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Abstract: This paper discusses the sequential estimation of the scale parameter of the Rayleigh
distribution using the three-stage sequential sampling procedure proposed by Hall (Ann. Stat. 1981,
9, 1229–1238). Both point and confidence interval estimation are considered via a unified optimal
decision framework, which enables one to make the maximum use of the available data and, at the
same time, reduces the number of sampling operations by using bulk samples. The asymptotic
characteristics of the proposed sampling procedure are fully discussed for both point and confidence
interval estimation. Since the results are asymptotic, Monte Carlo simulation studies are conducted
to provide the feel of small, moderate, and large sample size performance in typical situations
using the Microsoft Developer Studio software. The procedure enjoys several interesting asymptotic
characteristics illustrated by the asymptotic results and supported by simulation.
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1. Introduction

Let X1,X2, X3, . . . be independent and identically distributed random variables following a
Rayleigh distribution with unknown scale parameter σ of the form:

f (x; σ) =
x
σ2 e−x2/2σ2

, x > 0 and σ > 0.

The survival or reliability function is e−x2/2σ2
and the hazard function is x/σ2 for all x > 0 and

σ > 0. An important characteristic of the Rayleigh distribution is that its failure rate is a linear function
of time. The reliability function decreases at a much higher rate than the exponential distribution’s
reliability function, whose hazard rate is constant (see Kodlin [1]). This distribution relates to several
distributions, such as generalized extreme value, Weibull, and Chi-square, and hence its applicability
in real-life situations is significant. This is a particular case of a two-parameter Weibull distribution
with a shape parameter equal to 2 and scale parameter σ

√
2.

Rayleigh distribution was introduced by Lord Rayleigh [2] and plays an important role in various
research areas, such as acoustics, communication engineering, clinical studies, applied statistics,
life-testing experiments, reliability analysis, and survival analysis. For instance, Palovko [3] discussed
its application in life testing, especially in electro-vacuum devices. Gross and Clark [4] and Lee and
Wang [5] discussed its usage in clinical studies dealing with cancer patients. Dyer and Whisenand [6]
used it in communication engineering. Siddiqui [7] discussed its usage in electromagnetic wave
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propagation through a scattering medium. Others, such as Siddiqui [7], Hirano [8], and Howlader and
Hossian [9], discussed several aspects of the Rayleigh distribution. It was shown from [10–13] that both
Rayleigh and Weibull distributions are suitable probability distributions for evaluating wind energy
potentials. They provide the most accurate and adequate wind, analyzing and interpreting the actual
wind speed data and predicting the prevailing wind profile. Several authors have contributed to this
model, such as Sinha and Howlader [14], Ariyawansa and Templeton [15], Howlader [16], Lalitha and
Mishra [17], and Abd Elfattah et al. [18].

Regarding estimation, [19–21] have carried out extensive studies concerning the estimation,
prediction, and several other inferences concerning the Rayleigh distribution. From [22], the rth

moment around the origin is:

E(Xr) = σr 2
r
2 Γ(

r
2
+ 1).

Substituting for r = 1 and r = 2, yield that the population mean is E(X) =
√
π/2 σ and the

population variance Var(X) =
(4−π)

2 σ2. The mode equals σ, and the median is σ
√

2 ln (2). All the
moments are unknown but finite. Moreover, the differential entropy of the random variable X,
Shannon [23] entropy, measures the amount of uncertainty or missing information and is defined by
means of its underlying distribution f (x) as h(X) = −

∫
S f (x) log f (x)dx, where S is the support of

f (x). The entropy of the Rayleigh distribution is defined as:

h(σ) = 1 + log (σ/
√

2) + γ/2,

where γ ≈ 0.5772 is the Euler’s constant, which will be of interest in this research. Assume a preliminary
random sample X1, X2, . . . , Xn of size; n becomes available, from which we calculate the sample mean
Xn =

∑n
1 Xi/n for n ≥ 1 and propose the estimate Tn =

√
2/πXn as an unbiased point estimate of the

unknown parameter σ. For the convenience of calculation, we continue to use:

E(Tn) = σ, E(Tn − σ)
2
=

(4−π)σ2

πn
, E(Tn − σ)

3
=

2(π− 3)σ3

πn2 , and E(Tn − σ)
4
=

(32− 3π2)σ4

π2n3 .

This paper aims to estimate sequentially the scale parameter σ of the Rayleigh distribution using
a multistage sampling procedure, the three-stage procedure, that was presented by Hall [24]. For more
details regarding the three-stage procedure and its properties, see Section 3. We tackle two types of
estimation problems—point estimation under a squared-error loss function plus linear sampling cost
and confidence interval estimation. In the following section, we set up the estimation problems.

2. Estimation Problems

2.1. Minimum Risk Point Estimation

To obtain a point estimate for σ, we assume that the cost incurred in estimating the scale parameter
σ by the corresponding sample measure Tn is given by the following squared-error loss function with
a linear sampling cost, given by:

Ln(A) = A2( Tn − σ)
2
+ n, (1)

where A2 represents the cost per estimation unit and A > 0 will be determined shortly. The cost function
in (1) is similar to those considered by Degroot [25], Chow and Yu [26], Martinsek [27], and Hamdy [28].
The risk associated with the cost function in (1) is given by,

Rn(A) = E(Ln(A)) = A2σ2 (4−π)
πn

+ n. (2)

Minimizing the risk in (2) concerning the sample size n yields the optimal sample size:
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n ≥ n∗point = A σ

√
(4−π)
π

, (3)

where n∗point →∞, as A→∞. We elaborate more on the physical entity of A in the following subsections.
The optimal sample size in (3) is unknown because σ is unknown. Therefore, we resort to multistage
sampling procedures, developed over the last 50 years, to estimate the unknown scale parameter σ via
the estimation of n∗.

2.2. Fixed-Width Confidence Interval

Assume further that a fixed 2d width confidence interval for σ of the form
In = ( Tn − d ≤ σ ≤ Tn + d) is required, such that its coverage probability is at least a 100(1− α)%
uniformly over σ > 0.

For large n, the central limit theorem justifies that the quantity Q =
√
πn(Tn−σ)

σ
√

4−π
follows the standard

normal distribution, defined by cumulative distribution function (CDF) Φ(.).

P(| Q | ≤
d
√

nπ

σ
√
(4−π)

) ≥ (1− α) = 2Φ(a) − 1,

where a is the upper α/2 percentage, the cutoff point of the standard normal distribution.
It follows that the optimal sample size required to achieve the above objectives must satisfy:

n ≥ n∗con f =
a2σ2

d2

(4−π)
π

. (4)

2.3. A Unified Decision Framework

Since sequential sampling is utilized to perform inference, authors usually specify one decision
rule for each research objective. It could be a point estimation with a specified cost function or a
fixed-width confidence interval whose coverage probability is at least the nominal value, or testing
hypotheses regarding the population parameters. If the interest is in defining one decision rule to
achieve more than one objective, and at the same time to make the maximum use of the available data,
we have to have n∗point = n∗con f , which implies that:

A =
a2σ

d2

√
(4−π)
π

= k2σ

√
π

(4−π)
, (5)

where k2 = a2

d2
(4−π)
π . As A→∞ k→∞ . Therefore, the constant A is chosen as in (5) to perform

inference through a unified framework. In fact, in sequential point estimation problems where cost
functions are assumed to assess the encountered risk, the constant A is assumed to be known and
is permitted to go to infinity to check if the estimation risk is still finite and bounded. However,
by knowing A we restrict the sampling population. In other words, by doing so we assume that σ is
not entirely unknown. The constant A in (5) is partially known because it depends on the unknown
parameter σ. The constant A→∞ , as the width of the interval d→ 0, is a common practice in
the sequential estimation when we study the asymptotic characteristics of the fixed-width interval.
The constant A2 can be thought of as A2 = a2

d2 × n∗point, where:

A2 = Fisher′s in f ormation× optimal sampling cost.

Meanwhile, we continue to use the representation n∗ = k2σ2 to define the three-stage stopping
rules in the following subsections. Therefore, we proceed to use the following optimal sample size,

n ≥ n∗ = k2σ2, (6)

to perform the necessary inference. The parameter σ2 in (6) is unknown, then no fixed sample size
procedure can estimate the scale parameter uniformly over the parameter space; see Dantzig [29].
Therefore, we resort to a three-stage sampling procedure to achieve the required objectives.
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Henceforth, we continue to use the asymptotic sample size defined in (6) to propose the following
three-stage sampling procedure to estimate the unknown scale parameter σ via the estimation of n∗.

3. Multistage Sampling

Multistage sequential sampling procedures have been developed over the past few decades to
achieve several popular characteristics lacking in classical inference theory. This goes back to Abraham
Wald in 1947, who introduced the idea of one-by-one sequential sampling through the sequential
probability ratio test (SPRT) to minimize the cost of inspection and transportation. Since the publication
of the one-by-one sequential sampling procedure, attention was mainly directed to multistage sampling
under optimal decision frames. The aim is to achieve several optimal objectives, including minimizing
the risk associated with point estimation, maintaining the coverage probability of at least the desired
nominal value, or controlling the type I and type II error probabilities. This was not the case in
classical inference.

Multistage came out to motivate researchers to perform inference through different sampling
techniques. Stein [30,31] created the foundation of two-stage sampling, also referred to as double
sampling, which led to an exact solution for a fundamental statistical inference problem. Additionally,
Seelbinder [32] and Cox [33] introduced the idea of group sampling in two stages. Although the
procedure enjoys many asymptotic requirements, it still suffers from a lack of asymptotic efficiency.
The procedure could lead to oversampling, mostly when the initial sample chosen is much smaller than
the optimal sample size. Anscombe [34], Robbins [35], Chow, and Robbins [36] devised purely
one-by-one sequential sampling procedures to perform inference subjected to some optimality
criteria. The one-by-one sequential sampling procedure surpasses two-stage sampling in achieving
all asymptotic characteristics. However, practically it is inefficient since it takes quite some time to
terminate the sampling course.

Hall [24], in his sophisticated influential work, introduced the idea of sampling in three stages to
overcome all the deficiencies portrayed in both two-stage and purely one-by-one sequential sampling.
By doing so, he combined both the asymptotic characteristics of the purely one-by-one sequential
sampling of Anscombe [34], Robbins [35], and Chow and Robbins [36] and the operational saving
made possible by Stein [30] and Cox [33] bulk sampling.

Hall’s results were emphasized specifically to a fixed-width confidence interval for the normal
mean. Other successful attempts were made for non-normal distributions. Since the publication of
Hall’s paper, research in multistage sampling has moved in several directions. Some have utilized the
three-stage sampling technique to perform point estimation for the normal mean under different cost
functions or generate inference for other distributions. Others have tried to improve the inference quality
by protecting the inference against type II error probability, studying the characteristic operating curve,
or/and discussing three-stage sampling’s sensitivity when the underlying distribution departs from
normality. For more details, see Mukhopadhyay [37–39], Mukhopadhyay et al. [40], Mukhopadhyay
and Mauromoustakos [41], Hamdy and Palotta [42], Hamdy et al. [43], Hamdy [28], Hamdy et al. [44],
Mukhopadhyay and Padmanabhan [45], Takada [46], Hamdy [47], Al-Mahmeed and Hamdy [48],
AlMahmeed et al. [49], Costanzo et al. [50], Yousef et al. [51], Yousef [52], Hamdy et al. [53], Yousef [54],
Yousef and Hamdy [55,56], and Yousef [57].

The extension of Hall’s results to tackle hypothesis testing problems of the normal mean was
developed by Liu [58]. At the same time, Son et al. [59] proposed a three-stage sampling sequential
procedure that yields both a fixed-width confidence interval and a hypothesis test for the normal while
controlling the type II error probability. Their procedure also provided second-order approximations
to the operating characteristic curves of the inference.

Tahir [60] addressed a sequential procedure to tackle a point estimation problem for the Rayleigh
distribution parameter square, subject to a weighted squared-error loss plus cost of sampling. He found
a second-order asymptotic expansion for the incurred regret and found that the asymptotic regret is
negative for a range of parameter values.
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The main objective of this paper is the estimation of the unknown scale parameter σ. We tackle two
estimation problems—point estimation under a squared-error loss function with linear sampling cost
and confidence interval, where we find a fixed-width confidence interval with a coverage probability of
at least 100(1− α)%. We use the three-stage procedure to find all the asymptotic results that enhanced
finding the asymptotic regret and the asymptotic confidence interval. We use Monte Carlo simulation
to verify the asymptotic results. To the best of our knowledge, none of the existing papers in the
literature on sequential estimation conduct this study.

In the following lines, we state the three-stage procedure as follows:
Pilot Study Phase : The pilot study phase starts with selecting an initial random sample T1, T2,

T3, . . . , Tm of size m (≥ 2) from the Rayleigh distribution and calculate the sample average Tm to
initiate the process. We propose to estimate σ by the corresponding sample measure Tm.

Main Study Phase : During the main study phase, we only estimate a portion 0 < δ < 1, of n∗ to
avoid the possibility of over-sampling in the pilot study phase. The required stopping rule is:

N1 = max {m, [δk2T
2
m] + 1}, (7)

where [x] is the integer-valued function.

If m ≥ [δk2T
2
m] + 1, then we stop at this stage. Otherwise, we continue to observe an additional

sample of size [δk2T
2
m] + 1−m—say, Tm+1, Tm+2, Tm+3, . . . , TN1 . Hence, we update the estimate TN1

based on the collected N1 samples to define the main study phase. Note that in this stage, σ̂ = TN1 .
The Fine Tuning Phase: The primary study phase is determined through the following stopping rule:

N = max {N1, [k2T
2
N1
] + 1}. (8)

If N1 ≥ [k2T
2
N1
] + 1, we stop at this stage. Otherwise, we continue to sample an additional sample

of size [k2T
2
N1
] + 1−N1—say, TN1+1, TN1+2, TN1+3, . . ., TN. Upon the realization of N, we terminate the

sampling course and propose the estimate TN =
√

2/π XN for the unknown scale parameter σ.
In the following subsection, we present the stopping rules (7) and (8). These results were developed

under the following assumption set forward by Hall [24] to develop a three-stage sequential sampling
procedure theory. That is,

Assumption A: Letξ(>0) such that limSup( m
ξ(m)

) < δasξ(m)→∞ , and ξ(m) = O(mr), for r > 1.

Theorem 1 below provides the asymptotic results of the main study phase:

Theorem 1. Under assumption A, for the three-stage sampling procedure (7) and (8) as d → 0, we have:

(i) E(TN1) = σ −
2(4−π)σ

π (δn∗)−1 + o(d2),

(ii) E(T
2
N1
) = σ2

−
3(4−π)
π σ2 (δn∗)−1 + o(d2),

(iii) Var(TN1) =
(4−π)
π σ2 (δn∗)−1 + o(d2),

(iv) E(T
4
N1
) = σ4

−
2(4−π)
π σ4 (δn∗)−1 + o(d2),

(v) Var(T
2
N1
) =

4(4−π)
π σ4 (δn∗)−1 + o(d2).

Proof. (i) write E(TN1) = E(TN1 − σ+ σ) = σ+E (N−1
1

∑N1
i = 1(Ti −σ)), then, conditional on the σ−field

generated by the random variables X1, X2, X3, . . . , Xm, we have:

E(TN1) = σ+ EN−1
1 E(

∑m
i = 1(Ti − σ) +

∑N1
i = m + 1(Ti − σ))|T1 , T2, T, . . . , Tm.

Given T1, T2, T3, . . . , Tm we have
∑m

i = 1 (Ti − σ) is constant and
∑ N1

i = m + 1 (Ti − σ|T1, T2, . . . , Tm ) =

(N1 −m) E(Ti − σ) = 0 by Wald’s first equation [61].

Therefore, we have E(TN1) = σ + m E(Tm−σ
N1

).
Next, expand N−1

1 around δn∗ in stochastic Taylor series to obtain:

N−1
1 =(δn∗)−1

− (N1 − δn∗) (δn∗)−2 + (N1 − δn∗)2ν−3,

= (δn∗)−1 – δk (T
2
m − σ

2) (δn∗)−2 + (δk)2 (T
2
m − σ

2 )2ν−3,
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where ν is a random variable between N1 and δn∗.
It follows that:

E(TN1) = σ + m E{(Tm − σ)((δn∗)−1 – mδk2 (T
2
m − σ

2) (δn∗)−2 + δ2k4 (T
2
m − σ

2 )
2
ν−3)}

= σ+ E{(Tm − σ)(δn∗)−1
} − E{mδk2(δn∗)−2E(Tm − σ)

3
}+ E{2σmδk2(δn∗)−2E(Tm − σ)

2
}

+mδ2k4 E{(Tm − σ)(T
2
m − σ

2)2ν−3
},

It follows that:
E(TN1) = σ+ I − II + III + IV.

By assumption A, m/n∗ ≈ δ. Then, as m→∞ , I = 0, and II = mδk2(δn∗)−2 2(π−3)σ3

m2 = o(d2).
Next, recall III:

III = 2σmδk2(δn∗)−2E(Tm − σ)
2
= 2σmδk2(δn∗)−2 (4−π)σ2

πm

=
2(4−π)σ2

π (δn∗)−1 + o(d2).
Next, recall IV:

IV = mδ2k4 E
{
(Tm − σ)(T

2
m − σ

2 )
2
ν−3

}
= mδ2k4E

{
(Tm − σ)

5
ν−3+

2σ(Tm − σ)
4
ν−3 + 4σ2(Tm − σ)

3
ν−3

}
= o(d2) as m→∞.

where we consider the two cases ν ≤ δn∗, then mδ2k4E{(Tm − σ)rν−3
}≤mδ2k4E((Tm − σ)r (δn∗)−1) = o(d2)

for r = 5, 4, 3, as m→∞. Second, ifν ≤ m ≤ N1, then mδ2k4E{(Tm − σ)rν−3
}≤mδ2k4E((Tm − σ)r m−3) =

o(d2) as m→∞ for r = 5, 4, 3. We have also used assumption A.
The proof of (i) is complete.
Similar arguments can be used to justify (ii) and (iv). Part(iii) follows from (i) and (ii).

Part (v) follows from (ii) and (iv). We omit details for brevity. The proof is complete. �
Theorem 2 below provides the asymptotic mean and variance for the final random sample size.

Theorem 2. Under assumption (A), for the three-stage procedure (7) and (8) and as d→ 0 , we have:

(i) E(N) = n∗ − 3(4−π)
π δ−1 + 1

2 + o(1),

(ii) Var(N) =
4(4−π)
π δ−1n∗ + o(d).

Proof. (i) write the random variable N as = [k2T
2
N1

] +1, a.s. except possibly on a set ζ = (N1 < m)∪

(k2T
2
N1
< δk2T

2
m + 1), of measure zero, such that

∫
ζ

dP = o(1).

Therefore, (N) = E(k2T
2
N1
) + E(βN1) + o(1). The continuous random variable βN1 = 1 −

(k2T
2
N1
−

[
k2T

2
N1

]
) has a standard uniform distribution (see Hall [24], and for large m see Anscombe [62])

central limit Theorem suggests that T
2
N1

is normally distributed.

Hence, E(N) = E(k2T
2
N1
) + 1/2 + o(1). By using the Theorem 1 part (ii), we get the result.

The proof of part (i) is complete.
Part (ii) follows immediately from Anscombe [62] central limit theorem, since

√
N1(T

2
N1
− σ2)→N(0, 4(4−π)σ4

π ) and
√

δ
n∗ (N − n∗)→N(0, (4−π)σ2

π ) together with the uniform

integrability of (
√

δ
n∗ (N − n∗))

2
. The proof of (ii) is complete. �

Theorem 2 shows that the average random sample size is always less than the optimal sample size.
That is E(N) < n∗ for all values of n∗. Moreover, lim

d→0
E(N/n∗) = 1, which means the procedure attains

first-order asymptotic efficiency and lim
d→0

E(N − n∗) < ∞, which indicates that the procedure attains
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asymptotic second-order efficiency in the sense of [63]. Part (ii) shows that the variance increases as
n∗ increases.

The following Theorem 3 gives the second-order asymptotic expansion of the moments of a
real-valued continuously differentiable function of the stopping time random variable N.

Theorem 3. Leth(> 0)be a real-valued continuously differentiable and bounded function,
such that sup

n>m

∣∣∣h′′′ (n)∣∣∣ = O
∣∣∣h′′′ (n∗)∣∣∣, then asm→∞

E(h(N)) = h(n∗) +
{
−

3(4−π)
π δ−1 + 1

2

}
h′(n∗)

+
{

4(4−π)
π δ−1n∗

}
h′′ (n∗). + o(d−2(h′′′ (n∗))).

Proof. The proof is a direct substitution of Theorem 2 parts (i) and (ii) in Taylor expansion of h(N),
while we use the assumption that h′′′ is bounded. The proof is complete. �

Theorem 4 below gives the asymptotic characteristics of the fine-tuning phase under the
Assumption A.

Theorem 4. For the three-stage rules (7) and (8), and asd→ 0,

(i) E(TN) = σ−
2(4−π)σ
πn∗ + o(d2),

(ii) E(T
2
N) = σ2 + (δ− 4) (4−π)σ

2

π n∗ + o(d2),

(iii) Var(TN) =
δ(4−π)σ2

π n∗ + o(d2).

Proof. Part (i) write E(TN) = E(TN) = σ+ E{N−1 ∑N
i = 1 (Ti − σ)}.

Next, condition on the σ- field generated by T1, T2, . . . , TN1 . It follows that:

E(TN) = σ+ E{N−1N1(TN − σ)},

then expand N−1 in Taylor series around n∗ as:

N−1 = (n∗)−1
− (N − n∗)(n∗)−2 + (N − n∗)2(ν)−3,

where ν is a random variable between N and n∗.

N−1 = (n∗)−1
− k2( T

2
N1
− σ2) (n∗)−2 + k4( T

2
N1
− σ2)

2
(ν)−3.

Therefore,

E(TN) = E{N1(TN1 − σ){(n
∗)−1
− k2 ( T

2
N1
− σ2) (n∗)−2 + k4( T

2
N1
− σ2)

2
(ν)−3

}}

= I − II + III.

I = E
{
N1(TN1 − σ) (n

∗)−1
}
= 0, by Wald’s first equation [61]. Then, recall II,

II = k2(n∗)−2E{N1(TN1 − σ)(TN1 − σ)( TN1 − σ+ 2σ)}

= k2(n∗)−2E{N1(TN1 − σ)
3
}+ k2(n∗)−2 2σE{N1(TN1 − σ)

2
}.

The first term of II,

k2(n∗)−2E{N1(TN1 − σ)
3
} = (n∗)−2E{N−2

1 (
∑N1

i=1(Ti − σ))
3
}.

Condition on the σ− field generated by T1, T2, . . . , Tm and expand (
∑N1

i=1(TN1 − σ))
3.

We have,

= k2(n∗)−2E{N−2
1 m3(Tm − σ)

3
}+ 3k2(n∗)−2m E{N−2

1 {m (Tm − σ)( N1 −m)}}

+k2(n∗)−2m E
{
N−2

1 ( N1 −m)
2(3−π)σ3

π ( N1−m)2

}
.
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We have used Wald’s first equation [61] to prove that the second term in the expansion is zero.

= A + B + C,

where,
A = k2(n∗)−2E{N−2

1 m3(Tm − σ)
3
} ≤

2(3−π)
π m n∗ σ = o(d2) as m → ∞.

B = 3k2(n∗)−2m E{N−2
1 {m (Tm − σ)( N1 −m)} ≤ 3k2(n∗)−2m E(Tm − σ) = 0,

and

C = k2(n∗)−2m E{N−2
1 ( N1 −m)

2(3−π)σ3

π ( N1 −m)2 } ≤
2(3−π)σ
πm n∗

= o(d2).

The second term in II,

k2(n∗)−22σE{N1(TN1 − σ)
2
} = k2(n∗)−2 2σE{N−1

1 (E(
∑m

i = 1 (Ti − σ) +
∑N1

i = m + 1
(Ti − σ))

2
|T1, T2, . . . , Tm)}

= k2(n∗)−2 2σE(N−1
1 E(

∑m
i = 1 (Ti − σ))

2
+ k2 (n∗)−2 2σE{(N−1

1 (N1 −m)
σ2(4−π)

π ((N1−m)2 }

= D + E,

D = k2(n∗)−2 2σE{N−1
1 m2 E(Tm − σ)2

} =
2σ(4−π)σ2

πn∗ as m→∞.

Here, we have used the fact N−1
1 ≈ (δn)−1 and m/n∗ ≈ δ under assumption A.

Similar arguments prove that E = o(d2), where we have used the fact that 1
N1(N1−m)

≤
1

m2 .
It remains to evaluate the remainder term in III, which is:

III = k4E{N1(TN1 − σ){(T
2
N1
− σ2)2(ν)−3

}} = o(d2).
Arguments similar to those used above and the fact that the random variable ν is between N and

n∗ can be used to justify the rate of convergence of III. We omit any further details for brevity.
This completes the proof of (i). �

Likewise, (ii) can be asserted along the above lines if we write:

E( T
2
N) = σ2 + E{N−2(

∑N
i=1(Ti − σ))

2
}+ 2σE{N−1∑N

i=1(Ti − σ)}.

Theorem 2 provides 2σE{N−1 ∑N
i=1 (Ti − σ)} = −

2(4−π)σ2

π n∗ .
Therefore,

E( T
2
N) = σ2 + E{N−2(

∑N
i=1(Ti − σ))

2
} −

2(4−π)σ2

π n∗
+ o(d2).

Likewise, condition on the σ− f ield generated by T1, T2, . . . , TN1 to obtain:

E( T
2
N) = σ2 + E{N−2E(

∑N1
i=1(Ti − σ) +

∑N
i=N1+1(Ti − σ))

2
}|T1, T2, . . . , TN1

= σ2
−

2(4−π)σ2

π n∗ + E{N−2(
∑N1

i=1(Ti − σ))
2
}+

σ2(4−π)
π E{N−2(N −N1)}+ o(d2).

The term σ2(4−π)
π E{N−2(N −N1)} ≤

σ2(4−π)
π E( 1

N ) = o(d2), while, by using Wald’s,
second equation [61]:

E{N−2
{
∑N1

i=1(Ti − σ)}
2
} ≈ (n∗)−2 E(N1)Var(Ti) =

δ(4−π)σ2

πn∗
+ o(d2).

This completes the proof. �

Part (i) of Theorem 4 shows that TN is an asymptotically unbiased estimator of σ. Meanwhile part
(iii) shows that the variance decreases as n∗ increases.

Theorem 5. Letg > 0 be a continuously differentiable real-valued function in a neighborhood around σ, such that
Supn≥m

∣∣∣g′′′ (n)∣∣∣ = O
∣∣∣g′′′ (n∗)∣∣∣, then asm→∞

E(g(TN)) = g(σ) − σ
(4−π)
2πn∗

{
4g′(σ) − δ σ g′

′(σ)
}
+ o(d−2g′′′ (n∗)).
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Proof. The proof is instantaneous if we expand g(TN) in Taylor series around σ, and substitute
(i) and (iii) of Theorem 4, together with the assumption that the function g(> 0) and its derivatives are
bounded. The proof is complete. �

3.1. Three-Stage Minimum Risk Point Estimation

The asymptotic regret ω(d) encountered in the estimation of σ by the corresponding three-stage
point estimate TN is given by:

ω(d) = E(RN(d)) −R(d)∗n =
a2n∗

d2 E(TN − σ)
2
+ E(N) − 2n∗.

By using Theorems 2 and 4, as d→ 0, we get:

ω(d) = n∗(δ− 1) +
3(4−π)δ−1

π
+ o(1).

The asymptotic regret ω(d) < 0 (negative regret), which reflects that the three-stage procedure
produces estimates for the Rayleigh distribution scale parameter better than using the fixed sample size
technique. Additionally, the regret of using the three-stage procedure to estimate the scale parameter
compared to using the fixed sample size (classical inference) is less than a non-vanishing finite quantity
3(4−π)
π δ−1 + 1

2 , 0 < δ < 1. Simon [64] called this quantity the cost of ignorance, of not knowing the
scale parameter. The issue of negative regret was discussed by Martinsek [27]. Table 1 below shows
the Rayleigh distribution characteristics’ mathematical representation and the three-stage estimates for
the mode, the median, the reliability, the hazard function at a specific time, and the entropy.

Table 1. Point estimation of other distribution parameters.

Distribution Characteristic Mathematical Representation Three Stage Point Estimate

The Mode σ TN
The Median σ

√
2ln(2) TN

√
2ln(2)

Reliability at time T0 e−(T0/2T2
N) e−(T0/2T2

N)

Hazard Function at time T0 T0/σ2 T0/T
2
N

Entropy, γ = 0.5772 1 + log(σ/
√

2) + γ/2 1 + log(TN/
√

2) + γ/2

3.2. Three-Stage Fixed-Width Confidence Interval

Once the sampling procedure is terminated, we propose the fixed 2d width three-stage confidence
interval IN = TN ± d for the scale parameter σ.

The coverage probability of the interval is calculated as:

P(σ ∈ IN) =
∑
∞

n=m P(|TN − σ| ≤ d, N = n)
=

∑
∞

n=m P(|TN − σ| ≤ d| N = n)P(N = n).

Hence,
P(σ ∈ IN) =

∑
∞

n=mP(|Tn − σ| ≤ d| N = n) P(N = n).

Since the stopping variable N depends on the scale parameter estimate TN, then N and TN are not
stochastically independent. Therefore, we use Monte Carlo simulation to study the characteristic of
P(σ ∈ IN) when the sample size varies from small, moderate, and large.

4. Simulation Study

Monte Carlo simulation is conducted to evaluate the three-stage procedure’s performance when
the sample size varies from small, moderate, and large. A FORTRAN program is coded using Microsoft
Developer Studio software to generate a series of simulations. For each experimental situation,
50,000 replicate samples were used. Random samples from the Rayleigh distribution were generated,
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and a three-stage sampling rule (7), (8) was implemented to estimate all the parameters in concern;
σ̂ and its standard error; N the estimated values of n∗ and their standard error; the mean and the
variance of the Rayleigh distribution and their standard errors; the regret; and, finally, the estimated
value of the coverage probability. The optimal sample sizes are chosen typically n∗ = 25, 50, 100, 150,
200, 250, 300, 400, and 500.

For constructing a fixed-width confidence interval for the scale parameter σ, we take α = 0.05,
and, accordingly, a = 1.96. Additionally, we consider different values for the initial sample size,
m = 5, 10, and 15, and the portion of the initial sample used for estimation, δ = 0.3, 0.5, and 0.8.
Mukhopadhyay [41] noted that if the design factor δ is chosen near zero or one, then a three-stage
procedure would be more like Stein’s two-stage procedure. Therefore, a three-stage procedure is better
implemented with δ = 0.4, 0.5, or 0.6. Hall [36] mentioned that in practice, it seems a reasonable
compromise to choose δ = 0.5.

The simulation process is performed as follows:
For the i-th sample generated for a particular combination of σ, m, δ, n∗, and a, we have:
First. Generate an initial sample of size m(≥ 2), say T1,i, T2,i, . . . , Tm,i from Rayleigh distribution

with scale parameter σ and calculate Tm as an initial estimate of σ.
Second. Apply the three-stage sampling procedure as presented in (7) and (8) to determine the

stopping sample size at this iteration, whether in the first or second stage N∗i .
Third. Record the resultant values of stage N∗i and T∗i .Hence, for each experimental combination

we have two vectors of size s = 50,000 (N∗1, N∗2, . . . , N∗s) and (T
∗

1, T
∗

2, . . . , T
∗

s). Define:

N = s−1∑s
i N
∗

i and T = s−1∑s
i T
∗

i ,

where N and T are, respectively, the estimated mean sample size and the estimated mean of the
estimator of the population scale parameter across replicates. Thus, σ̂ = T may be regarded as an
estimate of the expected value of the estimator of the scale parameter. The standard errors are:

SN =
{
s(s− 1)

}−1/2
{∑s

i (Ni −N)
2
}1/2

, Sσ̂ =
{
s(s− 1)

}−1/2
{∑s

i (Ti − T)
2
}1/2

.

Similar arguments can be calculated for other parameter estimates.

Fourth. The simulated regret is ω̂(d) = A2s−1
{∑s

1 (Ti − σ)
2
}
+ cN −R(n∗).

Fifth. The simulated coverage probability is:

(1̂− α) =
#σ ∈ (Ti ± d)

s
, i = 1, . . . , s.

For brevity, Table 2 below demonstrates the simulation results evaluated at m = 10, δ = 0.5,
and 1− α =0.95 for each respective n∗ as follows: N is the simulated estimate for the optimal sample
size, with a standard error given by S(N). σ̂ is the simulated estimate for the scale parameter σ with
standard error S(σ̂). µ̂ is the simulated estimate for the population mean of the distribution with
standard error S(µ̂). v̂ar(x) is the simulated estimate for the variance of the distribution with standard
error Ŝvar(x). m̂ed(x) stands for the simulated estimate for the population median with standard error
Sm̂ed(x). Ênt stands for the simulated estimate for the population entropy with standard error and
ŜEnt. ω̂ is the simulated estimates for the asymptotic regret and finally 1− α̂ is the simulated estimate
for the asymptotic coverage probability.
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Table 2. Three-stage estimation results with m = 10, δ = 0.5, and α = 0.05.

n* 25 50 100 150 200 250 300 400 500

N 22.79 48.84 98.95 148.75 198.82 248.68 298.89 399.10 499.04
S(N) 0.040 0.049 0.069 0.085 0.099 0.110 0.121 0.141 0.156
σ̂ 9.588 9.859 9.944 9.962 9.970 9.975 9.981 9.987 9.989

S(σ̂) 0.006 0.004 0.002 0.002 0.002 0.002 0.001 0.001 0.001
µ̂ 12.537 12.537 12.537 12.485 12.495 12.519 12.521 12.527 12.529

S(µ̂) 0.010 0.010 0.010 0.004 0.003 0.003 0.003 0.002 0.002
v̂ar(x) 6.281 6.459 6.515 6.526 6.532 6.535 6.539 6.543 6.544

Ŝvar(x) 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001
m̂ed(x) 10.795 11.111 11.209 11.228 11.230 11.232 11.225 11.212 11.188

Sm̂ed(x) 0.007 0.005 0.003 0.003 0.002 0.002 0.002 0.002 0.002
Ênt 3.1932 3.2262 3.237 3.240 3.241 3.241 3.242 3.243 3.243

ŜEnt 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ω̂ −27.21 −51.16 −101.1 −80.27 −148.79 −85.89 −165.37 −169.95 −178.12

1− α̂ 0.8823 0.927 0.940 0.942 0.944 0.946 0.948 0.945 0.949

From these results, we observe that the final random sample size N is very close to the optimal
sample size n∗—i.e., N/n∗ ≈ 1 (first-order asymptotic efficiency)—and N is less than n∗, which refers
to early stopping with standard error increases as n∗ increases. Additionally, N − n∗ is bounded by a
finite number that is unrelated to n∗ (second-order asymptotic efficiency). Besides, as n∗ increases the
estimate of the scale parameter gets significantly closer to the actual value with decreasing standard
errors. Moreover, the simulated coverage probability is always less than the desired nominal value
(asymptotic consistency in the sense of [30,36,63]), and this might be because of the early stopping
sampling. The regret is a non-vanishing finite quantity with negative values. The negativity in the
regret goes due to the dependency between the final random sample size N and the estimate of the
scale parameter TN Furthermore, it may refer to early stopping.

5. Conclusions

This paper proposes a unified decision framework to estimate the scale parameter of the Rayleigh
distribution and several related parameters. Within this optimal decision structure, a three-stage
sampling procedure with a bona fide stopping rule is defined to determine the optimal sample size
required to perform inference. The procedure enjoys the asymptotic characteristics set forward by
Chow and Robbins [36] and Anscombe [34] as well the operational saving made possible by sampling
in batches, as in Stein [30] and Cox [33]. Asymptotic characteristics of the three-stage sampling scale
parameter estimate and its higher-order moments are presented in Theorems 1–5. The asymptotic
regret associated with minimizing the expected cost of the squared-error loss function with the linear
sampling cost is also discussed. Monte Carlo simulation was performed to give a proper feel of the
inference performance in typical real-life situations. This current problem is different from those
considered previously in the case of the normal and exponential distribution. The independence
between the stopping variable N and the nuisance parameter estimates are apparent. In the Rayleigh
distribution case, the stopping variable N depends on the scale parameter estimate, and thus the proofs
took different directions.
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