulas (A11)–(A16)) are presented in the Appendix A.

In the present paper, we take into account thermal velocity of ions. This problem is closely related
to stochastic processes in the Coulomb-like interacting medium. Statistical aspects of the collective
motion in the Coulomb field are considered in [22]. The frequency fluctuation model (FFM) consists in
the dependence of the spectral line profile on the jumping ion frequency ν.

ν = N−
1
3

i vTi (12)

where Ni is the density and vTi is the thermal velocity of ions.
Using the FFM, the intensity J(ω) can be analytically expressed as the functional of the normalized

static profile W(ω) [12].

J(ω) =
ν

π

J0(ω)J2(ω)− J2
1 (ω)

J2
2 (ω) + ν2 J2

1 (ω)
(13)

Jk(ω) =
∫ +∞

−∞

W(ω′)(ω−ω′)k

ν2 + (ω−ω′)2 dω′ (14)

A similar calculation, using the FFM, but without taking into account the influence of the magnetic
field on the shape of spectral lines, is given in [23]. Moreover, this work contains the detailed analysis
of the influence of the thermal ion velocity on the plasma line shapes.

The spectral lines profiles in the presence of a magnetic field were calculated by Novikov et al. [24].
They used the accurate analytical expressions for the dipole matrix elements. However, this work
contains profiles only of Lα and Dα lines. In addition, the authors did not consider the thermal motion
of ions. Application of the frequency-fluctuation model to Stark–Zeeman line shapes was demonstrated
by Ferri et al. [25]. Again, this work considers only the transitions between levels with a low value
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of the principal quantum number n. Computer modeling, taking into account the largest possible
number of effects on the shape of spectral lines, is presented in the works of Rosato et al. [26,27].

In the present paper, we derive the analytical expressions for spectral lines profiles in plasma.
These formulas are convenient for simply performing calculations with them. In fact, we provide the
algorithm of spectral lines shapes calculations with given parameters of plasma. The expressions for
transitions with ∆n = 1 and ∆n = 2 are presented.

2. Description of the Method

Firstly, we consider the general expression for the plasma spectral line static profile.

W(ω) = ∑
τρ

∫ +∞

0
dF
∫

dΩH(F)|a(ρ)τ (F, Ω)|2δ(ω−ωτ(F, Ω)) (15)

where τ is the full set of all quantum numbers related to the initial and final states, ρ is the
polarization, H(F) is the distribution function of the absolute value of electric field, Ω defines the
angle between the magnetic field and an ion microfield, and a(ρ)τ (F, Ω) is the dipole matrix element
(expressions (A11)–(A13) for Hnα and (A14)–(A16) for Hnβ are presented in Appendix A).

Coming up to our notation, one obtains

∑
τ

=
j

∑
n′=−j

j

∑
n′′=−j

j̄

∑
n̄′=− j̄

j̄

∑
n̄′=− j̄

Here, the values with bar relate to the final state.
In the ρ summation, there are only two terms. For example, if one calculates the radiation intensity

with direction of observation parallel to magnetic field, ρ corresponds to X and Y directions. In other
words, in this example, one has to put a(1) = X and a(2) = Y.

In (15), δ(z) is the Dirac delta-function and ωτ(E, Ω) is the energy shift that corresponds to the
set of quantum numbers τ. In our case, we have

ωτ(F, θ) = Ē1(F, θ)n̄′ + Ē2(F, θ)n̄′′ − E1(F, θ)n′ − E2(F, θ)n′′ (16)

Here, we use the absolute values of the vectors (4). The fact that the system has the circular symmetry
is also used, which means that there is no dependence of the energy shift and the matrix elements on
the azimuthal angle.

As H(F), one can use the Holtsmark distribution

H(F) =
2

πF

∫ ∞

0
xsinx exp

[
−
(

xF0

F

) 3
2
]

dx (17)

F0 = 2.6031Zi N
2
3

i (18)

where Zi is the charge and Ni is the density of ions. The detailed analysis of the Holtsmark distribution
is presented in [5,12].

To take into account the thermal velocity of ions in plasmas, we use Formulas (13) and (14).
One can substitute expression (15) into (14). After that, it is possible to integrate over ω′ and get rid of
the delta functions.

Jk(ω) = ∑
τρ

∫ +∞

0
dF
∫

dΩH(F)|a(ρ)τ (F, Ω)|2 (ω−ωτ(F, Ω))k

ν2 + (ω−ωτ(F, Ω))2 (19)
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Now, it is necessary to take into account the Doppler and the electron broadening mechanisms.
To do this, one has to calculate the convolution of J(ω) from (13) (with Jk from (19)) with the
Voigt profile

V(ω, D, γ) =
∫ +∞

−∞
F(ω′, D)U(ω−ω′, γ)dω′ (20)

F(ω, D) =
1√
πD

Exp
[
−
(

ω

D

)2]
(21)

Expression (21) relates to the Doppler broadening [5]. Here, D is the Doppler parameter

D =
ωnn̄

c

√
2Ta

M
(22)

where ωnn̄ = Z2

2

(
1

n2 − 1
n̄2

)
, c is the speed of light in vacuum, and M and Ta are the mass and

temperature of atoms, respectively.

U(ω, γ) =
γ

π

1
( γ

2 )
2 + ω2 (23)

That Lorentz distribution corresponds to the electron broadening. Generally, the calculation of the
parameter γ is a complicated process. We use the simplified approach to the electron broadening
(see [5]).

γ = 16NevTeρ2
0

[
0.33 + ln

ρm

ρ0

]
(24)

where Ne and vTe are the density and thermal velocity of electrons, correspondingly, and ρm is the
Debye radius in plasmas.

ρ2
0 =

2
3v2

Te
I(n, n̄) (25)

I(n, n̄) = 2
(

∑
ab
|Pab|2

)−1

∑
aa′bb′

Pa′b′Pba

(
δbb′ ∑

a′′
raa′′ ra′′a′ + δaa′ ∑

b′′
rb′b′′ rb′′b − 2raa′ rb′b

)
(26)

where r is the coordinate operator, |Pab|2 is the transition intensity, and a and b denote different states
referring to levels n, n̄. For example,

I(n, 1) =
9
4

n2(n2 − 3)

I(n, 2) =
9
4
(n4 − 9n2 + 12)

I(n, 3) =
9
4
(n4 − 19n2 + 72)

More accurate calculations for the electron broadening are discussed in [28]. Moreover, modification of
this broadening theory is presented in the Appendix of [24].

Finally, we can obtain the formula for the intensity of radiation as the function of the energy shift
(frequency). It is the convolution of expressions (13) and (20).

I(ω) =
∫ +∞

−∞
J(ω′)V(ω−ω′, D, γ)dω′ (27)

To sum up, we obtain the algorithm for plasma line shapes calculations. Expressions for the dipole
matrix elements are presented in the Appendix A. We take into account Stark–Zeeman, Doppler,
and electron mechanisms of broadening. Moreover, using the FFM, the effect of thermal velocity is
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considered. For every step of the calculation, we use analytical expressions. The approximations for
the transitions intensities are derived for lines with ∆n = n− n̄ = 1 and ∆n = 2. The main advantage
this method is the opportunity of performing calculations for any large principle numbers.

3. Results and Discussion

Specific calculations for a deuterium plasma are demonstrated in this section. To estimate the
accuracy of the method, we compare the results of other groups for the Dα and Dβ spectral lines with
our algorithm.

Comparison of semiclassical (universal approach) calculations and the results of Ferri et al. [25]
are presented in Figure 1. One can observe the satisfactory correspondence between two approaches.
Even for low levels n = 2 and n = 3, the Rydberg approximation shows a high degree of accuracy.
However, there is a slight discrepancy, mainly due to the imprecision in the calculations of the Stark
shift (here, ∆n ∼ n). This calculation is extremely representative because in both approaches the
thermal velocity of ions is taken into account in the same way. In fact, the main difference here is the
choice of expressions for the transition probabilities.

Figure 1. Normalized intensity profile of Dα spectral line (transition 3-2) as the function of the
energy shift. The direction of observation is perpendicular to the magnetic field, Te = Ti = 1 eV,
Ni = Ne = 1015 cm−3, B = 7 T. Comparison of the semiclassical approach and an accurate calculation
in [25].

One can observe a tolerable coincidence between the Rydberg approach to spectral lines in plasmas
and the computer modeling in [27]. Calculations for Dβ line are presented in Figure 2. The semiclassical
approach has a distinct feature: the narrowing in the center. It is connected with the widening on
the sides. The reason for these little “wings” is Zeeman components. The inaccuracy of the Rydberg
approximation leads to a slight decrease in the Stark shift. However, this result should be considered
quite satisfactory because distance between atomic levels is equal to principle quantum number of a
lower state. Generally speaking, the condition for the applicability of our approach is ∆n� n, but it
turns out that it works well even for the Balmer series.
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Figure 2. Normalized intensity profile of Dβ spectral line (transition 4-2) as the function of the energy
shift. Direction of observation perpendicular to magnetic field, Te = Ti = 1 eV, Ni = Ne = 1015 cm−3,
B = 5 T. Comparison of the semiclassical approach and the computer modeling in [27].

Obviously, with growth of n, the Rydberg approximation will be practically indistinguishable
from the exact result. For large values of the principle quantum number, distance between atomic
levels ∆n� n, thus it will not influence the Stark shift, as well as the electron broadening parameter
γ ∼ n4 (except specific cases of the interference of contributions to the electron width, the details can
be found in [4]). For highly excited levels, the electron impact on the broadening can blur spectral lines.
Thus, the small inexactness connected with the Rydberg approximation can all the more be neglected.

To show how the shape of the spectral line changes, Figure 3 is presented. Using the expression (27),
spectral profiles are obtained for the Paschen series (the transition 4-3). It is possible to trace how the
Zeeman components disappear with increasing of an ion’s temperature due to the Doppler effect and an
ion thermal motion. In the first graph, two Zeeman “wings” are clearly visible. We want to underline that,
in this calculation, the temperatures and concentrations of ions and electrons are different. In the fourth
graph, the Zeeman components are practically blurred.

In this method, we do not consider two effects connected with external magnetic field. The first
one is that the environment can be spatially inhomogeneous. Therefore, this method is applicable
only for comparison with local measurements, so that the temperature and density gradients cannot
be large. The second effect is connected with the influence of an electron’s helical path related to the
motion in an external magnetic field. Because of this, the argument of the logarithm in Formula (24)
can be greatly changed. The influence of a change in the trajectories of an electron on the shape of
spectral lines is described in detail in [29]. In the present paper, we focus on the problem of the great
array of radiation transition. Our purpose is to show that neglecting of the big part of transitions
does not strongly affect the shape of the spectral line. This can be seen by looking at Figures 1 and 2.
Comparison of our method with calculations of other groups clearly demonstrates that a significant
part of radiative transitions does not contribute to the formation of the spectral profile. Because of
that, there is a significant opportunity to simplify calculations of the spectral line shape in plasmas.
This method is mainly applicable for the case when ion’s Stark broadening dominates over the electron
one, in both static and impact limits for ions.
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Figure 3. Normalized intensity profile of Pα spectral line (transition 4-3) as the function of the energy
shift. Direction of observation perpendicular to magnetic field B = 6 T. (1) Te = 1.75 eV, Ti = 1.77 eV,
Ni = 1.81× 1012 cm−3, Ne = 2.17× 1015 cm−3; (2) Te = 43.27 eV, Ti = 49.47 eV, Ni = 1.76× 1010 cm−3,
Ne = 1.36× 1014 cm−3; (3) Te = 50.80 eV, Ti = 77.16 eV, Ni = 8.11× 109 cm−3, Ne = 6.96× 1013 cm−3;
(4) Te = 59.65 eV, Ti = 99.67 eV, Ni = 1.70× 109 cm−3, Ne = 8.08× 1013 cm−3.

In this paper, a whole complex of problems in the theory of broadening of spectral lines in
plasma is considered. However, individually, many of these topics have already been discussed
previously. Semiclassical approximation for the transition probability (the intensity) is presented
in [30]. Mathematical aspects of the application of the O(4) symmetry to the theory of spectral line
broadening are discussed in the work [31]. However, this approach is not convenient for describing
the transition array in the case of a magnetized plasma. The applicability of the FFM to plasma in the
presence of a magnetic field is discussed in [32].

The presented algorithm can be a convenient tool for diagnosing helium plasma in the ITER
divertor [33,34]. An example of calculation for helium is shown in Figure 4 (transition 5-4).

Figure 4. Normalized intensity profile of spectral line (transition 5-4) as a function of the energy shift.
Hydrogen-like Helium ion; Te = Ti = 3 eV, Ni = Ne = 1015 cm−3, B = 8 T.
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4. Conclusions

A semiclassical approach to the spectral lines in plasmas is presented. We demonstrate how one
can use the analytical expressions for calculating Hnα and Hnβ line shapes. Thanks to the presented
method, it is possible to calculate the intensity profiles for transitions with large principle quantum
numbers. Basically, this approach is suitable for the spectral line shapes of hydrogen-like ions.
For calculations within the visible range, it is necessary to consider transitions with larger n. Moreover,
it is shown that this approach can be used to achieve satisfactory agreement with the transitions related
to the Balmer series (Figures 1 and 2).

Using the FFM, one can relatively simply take into account the effect of the thermal motion of
ions in the plasma on the shape of spectral lines. The FFM profile depends on the functions Jk(ω) (14).
The integrand in Jk(ω) depends on static profile W(ω) (15). The function W(ω) is expressed in terms
of delta-functions. It allows one do a simple integration and obtain Formula (19) for Jk(ω).

In [12], the authors considered a Hydrogen atom in external crossed electric F and magnetic B
fields. They performed calculations in the specific basis (8). These states are closely related to the
parabolic quantization on two different axes. Calculation of the transition probabilities in this basis
leads one to Formula (11). Using the symmetry properties of the Coulomb field, the Wigner d-functions
recurrence relations, and the Rydberg asymptotic formulas for the coordinate matrix elements [9,10],
the simple semiclassical approximations for the dipole matrix elements in representation of states (8)
are obtained in [20,21] and applied to the spectral line shape calculations. The approximations for the
transitions probabilities in this basis are presented in Appendix A (see (A11)–(A16)).

To demonstrate the power of the Rydberg atom approach, Balmer series line shapes are calculated
and compared with the results of other groups. The shape of Dα line is presented in Figure 1. One can
observe a good correspondence with accurate consideration from [25]. The comparison of Rydberg
approach and the computer simulation [27] is presented in Figure 2. Even for the 4-2 transition,
the analytical approximation shows a good correspondence with quantum calculations.

The specific calculation for the Pα series is demonstrated in Figure 3. Using the presented
algorithm, the shapes of spectral lines were calculated for various plasma parameters. This figure
clearly illustrates how different mechanisms affect the shape of the spectral line.

Appendix A. Dipole Matrix Elements

The detailed derivation of the semiclassical approximation of the dipole matrix elements that is
the representation of states (8) is presented in [20,21]. In the Appendix, we briefly discuss the main
points of calculating the transition probabilities and present the results in [20,21]. Firstly, it is necessary
to consider new quantum number K

K = (n1 − n2)− (n̄1 − n̄2) (A1)

It turns out that the a radiative transition probability strongly depends on this number (A1) [9,10].
It partially solves the problem of a large array of transitions between Rydberg atomic states. It is
necessary to calculate the intensity of transitions only with a certain value of K. For example,
while calculating the spectral line shape of the Hnα line, one has to calculate transitions only with
K = 0 and K = ±1. By fixing the magnetic quantum number m and K, it is possible to establish the
approximate selection rules for the parabolic quantum numbers (7)

For Z matrix element (∆n = 1),{
(i2 − i1)− (ī2 − ī1) = ±1

i2 + i1 = ī2 + ī1
(A2)
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For X-matrix element (∆n = 1), {
(i2 − i1)− (ī2 − ī1) = 0

|i2 + i1| = |ī2 + ī1| ± 1
(A3)

In the case of Hnβ line, it is necessary to calculate the dipole matrix elements with K = ±1 and
K = ±2. Similar systems can be written for the case ∆n = 2.

For Z matrix element (∆n = 2),{
(i2 − i1)− (ī2 − ī1) = ±2

i2 + i1 = ī2 + ī1
(A4)

For X-matrix element (∆n = 2), {
(i2 − i1)− (ī2 − ī1) = ±1

|i2 + i1| = |ī2 + ī1| ± 1
(A5)

By solving systems (A2)–(A5), we can express i1,2 in terms of ī1,2. This leads to the reduction of
the expression (11) to double sums. Moreover, as shown in [20,21], these sums are independent.

For example, the solution to the system (A2) reduces the expression (11) to the following formula

Zn̄n̄′ n̄′′
nn′n′′ = Zn̄n̄′ n̄′′

1nn′n′′ + Zn̄,n̄′ ,n̄′′
2nn′n′′ (A6)

Zn̄n̄′ n̄′′
1,2nn′n′′ =

j̄

∑
ī1=− j̄

j̄

∑
ī2=− j̄

d j̄
ī1n̄′(α1)d

j̄
ī2n̄′′(α2)d

j
ī1± 1

2 n′
(α1)d

j
ī2∓ 1

2 n′′
(α2)G1,2(ī1, ī2) (A7)

where

G1 =

√
(

n
2
− ī1)(

n
2
+ ī2)

G2 =

√
(

n
2
+ ī1)(

n
2
− ī2))

One can find formulas for an̄ī1 ī2
ni1i2

find in [9,10]. Detailed derivation of this expression is presented
in [17]. The next step is the usage of the recurrence and orthogonality relations for the Wigner
d-functions [11].

dj
m1,m2(β) =

√
j−m2

j−m1
cos(

β

2
)dj− 1

2
m1+

1
2 ,m2+

1
2
(β)−

√
j + m2

j−m1
sin(

β

2
)dj− 1

2
m1+

1
2 ,m2− 1

2
(β) (A8)

dj
m1,m2(β) =

√
j−m2

j−m1
sin(

β

2
)dj− 1

2
m1− 1

2 ,m2+
1
2
(β) +

√
j + m2

j−m1
cos(

β

2
)dj− 1

2
m1− 1

2 ,m2− 1
2
(β) (A9)

j

∑
m3=−j

(−1)m3−m2 dj
m2,m3(β)dj

m3,m1(β) = δm1,m2 (A10)

In the case of both Hnα and Hnβ spectral lines, these manipulations lead to the following results.



Symmetry 2020, 12, 1922 11 of 14

For the Hnα line

Zn̄n̄′ n̄′′
nn′n′′ = (−1)∆n̄′+∆n̄′′ 1

4
b
[

Z(1)n̄n̄′ n̄′′

nn′n′′ + Z(2)n̄n̄′ n̄′′

nn′n′′

]
(A11)

Z(1)n̄n̄′ n̄′′

nn′n′′ =

(√
n
2
− n′ cos

α1

2
δn̄′ ,n′+1/2 −

√
n
2
+ n′ sin

α1

2
δn̄′ ,n′−1/2

)
×

×
(√

n
2
− n′′ sin

α2

2
δn̄′′ ,n′′+1/2 +

√
n
2
+ n′′ cos

α2

2
δn̄′′ ,n′′−1/2

)

Z(2)n̄n̄′ n̄′′

nn′n′′ =

(√
n
2
− n′ sin

α1

2
δn̄′ ,n′+1/2 +

√
n
2
+ n′ cos

α1

2
δn̄′ ,n′−1/2

)
×

×
(√

n
2
− n′′ cos

α2

2
δn̄′′ ,n′′+1/2 −

√
n
2
+ n′′ sin

α2

2
δn̄′′ ,n′′−1/2

)

Xn̄n̄′ n̄′′
nn′n′′ = (−1)∆n̄′∆n̄′′−1 1

4
b
[

X(1)n̄n̄′ n̄′′

nn′n′′ − X(2)n̄n̄′ n̄′′

nn′n′′

]
(A12)

X(1)n̄n̄′ n̄′′

nn′n′′ =

(√
n
2
− n′ sin

α1

2
δn̄′ ,n′+1/2 +

√
n
2
+ n′ cos

α1

2
δn̄′ ,n′−1/2

)
×

×
(√

n
2
− n′′ sin

α2

2
δn̄′′ ,n′′+1/2 +

√
n
2
+ n′′ cos

α2

2
δn̄′′ ,n′′−1/2

)

X(2)n̄n̄′ n̄′′

nn′n′′ =

(√
n
2
− n′ cos

α1

2
δn̄′ ,n′+1/2 −

√
n
2
+ n′ sin

α1

2
δn̄′ ,n′−1/2

)
×

×
(√

n
2
− n′′ cos

α2

2
δn̄′′ ,n′′+1/2 −

√
n
2
+ n′′ sin

α2

2
δn̄′′ ,n′′−1/2

)
The hydrogen wave function is proportional to eimϕ, X ∼ cosϕ,Y ∼ sinϕ. Using well-known

relations cos(z) = eiz+e−iz

2 and sin(z) = eiz+e−iz

2i , one can obtain

Yn̄n̄′ n̄′′
nn′n′′ = (−1)∆n̄′+∆n̄′′−1 1

4i
b
[

X(1)n̄n̄′ n̄′′

nn′n′′ + X(2)n̄n̄′ n̄′′

nn′n′′

]
(A13)

For the Hnβ line,

Zn̄n̄′ n̄′′
nn′n′′ =

1
4

b(−1)∆n̄′+∆n̄′′
[

Zn̄n̄′ n̄′′
1nn′n′′ − Zn̄,n̄′ ,n̄′′

2nn′n′′

]
(A14)

Zn̄n̄′ n̄′′
1nn′n′′ =

[
(

n
2
− n′)cos2

(
α1

2

)
δn̄′ ,n′+1 − sin(α1)

√
(

n
2
− n′)(

n
2
+ n′)δn̄′ ,n′ +

+(
n
2
+ n′)sin2

(
α1

2

)
δn̄′ ,n′−1

]
×
[
(

n
2
− n′′)sin2

(
α2

2

)
δn̄′′ ,n′′+1 +

+sin(α2)

√
(

n
2
− n′′)(

n
2
+ n′′)δn̄′′ ,n′′ + (

n
2
+ n′′)cos2

(
α2

2

)
δn̄′′ ,n′′−1

]
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Zn̄n̄′ n̄′′
2nn′n′′ =

[
(

n
2
− n′′)cos2

(
α2

2

)
δn̄′′ ,n′′+1 − sin(α2)

√
(

n
2
− n′′)(

n
2
+ n′′)δn̄′′ ,n′′ +

+(
n
2
+ n′′)sin2

(
α2

2

)
δn̄′′ ,n′′−1

]
×
[
(

n
2
− n′)sin2

(
α1

2

)
δn̄′ ,n′+1 +

+sin(α1)

√
(

n
2
− n′)(

n
2
+ n′)δn̄′ ,n′ + (

n
2
+ n′′)cos2

(
α1

2

)
δn̄′ ,n′−1

]

Xn̄n̄′ n̄′′
nn′n′′ =

1
4

b(−1)∆n̄′+∆n̄′′
[

Xn̄n̄′ n̄′′
1nn′n′′ − Xn̄,n̄′ ,n̄′′

2nn′n′′ − Xn̄n̄′ n̄′′
3nn′n′′ + Xn̄n̄′ n̄′′

4nn′n′′

]
(A15)

Xn̄n̄′ n̄′′
1nn′n′′ =

[
(

n
2
− n′)cos2

(
α1

2

)
δn̄′ ,n′+1 − sin(α1)

√
(

n
2
− n′)(

n
2
+ n′)δn̄′ ,n′ +

+(
n
2
+ n′)sin2

(
α1

2

)
δn̄′ ,n′−1

]
×
[

1
2

sin(α2)

(
(

n
2
− n′′)δn̄′′ ,n′′+1 − (

n
2
+ n′′)δn̄′′ ,n′′−1

)
+

+δn̄′′ ,n′′cos(α2)

√
(

n
2
+ n′′)(

n
2
− n′′)

]

Xn̄n̄′ n̄′′
2nn′n′′ =

[
(

n
2
− n′′)sin2

(
α2

2

)
δn̄′′ ,n′′+1 + sin(α2)

√
(

n
2
− n′′)(

n
2
+ n′′)δn̄′′ ,n′′ +

+(
n
2
+ n′′)cos2

(
α2

2

)
δn̄′′ ,n′′−1

]
×
[

1
2

sin(α1)

(
(

n
2
− n′)δn̄′ ,n′+1 − (

n
2
+ n′)δn̄′ ,n′−1

)
+

+δn̄′ ,n′cos(α1)

√
(

n
2
+ n′)(

n
2
− n′)

]
Here, Xn̄n̄′ n̄′′

3nn′n′′ can be obtained by switching n′ ⇔ n′′(for bar values too) and α1 ⇔ α2 in Xn̄n̄′ n̄′′
1nn′n′′ .

The same connection exists between Xn̄n̄′ n̄′′
2nn′n′′ and Xn̄n̄′ n̄′′

4nn′n′′ .

Yn̄n̄′ n̄′′
nn′n′′ =

1
4i

b(−1)∆n̄′+∆n̄′′
[

Xn̄n̄′ n̄′′
1nn′n′′ − Xn̄,n̄′ ,n̄′′

2nn′n′′ − Xn̄n̄′ n̄′′
3nn′n′′ − Xn̄n̄′ n̄′′

4nn′n′′

]
(A16)

The presence of the delta-functions in Formulas (A11)–(A16) expresses the selection rule for the
angular momentum. The quantum number corresponding to the angular momentum cannot change
by more than 1. Moreover, the presence of delta functions partially solves the problem of the giant
array of Rydberg radiative transitions.
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