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Abstract: Multi-attribute group decision-making (MAGDM) is widely applied to various areas for
solving real-life problems, including technology selection, credit assessment, strategic planning
evaluation, supplier selection, etc. To describe the complex and imprecise cognition, it is more
convenient to provide the decision-making information in linguistic terms rather than concrete
numerical values. Thus, several linguistic models, such as the fuzzy linguistic approach (FLA),
hesitant fuzzy linguistic term sets (HFLTSs), hesitant intuitionistic fuzzy linguistic term sets (HIFLTSs),
and probabilistic linguistic term sets (PLTS) have been proposed successively. Due to the flexibility
and comprehensiveness of PLTS, it has aroused growing concern. However, it also has a big
limitation of requiring the membership degree to be 1 by default, and it does not consider the
degree of non-membership and hesitancy of a linguistic variable. Therefore, the probabilistic hesitant
intuitionistic fuzzy linguistic term sets (PHIFLTSs) have been presented to extend the PLTS by
combining the membership and non-membership in symmetry to depict the evaluation of the
experts. To overcome the existing shortcomings and enrich the methodology framework of PHIFLTSs,
some novel operational laws are defined to extend the applicability and methodology of the PHIFLTSs
in MAGDM. Furthermore, the distance and correlation measures for the PHIFLTSs are improved to
make up the shortage of the current distance measures. In addition, the unbalanced linguistic terms
are taken into account to represent the cognitive complex information of experts. At last, a MAGDM
model based on the multiplicative multi-objective optimization by ratio analysis (MULTIMOORA)
approach with the use of the developed novel operational laws and correlation measures is presented,
which results in more accuracy and effectiveness. A real-word application example is presented to
demonstrate the working of the proposed methodology. Moreover, a thorough comparison is done
with related existing works in order to show the validity of this methodology.

Keywords: distance measure; similarity measurement; hesitant intuitionistic fuzzy linguistic term set;
probabilistic hesitant intuitionistic fuzzy linguistic term set; multiple attribute group decision making

1. Introduction

Multi-attribute group decision-making (MAGDM) is usually described as the process of selecting
the optimal option that has the highest degree of satisfaction from a series of finite alternatives,
which are evaluated by multiple experts over multiple attributes. A complete MAGDM process can
be divided into three parts: (1) expression of the evaluation values provided by a group of experts;
(2) determining the weights of attributes; (3) aggregating the individual evaluations and obtaining the
final ranking [1,2]. Over the past few decades, many researchers have investigated the theories and
methods of MAGDM problems, and a great deal of research has been done in the fields of operational
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laws [3,4], aggregation operators [5–7], distance measures and similarity measure [8,9], and outranking
relations [10–12].

In many practical situations, to describe complex and imprecise cognition, it is more convenient to
provide the decision-making information in linguistic terms, such as “good” quality or “very bad” credit
level, rather than precise numerical values, owing to the unquantifiable and ambiguity of the real-life
condition. Zadeh [13] proposed the fuzzy linguistic approach, which adopts linguistic terms to depict
the intensity of membership between an element and a set. However, experts show some hesitancy
among several evaluation values, as the fuzzy linguistic approach only allows singleton linguistic term
to represent the value of a linguistic variable, and thus it may not express the preference of the decision
maker accurately. To improve the elicitation of linguistic information, Rodriguez et al. [14] extended
the fuzzy linguistic approach and introduced hesitant fuzzy linguistic term sets (HFLTSs), which allow
experts to provide their evaluations in several linguistic term values. For example, the evaluation
of the new product’s market prospect can be “between medium and high”, and the evaluation of a
supplier’s service capability can be “at least good”. In recent years, HFLTSs have received a great deal
of attention from researchers and theories and its methods have been widely discussed [15–21].

Nevertheless, experts assume equal weight when employing each linguistic term to describe
the preference intensity over HFLTSs, which may not reflect the actual conditions in some cases.
For example, an expert can use (s1, s2, s3) to express his opinions and assign a weight to each linguistic
term as (0.5, 0.3, 0.2), respectively. The HFLTS fails to describe such a situation accurately due to reasons
of limitations in expression. Thus, Pang et al. [22] presented probabilistic linguistic term sets (PLTSs),
which not only describe the hesitant information with more than one linguistic term, but also reflect
the evaluation values by assigning a weight to each linguistic term. Due to the characteristics of more
flexibility and comprehensiveness, many researches have investigated the related calculation methods
and extended theories. Pang et al. [22] defined the basic operations and aggregation operators for PLTS
and applied them to deal with the MAGDM problems. Wu et al. [23] presented an aggregation method
to obtain the collective judgement by integrating the individual opinions for PLTS. Zhang et al. [24]
introduced the concept of the probabilistic linguistic preference relation (PLPR) and applied it to an
investment risk assessment problem. Zhang et al. [25] investigated the consensus reaching process
for MAGDM with PLPRs. Liao et al. [26] established the linear programming model of probabilistic
linguistics to handle the MADM and gave an application example about evaluating the hospital levels
in China.

However, PLTSs also have a big limitation for the reason of regarding the membership degree of a
linguistic value to be 1 by default, and do not consider the degree of non-membership and hesitancy of
a linguistic variable. However, in fact, for the reasons of cognitive limitations and knowledge gaps,
this information is indispensable. A simple example of evaluating the sales of a new product can be
“60% sure high and 40% sure very high, and it cannot be bad”. Therefore, Malik et al. [27] proposed
probabilistic hesitant intuitionistic fuzzy linguistic term sets (PHIFLTSs), which facilitated experts
to express their judgment about membership and non-membership information in linguistic terms
simultaneously to cope with such complicated and ambiguous situations in the real-world.

Nevertheless, since PHIFLTSs have been put forward only a few years ago, many issues need to
be solved to enrich its methodology framework.

(1) The existing PHIFLTSs proposed in [27] are based on the direct calculation between subscripts of
linguistic terms and their associated probabilities. However, a great deal of important defects
for these operations appear in some situations. For example, let S = {st|t =0, 1, . . . 6} be a
linguistic term set, λ = 2 a positive real number, and E1

s (P) =< {s4(0.3), s5(0.7)}, {s1(1)} > and
E2

s (P) =< {s4(1)}, {s2(1)} > two PHIFLTSs; then, by using the operational laws given by [27],
we can obtain E1

s (P) + E2
s (P) =< {s5.2, s7.5}, {s3} >, λE2

s (P) =< {s8}, {s4} >. Obviously, the result
not only exceeds the bound [s0, s6], but also loses the associated probability information.

(2) The existing forms of PHIFLTSs are based on a qualitative scale mapped to a sequence of adjacent
integers that are equally distributed. In fact, unbalanced conditions are very common if we take
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the psychology of experts into account [28]. Torra [29] discussed the unbalanced semantics for an
ordered set of linguistic terms for the first time. Afterward, many achievements were obtained
about the unbalanced linguistic terms [30–37]. However, Malik et al. [27] did not consider the
situation of unbalanced linguistic terms on the PHIFLTS environment.

(3) The distance measure defined in [27] is also based on the subscripts of each linguistic term and the
associated probability. However, on the one hand, it cannot handle the conditions of unbalanced
linguistic terms over PHIFLTSs; on the other hand, unreasonable results may be produced in
some specific situations.

(4) Compared with the current well-known ranking techniques including TOPSIS, VIKOR, ELECTRE,
PROMETHEE, AHP, and MOORA, the multiplicative multi-objective optimization by ratio
analysis (MULTIMOORA), which is specific to peculiarities of three aggregation models
from the aspects of fully compensatory, non-compensatory, and incompletely compensatory
has separately verified the superiority concerning time consumption, robustness, simplicity,
and effectiveness [38–41]. However, advances in the state of the art have shown that no studies
applied the MULTIMOORA method to the probabilistic hesitant intuitionistic fuzzy linguistic
term sets environment.

To overcome the above-stated limitations and enrich the theories and methods of the PHIFLTSs,
this paper focuses on the following four main aspects:

(1) This paper proposes some novel operational laws for the probabilistic hesitant intuitionistic fuzzy
linguistic term sets to enrich the computation between PHIFLTSs and to improve the applicability
and methodology in multi-attribute group decision-making models.

(2) This paper establishes the distance and correlation measures for the probabilistic hesitant
intuitionistic fuzzy linguistic term sets, which make up for the shortage of the current
distance measures.

(3) This paper takes the unbalanced linguistic terms of the probabilistic hesitant intuitionistic fuzzy
linguistic term sets environment into account to better describe the difference in cognitive
information of experts under different situations.

(4) This paper presents a MAGDM model based on the MULTIMOORA approach with the use of the
developed novel operational laws and correlation measures.

Based on these four innovative strands of research, the following main goals of this paper are
two-fold: (1) with the use of the proposed novel operational laws, distance, and correlation measure,
and the unbalanced linguistic terms PHIFLTSs, to provide new theories and methods for the PHIFLTSs
to overcome the existing defects; (2) with the use of the MULTIMOORA ranking approach, to propose a
new multi-attribute group decision-making method for the PHIFLTSs to obtain superiority concerning
time consumption, robustness, simplicity, and effectiveness at the decision making level.

The structure of this paper is as follows: Some concepts about PHIFLTSs, the normalized PHIFLTSs,
intuitionistic fuzzy sets, and linguistic scale function are briefly reviewed in Section 2. Section 3
discusses the comparison between PHIFLEs. The novel operational laws for PHIFLTSs are presented
in Section 4. Section 5 discusses the distance and correlation measure of the PHIFLTSs. The MAGDM
method based on the MULTIMOORA approach under the PHIFLTSs environment are proposed in
Section 6. An application example is presented in Section 7 to illustrate the proposed approach.
Section 8 presents a comparison with some existing related methods. Our conclusions are presented
in Section 9.

2. Preliminaries

In this section, the basic definitions and operations about probabilistic hesitant intuitionistic
fuzzy linguistic term sets, intuitionistic fuzzy sets, correlation measures, and correlation coefficient
are introduced.
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2.1. Probabilistic Hesitant Intuitionistic Fuzzy Linguistic Term Sets

Definition 1. [27] Let X = {x1, x2, . . . , xn} be a universe of discourse, and S = {si
∣∣∣i = 0, 1, . . . , g } be a

consecutive linguistic term set. A probabilistic hesitant intuitionistic fuzzy linguistic term sets on X, Es(P)
can be mathematically represented as: ES(P) = {(xi,< Mi

S(p), Ni
s(p) >)|xi ∈ X} . Here, Mi

S(p), Ni
s(p) are any

subsets of S, respectively, which denote the membership degree and non-membership degree of linguistic variable
xi to the linguistic term set S and can be denoted as

Mi
s(p) = {s

(l)
m (p(l)m )

∣∣∣∣s(l)m ∈ S,p(l)m ≥ 0, l = 1, 2, . . . , #Lm,
#Lm∑
l=1

p(l)m ≤ 1}

Ni
s(p) = {s

(l′)
n (p(l′)n )

∣∣∣∣s(l′)n ∈ S,p(l′)n ≥ 0, l′ = 1, 2, . . . , #Ln,
Ln∑

l′=1

p(l′)n ≤ 1}

where s(l)m (p(l)m ), s(l′)n (p(l′)n ) are the l-th and l’-th probabilistic linguistic term in Mi
S(p), Ni

s(p), #LM, #LN are the
number of all different linguistic terms in Mi

S(p) and Ni
s(p). For each PHIFLTS Es(P) on X, it should satisfy the

following two conditions:

s0 ≤ max
(
s(l)m

)
⊕min

(
s(l′)n

)
≤ sg and s0 ≤ min

(
s(l)m

)
⊕max

(
s(l′)n

)
≤ sg.

For convenience, ES(P) =< MS(p), NS(p) > is called the probabilistic hesitant intuitionistic fuzzy
linguistic element (PHIFLE).

2.2. The Normalization of PHIFLEs

Normally, the sum of the membership probabilities and the non-membership probabilities are
both 1 in PHIFLE. However, if either of them has a sum less than 1, the normalization process should
be employed to resolve it.

Definition 2. [27] Let ES(P) = {(xi,< Mi
S(p), Ni

s(p) >)|xi ∈ X} be a PHIFLE, the normalization form of
ES(P•) = {(xi,< Mi

S(p
•), Ni

s(p•) >)|xi ∈ X} can be defined as follows:

Mi
s(p
•) = {s(l)m (p•(l)m )

∣∣∣∣s(l)m ∈ S,p•(l)m =
p(l)m

#Lm∑
l=1

p(l)m

, l = 1, 2, . . . , #Lm,
#Lm∑
l=1

p(l)m ≤ 1} (1)

Ni
s(p
•) = {s(l′)n (p(•l′)n )

∣∣∣∣s(l′)n ∈ S,p(•l′)n =
p(l′)n

#Ln∑
l′=1

p(l′)n

, l′ = 1, 2, . . . , #Ln,
#Ln∑
l′=1

p(l′)n ≤ 1} (2)

2.3. Intuitionistic Fuzzy Sets and the Basic Operational Laws

Definition 3. [42] Let X be a non-empty universe of discourse and an intuitionistic fuzzy set (IFS) A in X
is given by A = {< x,µA(x), vA(x) >: x ∈ X} , where µA : X→ [0, 1] , vA : X→ [0, 1] with the condition
0 ≤ µA(x) + vA(x) ≤ 1 for all x ∈ X. The numbers of µA(x) and vA(x) denote the degree of membership and
non-membership of x to the set A, respectively. IFS(X) is used to denote the set of all the IFSs in X. In addition,
for each A ∈ IFS(X), πA(x) = 1− µA(x) − vA(x) is termed as the indeterminacy or hesitancy degree of x to the
set A, and it is obvious that 0 ≤ πA(x) ≤ 1 for all x ∈ X.

Definition 4. [42] Let α =< µα, vα > , β =< µβ, vβ > be two intuitionistic fuzzy values (IFVs), and λ be a
positive real number; then
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(1) α⊕ β =< µα + µβ − µαµβ, vαvβ >
(2) α⊗ β =< µαµβ, vα + vβ − vαvβ >

(3) λα =< 1− (1− µα)
λ, vλα >,λ ≥ 0

(4) αλ =< µλα, 1− (1− vα)
λ >,λ ≥ 0

(2) α =< vα, vβ >.

2.4. Linguistic Scale Function

The concept of linguistic scale function (LSF) can be utilized to different types of semantics
of linguistic terms. Normally, the LSF f is a monotonically increasing function, where f : sα → θα ;
f−1 : θα → sα , θα ∈ [0, 1]. According to the different semantic distributions represented by linguistic

terms, the authors in [43] defined three different types of LSFs, as follows:

(1) If the semantics of linguistic terms are divide equally, the LSF (the first type) is defined as follows:

f (si) = θi =
i
g

, where i = 0, 1, . . . , g and θi ∈ [0, 1] (3)

(2) If the semantics of any adjacent linguistic term are unequally divided, the deviation values in
every side of sg/2 both present the tendency of increase; the LSF (the second type) is defined as
follows:

f (si) = θi =

 ag/2
−a(g/2)−i

2ag/2−2
ag/2+ai−(g/2)

−2
2ag/2−2

(i = 0, 1, 2, · · · , g
2 )

(i = g
2 + 1, g

2 + 2, · · · , g)
(4)

If the scale level is g + 1, then a =
g+1√9.

(3) If the semantics of any adjacent linguistic term are unequally divided, the deviation value in
every side of sg/2 present the tendency of decrease; the LSF (the third type) is defined as follows:

f (si) = θi =


(g/2)α+((g/2)−i)α

2(g/2)α

(g/2)β+(i−(g/2))β

2(g/2)β

(i = 0, 1, 2, · · · , g
2 )

(i = g
2 + 1, g

2 + 2, · · · , g)
(5)

where α,β ∈ (0, 1] are determined by the decision makers based on their psychological attitudes.

3. The Comparison between PHIFLEs

With the aim of comparing the PHIFLEs, authors in [27] proposed the score function and the
deviation degree of PHIFLTSs. However, the value of the score function defined in [27] is a linguistic
term, while the score should be a crisp number, and it also cannot handle the unbalanced linguistic
terms PHIFLTSs. To overcome these defects, we propose a new score function and variance value
function of the PHIFLTSs in this section.

Definition 5. Let S = {st|t =0, 1, . . . g} be a linguistic term set, ES(P) =< Ms(p), Ns(p) > be a normalized
PHIFLE, and #LM, #LN the total number of different linguistic elements in Ms(p) and Ns(p), and f be the
linguistic scale functions. The score function of PHIFLE can be defined as follows:

S(ES(P)) =
#LM∑
l=1

f (s(l)m ) · p(l)m −

#LN∑
l=1

f (s(l′)n ) · p(l′)n (6)

Based on Equations (2) and (3), the linguistic scale functions f can be utilized to handle the
conditions of unbalanced linguistic terms on the PHIFLTSs environment. For two PHIFLEs E1

s (P) and



Symmetry 2020, 12, 1932 6 of 21

E2
S(P), if S(E1

s (P)) < S(E2
s (P)), then E1

s (P) is inferior to E2
S(P); if S(E1

s (P)) > S(E2
s (P)), then E1

s (P) is
superior to E2

S(P); if S(E1
s (P)) = S(E2

s (P)), then we cannot distinguish these two PHIFLEs. In this case,
we need to define another indicator, which is the variance value function as follows:

Definition 6. Let S = {st|t =0, 1, . . . g} be an LTS, ES(P) =< Ms(p), Ns(p) > a normalized PHIFLE, #LM,
#LN the total number of different linguistic elements in Ms(p) and Ns(p), and f the LFS. The variance value
function of PHIFLE can be defined as follows:

σ(ES(P)) =

#LM∑
l=1

[ f (s(l)m ) − S(ES(P))]
2
· p(l)m +

#LN∑
l=1

[ f (s(l′)n ) − S(ES(P))]
2
· p(l′)n


1
2

(7)

For two PHIFLEs E1
s (P) and E2

S(P), if σ(E1
s (P)) < σ(E2

s (P)), then E1
s (P) is superior to E2

S(P);
if σ(E1

s (P)) > σ(E2
s (P)), then E1

s (P) is inferior to E2
S(P); if S(E1

s (P)) = S(E2
s (P)), then E1

s (P) is
indifferent to E2

S(P).

Example 1. Let S = {st|t =0, 1, . . . , 6} be an LTS, E1
S(P) =< {s1(0.5), s2(0.5)}, {s3(0.3),s4(0.7)} >, E2

S(P) =<
{s0(0.2),s1(0.5),s2(0.3)}, {s3(0.2),s4(0.8)} >, E3

S(P) =< {s0(0.2),s1(0.2),s2(0.5),s3(0.1), {s3(0.3),s4(0.7)}}
be three PHIFLEs. For convenience, the first type of linguistic scale function f (si) =

i
g , i = 0, 1, . . . g is selected

as the equivalent transformation functions f.

Based on Definition 5, we can obtain S(E1
S(P)) = −0.37, S(E2

S(P)) = −0.447, S(E3
S(P)) = −0.37.

Since S(E1
S(P)) > S(E2

S(P)), then E1
s (P) is superior to E2

S(P). However, for the reason of
S(E1

S(P)) = S(E2
S(P)), we thus cannot distinguish these two PHIFLEs. Therefore, utilizing Definition 6,

we can obtain σ(E1
s (P)) = 1.37, σ(E3

s (P)) = 1.39. Since σ(E1
s (P)) < σ(E3

s (P)), then E1
s (P) is superior

to E3
S(P).

4. Some Novel Operational Laws of the PHIFLEs

As aforementioned, the existing operations over PHIFLEs encounter many important defects due
to the reasons of combining two different dimensions (linguistic terms and their associated probabilities)
together. To consider eliminating the above-stated limitations, it is necessary to propose some novel
operational laws for PHIFLEs. Inspired by [42], the linguistic scale functions f and f−1 can be viewed as
a transformations tool, which make the equivalent transformations between the PHIFLEs and the IFVs
possible. Utilizing the linguistic scale function f, the PHIFLEs are transformed to the IFVs, and then we
can use the operations (Definition 4) to calculate these transformed IFVs. Furthermore, the inverse
functions f−1 can be used to transform these calculation results to the PHIFLEs equivalently. Therefore,
the novel operational laws for PHIFLEs are defined:

Definition 7. Let S = {st|t =0, 1, . . . g} be an LTS, E1
S(P) =< M1

S(p), N1
S(p) >, E2

S(P) =< M2
S(p), N2

S(p) >
be two normalized PHIFLEs, f and f−1 be the linguistic scale functions and the inverse functions, and λ be a
positive real number. Then

(1)
E1

s (P) ⊕ E2
s (P)=< f−1

{ ∪

γ
(i)
1 ∈ f (M1

s ),γ
( j)
2 ∈ f (M2

s )

(γ
(i)
1 + γ

( j)
2 − γ

(i)
1 γ

( j)
2 )(P(i)

1 P( j)
2 )},

f−1
{ ∪

η
(i′)
1 ∈ f (N1

s ),η2
( j′)∈ f (N2

s )

(η
(i′)
1 η

( j′)
2 )(P(i′)

1 P( j′)
2 )} >, i = 1, 2, . . . , #LM1 , i′ = 1, 2, . . . , #LN1 , j = 1, 2, . . . , #LM2 , j′ = 1, 2, . . . , #LN2

(2)
E1

s (P) ⊗ E2
s (P)=< f−1

{ ∪

γ
(i)
1 ∈ f (M1

s ),γ
( j)
2 ∈ f (M2

s )

(γ
(i)
1 γ

( j)
2 )(P(i)

1 P( j)
2 )},

f−1
{ ∪

η
(i′)
1 ∈ f (N1

s ),η2
( j′)∈ f (N2

s )

(η
(i′)
1 + η

( j′)
2 − η

(i′)
1 η

( j′)
2 )(P(i′)

1 P( j′)
2 )} >, i = 1, 2, . . . , #LM1 , i′ = 1, 2, . . . , #LN1 , j = 1, 2, . . . , #LM2 , j′ = 1, 2, . . . , #LN2

(3) λE1
s (P) =< f−1

{ ∪

γ
(i)
1 ∈ f (M1

s )

(1 − (1− γ(i)1 )
λ
)(P(i))}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s )

(
η
(i′)
1 )

λ
(P(i′))} >, i = 1, 2, . . . , #LM1 , i′ = 1, 2, . . . , #LN1

(4) E1
s (P)

λ =< f−1
{ ∪

γ
(i)
1 ∈ f (M1

s )

(
γ
(i)
1 )

λ
(P(i))}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s )

(1 − (1 − η(i′)1 ))
λ
(P(i′))} >, i = 1, 2, . . . , #LM1 , i′ = 1, 2, . . . , #LN1
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Theorem 1. Let S = {st|t =0, 1, . . . g} be an LTS, E1
S(P) =< M1

S(p), N1
S(p) >, E2

S(P) =< M2
S(p), N2

S(p) >
be two PHIFLEs, and λ, λ1, λ2 be three positive real numbers. Then

(1) E1
s (P) ⊕ E2

s (P) = E2
s (P) ⊕ E1

s (P)
(2) E1

s (P) ⊗ E2
s (P) = E2

s (P) ⊗ E1
s (P)

(3) λ(E1
s (P) ⊕ E2

s (P)) = λE1
s (P) ⊕ λE2

s (P)

(4) (E1
s (P) ⊗ E2

s (P))
λ
= (E1

s (P))
λ
⊗ (E2

s (P))
λ

Proof. (1) and (2) are obvious, and the proofs are omitted.
(3):

λ(E1
s (P) ⊕ E2

s (P)) =< f−1
{ ∪

γ
(i)
1 ∈ f (M1

s ),γ
( j)
2 ∈ f (M2

s )

[1− (1− γ
(i)
1 − γ

( j)
2 + γ

(i)
1 γ

( j)
2 )]

λ
(P(i)1 P

( j)
2 )}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s ),η2
( j′)
∈ f (N2

s )

(η
(i′)
1 η

( j′)
2 )

λ
(P(i′)1 P

( j′)
2 )} >

=< f−1
{ ∪

γ
(i)
1 ∈ f (M1

s ),γ
( j)
2 ∈ f (M2

s )

[1− (1− γ
(i)
1 )

λ
(1− γ

( j)
2 )]

λ
(P(i)1 P

( j)
2 )}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s ),η2
( j′)
∈ f (N2

s )

(η
(i′)
1 η

( j′)
2 )

λ
(P(i′)1 P

( j′)
2 )} >

=< f−1
{ ∪

γ
(i)
1 ∈ f (M1

s )

(
1− (1− γ

(i)
1 ))

λ
(P(i)1 )}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s )

(
η
(i′)
1 )

λ
(P(i′)1 )} >⊕ < f−1

{ ∪

γ
( j)
2 ∈ f (M2

s )

(
1− (1− γ

( j)
2 ))

λ
(P
( j)
2 )}, f−1

{ ∪

η
( j′)
2 ∈ f (N2

s )

(
η
( j′)
2 )

λ
(P
( j′)
2 )} >

= λE1
s ⊕ λE2

s

(4):

(E1
s (P) ⊗ E2

s (P))
λ

=< f−1
{ ∪

γ
(i)
1 ∈ f (M1

s ),γ
( j)
2 ∈ f (M2

s )

(γ
(i)
1 γ

( j)
2 )

λ
(P(i)1 P

( j)
2 )}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s ),η2
( j′)
∈ f (N2

s )

[1− (1− η
(i′)
1 − η

( j′)
2 + η

(i′)
1 η

( j′)
2 )]

λ
(P(i′)1 P

( j′)
2 )} >

=< f−1
{ ∪

γ
(i)
1 ∈ f (M1

s ),γ
( j)
2 ∈ f (M2

s )

(γ
(i)
1 )

λ
(γ
( j)
2 )

λ
(P(i)1 P

( j)
2 )}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s ),η2
( j′)
∈ f (N2

s )

[1− (1− η
(i′)
1 )

λ
(1− η

( j′)
2 )

λ
](P(i′)1 P

( j′)
2 )} >

=< f−1
{ ∪

γ
(i)
1 ∈ f (M1

s )

(
γ
(i)
1 )

λ
(P(i)1 )}, f−1

{ ∪

η
(i′)
1 ∈ f (N1

s )

(1 − (1 − η
(i′)
1 ))

λ
(P(i′)1 )} > ⊗ < f−1

{ ∪

γ
( j)
2 ∈ f (M2

s )

(
γ
( j)
2 )

λ
(P
( j)
2 )}, f−1

{ ∪

η
( j′)
2 ∈ f (N2

s )

(1 − (1 − η
( j′)
2 ))

λ
(P
( j′)
2 )} >

= (E1
s )
λ
⊗ (E2

s )
λ

�

Example 2. Let S = {st|t =0, 1, . . . , 6} be an LTS, E1
S(P) =< {s1(0.5),s2(0.5)}, {s3(0.3),s4(0.7)} >, E2

S(P) =<
{s0(0.2),s1(0.5),s2(0.3)}, {s3(0.2),s4(0.8)} > be two PHIFLEs, λ = 2. For convenience, the first type of LSF
f (si) =

i
g , i = 0, 1, . . . g is selected as the equivalent transformation functions f.

Then:
Utilizing the linguistic scale functions f, we can obtain f (M1

s (p)) = ( 1
6 , 1

3 )(0.5, 0.5), f (M2
s (p)) =

(0, 1
6 , 1

3 )(0.2, 0.5, 0.3), f (N1
s (p)) = ( 1

2 , 2
3 )(0.3, 0.7), f (N2

s (p)) = ( 1
2 , 2

3 )(0.2, 0.8). Then, based on Definition 7,
we can obtain the final results as follows:

(1)
E1

s (p) ⊕ E2
s (p) = < f−1

{
2
3 (0.1), 7

9 (0.25), 8
9 (0.15), 3

4 (0.1), 5
6 (0.25), 11

12 (0.15)}, f−1
{

1
4 (0.06), 1

3 (0.38), 4
9 (0.56)} >

=< {s4(0.1),s4.5(0.1),s4.67(0.25),s5(0.25), s5.33(0.15),s5.5(0.15)}, {s1.5(0.06),s2(0.38),s2.67(0.56)} >

(2)
E1

s (p) ⊗ E2
s (p) = < f−1

{0(0.2), 1
36 (0.25), 1

18 (0.4), 1
9 (0.15)}, f−1

{
3
4 (0.06), 5

6 (0.38), 8
9 (0.56)} >

=< {s0(0.2),s0.17(0.25),s0.33(0.4),s0.67(0.15)}, {s4.5(0.06),s5(0.38),s5.33(0.56)} >

(3) λE1
s (p) =< f−1

{
11
36 (0.5), 5

9 (0.5)}, f−1
{

1
4 (0.3), 4

9 (0.7)} >=< {s1.83(0.5), s3.33(0.5)}, {s1.5(0.3), s2.67(0.7)} >

(4) (E1
s (p))

λ
=< f−1

{
1
36 (0.5), 1

9 (0.5)}, f−1
{0(0.2), 11

36 (0.5), 5
9 (0.3)} >=< {s0.16(0.5), s0.67(0.5)}, {s0(0.2), s1.83(0.5), s3.33(0.3)} >

5. Distance and Correlation Measure of the PHIFLTSs Based on Adjusted PHIFLEs

Distance measure can reflect the specific differences between two evaluations or sets. The existing
distance measure is based on the subscripts of each linguistic term and the associated probability.
However, it cannot handle the unbalanced linguistic terms PHIFLTSs and also may produce
unreasonable results in some specific situations. Therefore, inspired by the method proposed in [23],
we propose a new distance and correlation measure for PHIFLTSs based on adjusted PHIFLE.
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5.1. The Adjusted PHIFLEs with Different Probability Distributions

Usually, this is a common situation for two PHIFLEs E1
S(P) =< M1

S(p), N1
S(p) > and E2

S(P) =<
M2

S(p), N2
S(p) >, that the number of elements in membership set and non-membership set are different,

that is to say, #LM1 , #LM2 or (and)#LN1 , #LN2 . In such situations, the existing method needs to
increase the linguistic terms (the probabilities associated with the added linguistic terms are “0”) in
the relatively shorter PHIFLE to equalize their lengths, because the PHIFLEs with different lengths
bring important problems in distance measure or aggregation operators. However, on the one hand,
multiplying the probabilities by the subscripts is unreasonable; on the other hand, unreasonable results
may be produced.

Wu et al. [23] proposed a novel method to adjust the linguistic terms with different probability
distributions. With this method, the PLEs can be adjusted to the same probability set and the operations
reduced to the dimension of the linguistic terms only. Therefore, we utilized it to adjust the probability
distribution on PHIFLEs.

Definition 8. [23]. Let S = {st|t =0, 1, . . . g} be an LTS, E1
S(P) =< M1

S(p), N1
S(p) >, E2

S(P) =<
M2

S(p), N2
S(p) > are two normalized PHIFLEs. The rearranged probability set of M1

S(p), M2
S(p) and

N1
S(p), N2

S(p) are the same as P∗ = {p∗(1), p∗(2), . . . , p∗(k)} and P•∗ = {p•∗(1), p•∗(2), . . . , p•∗(k)}. Then, the
adjusted PHIFLEs are E1

S(P) =< M1
S(p
∗), N1

S(p
•∗) > and E2

S(P) =< M2
S(p
∗), N2

S(p
•∗) >, where

p∗(1) = min{p(1)1 , p(1)2 } → if p∗(1) = p(1)1 , then p∗(2) = min{p(2)1 , p(1)2 − p∗(1)}; if p∗(1) = p(1)2 , then

p∗(2) = min{p(1)1 − p∗(1), p(2)2 } → if p∗(1) = p(1)1 and p∗(2) = p(2)1 , then p∗(3) = min{p(3)1 , p(1)2 − p∗(1) − p∗(2)}; if

p∗(1) = p(1)2 and p∗(2) = p(2)2 , then p∗(3) = min{p(1)1 −p∗(1) −p∗(2), p(3)2 }; if p∗(1) = p(1)2 and p∗(2) = p(1)1 −p∗(1),

then p∗(3) = min{p(2)1 , p(2)2 − p∗(2)}, . . . , p∗(k) = min{p
(Lm1 )

1 , p
(Lm2 )

1 }.

Analogously, P•∗ = {p•∗(1), p•∗(2), . . . , p•∗(k)} can be obtained through the same processes. It
is obvious that the linguistic terms and the sum of the associated probabilities on each linguistic
term are not changed in the adjusted PHIFLE, that is to say, there is no information loss with this
adjusting method.

Example 3. Let S = {st|t =0, 1, . . . , 6} be an LTS, E1
S(P) =< {s1(0.5),s2(0.5)}, {s3(0.3),s4(0.7)} >, E2

S(P) =<
{s0(0.2),s1(0.5),s2(0.3)}, {s3(0.2),s4(0.8)} > be two normalized PHIFLEs.

The processes of adjusting the PHIFLEs are described in Figure 1.Symmetry 2020, 12, x FOR PEER REVIEW 9 of 22 

 

1( )sM p

2 ( )sM p

1 *( )sM p

2 *( )sM p

0 (0.2)s

0 (0.2)s

1(0.5)s

1(0.2)s 1(0.3)s

1(0.5)s

1(0.3)s
1(0.2)s

2 (0.5)s

2 (0.2)s

2 (0.3)s

2 (0.3)s

2 (0.3)s

1( )sN p

2 ( )sN p

1 *( )sN p

2 *( )sN p

3(0.2)s

3(0.2)s

3(0.3)s

3(0.2)s 3(0.1)s

4 (0.8)s

4 (0.1)s 4 (0.7)s

4 (0.7)s

4 (0.7)s

 

Figure 1. The process of adjusting the PHIFLEs. 
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1 2( ( ), ( ))S Sd E P E P  between 
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defined as 
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( ( ), ( )) [ ( ( ) ( ) + ( ) ( ) )]
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l l l l l l
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 

     (8) 
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Figure 1. The process of adjusting the PHIFLEs.

5.2. The Distance Measure of the PHIFLTSs Based on the Adjusted PHIFLEs

The authors in [27] presented the distance measure between PHIFLEs, which is based on the
aggregation of the subscript of each linguistic term and the associated probability. Nevertheless, on the
one hand, it cannot handle the situations of unbalanced PHIFLTSs; on the other hand, it also encounters
defects in some specific situations. Let us give an example to reveal it.
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Example 4. Let S = {st|t =0, 1, . . . , 6} be an LTS, E1
s (P) =< {(s1(0.5), s2(0.5))}, {s4(1)} > and E2

s (P) =<
{s1(1)}, {s4(1)} > and E3

s (P) =< {s2(0.1),s3(0.9)}, {s4(1)} > be three normalized PHIFLEs on S. Based
on the distance measure defined in [27], we find that d(E1

s (P), E2
s (P)) = 0.35, d(E1

s (P), E3
s (P)) = 1.22,

d(E2
s (P), E3

s (P)) = 1.21. This implies that E3
s (P) is further to E1

s (P) than E2
s (P), which goes against the fact.

To overcome such limitations, we propose a new distance measure based on the adjusted PHIFLEs,
which is defined as follows:

Definition 9. Let S = {st|t =0, 1, . . . g} be a linguistic term set. E1
S(P) =< M1

S(p), N1
S(p) > and E2

S(P) =<
M2

S(p), N2
S(p) > be two normalized PHIFLEs on S; assume that the adjusted PHIFLEs are E1

S(P
∗) =<

M1
S(p
∗), N1

S(p
•∗) > and E2

S(P
∗) =< M2

S(p
∗), N2

S(p
•∗) >, respectively. The distance d(E1

S(P), E2
S(P)) between

E1
S(P) and E2

S(P) can be defined as

d(E1
S(P), E2

S(P)) = [
1
2
(

#LM∑
l=1

P(l∗)
∣∣∣∣ f (s1(l)

m ) − f (s2(l)
m )

∣∣∣∣λ + #LN∑
l′=1

P(l′•∗)
∣∣∣∣ f (s1(l′)

n ) − f (s2(l′)
n )

∣∣∣∣λ)]1/λ

(8)

wheres1(l)
m , s2(l)

m , s1(l′)
n and s2(l′)

n are the subscripts of the membership and the non-membership linguistic terms
set, respectively. The linguistic scale function f is determined based on the practical situations. λ > 0, if λ = 1,
the distance measure proposed in Definition 9, is a Hamming distance measurement; if λ = 2, Definition 9 is an
Euclidean distance measurement.

Utilizing the proposed method in Example 4, we can obtain the Euclidean distance as
d(E1

s (P), E2
s (P)) = 0.083, d(E1

s (P), E3
s (P)) = 0.178, d(E2

s (P), E3
s (P)) = 0.227. This implies that E3

s (P) is
closer to E1

s (P) than E2
s (P), and this is more rational.

Theorem 2. Let S = {st|t =0, 1, . . . g} be a linguistic term set, and E1
S(P) =< M1

S(p), N1
S(p) > and

E2
S(P) =< M2

S(p), N2
S(p) > be two PHIFLEs; the distance measure between E1

S(P) and E2
S(P) satisfies the

following basic principles:

(1) d(E1
S(P), E2

S(P)) = d(E2
S(P), E1

S(P))

(2) 0 ≤ d(E1
S(P), E2

S(P)) ≤ 1

(3) d(E1
S(P), E2

S(P)) = 0, if and only if E1
S(P) = E2

S(P).

Proof.
(1) It is obvious and the proof is omitted.

(2) Since 0 ≤ f (M1(i)
s ) ≤ 1 and 0 ≤ f (M2(i)

s ) ≤ 1, then 0 ≤
∣∣∣∣ f (M1(i)

s ) − f (M2(i)
s )

∣∣∣∣λ ≤ 1, and thus

0 ≤
#LM∑
L=1

P(i∗)
∣∣∣∣ f (M1(i)

s ) − f (M2(i)
s )

∣∣∣∣λ ≤ #LM∑
L=1

P(i∗) = 1. Analogously, 0 ≤
#LN∑
L=1

P(i′•∗)
∣∣∣∣ f (N1(i)

s ) − f (N2(i)
s )

∣∣∣∣λ ≤
1, then

0 ≤
1
2 (

#LM∑
L=1

P(i∗)
∣∣∣∣ f (M1(i)

s ) − f (M2(i)
s )

∣∣∣∣λ +
#LN∑
L=1

P(i′•∗)
∣∣∣∣ f (N1(i)

s ) − f (N2(i)
s )

∣∣∣∣λ) ≤ 1, that is 0 ≤

d(E1
S(P), E2

S(P)) ≤ 1. This completes the proof of property (1).

(3) If E1
S(P) = E2

S(P), then f (s1(l)
m ) = f (s2(l)

m )(l = 1, 2, . . . , #LM), f (s1(l′)
n ) − f (s2(l′)

n )(l′ = 1, 2, . . . , #LN),

and thus d(E1
S(P), E2

S(P)) = 0. If p∗(k) ≥ 0(k = 1, 2, . . . , K), p•∗(k) ≥ 0(k = 1, 2, . . . , K′), then f (s1(l)
m ) =

f (s2(l)
m )(l = 1, 2, . . . , #LM), f (s1(l′)

n ) − f (s2(l′)
n )(l′ = 1, 2, . . . , #LN) when d(E1

S(P), E2
S(P)) = 0. Thus

E1
S(P) = E2

S(P). �
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5.3. The Correlation Measure and Correlation Coefficients of PHIFLEs

Contrary to the distance measure, the correlation measures of PHIFLEs can be regarded as the
closeness degree between two variables. Normally, there are two types of methods to resolve the
correlation measures, the statistics-based point of view and the information energy-based point of
view. A large number of samples are the basis for the former method; however, a relatively small set
of PHIFLTSs are more common for us to deal with. Therefore, we carry out the correlation measure
from the views of information energy. Motivated by the studies in FSs [44], IFSs [45], HFS [46],
and HFLTS [19], we propose the concept of information energy in the PHIFLTSs, which can be
defined as:

Definition 10. Let S = {st|t =0, 1, . . . g} be an LTS, ES(P) = {(xi,< Mi
S(p), Ni

s(p) >)|xi ∈ X} be a normalized

PHIFLTSs, and Mi
s(p) = {s

(l)
m (p(l)m )

∣∣∣∣s(l)m ∈ S,p(l)m ≥ 0, l = 1, 2, . . . , #Lm}, Ni
s(p) = {s

(l′)
n (p(l′)n )

∣∣∣∣s(l′)n ∈ S,p(l′)n ≥

0, l′ = 1, 2, . . . , #Ln}, the information energy of ES(P) can be defined as:

EPHIFLTS(ES(P)) =
1
2
(

LM∑
l=1

p(l)m [ f (s(l)m )]
2
+

LN∑
l′=1

p(l′)n [ f (s(l′)n )]

2

) (9)

where LM, LN are the numbers of elements in Ms(p) and Ns(p). Then, we introduce the correlation
CPHIFLTS(E1

s (P), E2
s (P)) between two PHIFLTSs E1

S(P) and E2
S(P) by the information-energy-based point of

view, which can be defined as:

Definition 11. Let S = {st|t =0, 1, . . . g} be a linguistic term set. For two normalized PHIFLTEs E1
S(P) =

{(xi,< M1
S(p), N1

s (p) >)|xi ∈ X} and E2
S(P) = {(xi,< M2

S(p), N2
S(p) >)|xi ∈ X} , supposing that the adjusted

PHIFLTEs are E∗1S (P) =< M1
S(p
∗), N1

S(p
•∗) > and E∗2S (P) =< M2

S(p
∗), N2

S(p
•∗) >, respectively. The correlation

between E1
S(P) and E2

S(P) is defined as

CPHIFLTS(E1
s (P), E2

s (P)) =
1
2
(

LM∑
l=1

p(l∗)[ f (s1(l)
m ) · f (s2(l)

m )] +

LN∑
l′=1

p(l′•∗)[ f (s1(l′)
n ) · f (s2(l′)

n )]) (10)

With the use of the correlation and information energy, we propose the correlation coefficient
between two PHIFLEs E1

S(P) and E2
S(P), which is defined as follows:

Definition 12. Let S = {st|t =0, 1, . . . g} be an LTS. For two PHIFLEs E1
S(P) = {(xi,< M1

S(p), N1
s (p) >

)|xi ∈ X} and E2
S(P) = {(xi,< M2

S(p), N2
S(p) >)|xi ∈ X} , the correlation coefficient between E1

S and E2
S is

defined as

KPHIFLTS(E1
s (P), E2

s (P)) =
CPHIFLTS(E1

s (P), E2
s (P))

max(EPHIFLTS(E1
s (P)), EPHIFLTS(E2

s (P)))
(11)

Theorem 3. Let S = {st|t =0, 1, . . . g} be a linguistic term set. For two PHIFLEs E1
S(P) = {(xi,<

M1
S(p), N1

s (p) >)|xi ∈ X} and E2
S(P) = {(xi,< M2

S(p), N2
S(p) >)|xi ∈ X} , the following properties of

KPHIFLTS(E1
s (P), E2

s (P)) hold:

(1) KPHIFLTS(E1
s (P), E2

s (P)) = KPHIFLTS(E2
s (P), E1

s (P))
(2) KPHIFLTS(E1

s (P), E1
s (P)) = 1

(3) 0 ≤ KPHIFLTS(E1
s (P), E2

s (P)) ≤ 1

Proof. (1) and (2) are obvious, and we can omit the proofs of them.
(3): According to the Cauchy inequality,
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(x1y1 + x2y2 + . . .+ xnyn)
2
≤ (x2

1 + x2
2 + . . . + x2

n) · (y2
1 + y2

2 + . . . + y2
n) where xi, yi ∈ R, i =

1, 2, . . . n; we have

|CPHIFLTS(E1
s (P), E2

s (P))| =
1
2

∣∣∣∣∣∣(LM∑
l=1

p(l∗) [ f (s1(l)
m ) · f (s2(l)

m )] +
LN∑

l′=1
p(l′•∗) [ f (s1(l′)

n ) · f (s2(l′)
n )])

∣∣∣∣∣∣
≤

1
2

√
LM∑
l=1

p(l∗) [ f (s1(l)
m )]

2
+

LN∑
l′=1

p(l′•∗) [ f (s1(l′)
n )]

2
•

√
LM∑
l=1

p(l∗) [ f (s2(l)
m )]

2
+

LN∑
l′=1

p(l′•∗) [ f (s2(l′)
n )]

2
≤ max

(
EPHIFLTS(E1

s (P)), EPHIFLTS(E2
s (P))

)

Then |CPHIFLTS(E1
s (P),E2

s (P))|
max(EPHIFLTS(E1

s (P)),EPHIFLTS(E2
s (P)))

≤ 1. Since CPHIFLTS(E1
s (P), E2

s (P)) ≥ 0 and

EPHIFLTS(E1
s (P)), EPHIFLTS(E2

s (P)) ≥ 0, we have 0 ≤ CPHIFLTS(E1
s (P),E2

s (P))
max(EPHIFLTS(E1

s (P)),EPHIFLTS(E2
s (P)))

≤ 1, that is

0 ≤ KPHIFLTS(E1
s (P), E2

s (P)) ≤ 1. End. �

Example 5. Let S = {st|t =0, 1, . . . , 6} be a linguistic term set. E1
S(p) =< {s1(0.5),s2(0.5)}, {s3(0.3),s4(0.7)} >

and E2
S(p) =< {s0(0.2),s1(0.5),s2(0.3)}, {s3(0.2),s4(0.8)} > be two PHIFLEs.

For convenience, the LSF f (si) = i
g , i = 0, 1, . . . g is selected as the equivalent transformation

functions f. The correlation coefficient between E1
S(p) and E2

S(p) can be calculated as follows:
First, based on Definition 8 we can obtain the adjusted PHIFLEs of E1

S(p) and E2
S(p):

E1
S(p
∗) =< {s1(0.2), s1(0.3), s2(0.2), s2(0.3)}, {s3(0.2), s3(0.1), s4(0.7)} >

E2
S(p
∗) =< {s0(0.2), s1(0.3), s1(0.2), s2(0.3)}, {s3(0.2), s4(0.1), s4(0.7)} >

Second, we calculate the information energy of each PHIFLE E1
S(p) and E2

S(p) based on
Definition 10.

EPHIFLTS(E1
S(p)) =

1
2
[0.2× (

1
6
)

2
+ 0.3× (

1
6
)

2
+ 0.2× (

2
6
)

2
+ 0.3× (

2
6
)

2
+ 0.2× (

3
6
)

2
+ 0.1× (

3
6
)

2
+ 0.7× (

4
6
)

2
] = 0.228

EPHIFLTS(E2
S(p)) =

1
2
[0.2×0+ 0.3× (

1
6
)

2
+ 0.2× (

1
6
)

2
+ 0.3× (

2
6
)

2
+ 0.2× (

3
6
)

2
+ 0.1× (

4
6
)

2
+ 0.7× (

4
6
)

2
] = 0.226

Finally, the correlation and correlation coefficient between E1
S(p) and E2

S(p) are yielded based on
Definitions 11 and 12:

CPHIFLTS(E1
s (p), E2

s (p)) =
1
2
[0.2× (

1
6
×

0
6
) + 0.3× (

1
6
×

1
6
)+ 0.2× (

1
6
×

2
6
)+ 0.3× (

2
6
×

2
6
)+ 0.2× (

3
6
×

3
6
)+ 0.1× (

3
6
×

4
6
)+ 0.7× (

4
6
×

4
6
)] = 0.224

KPHIFLTS(E1
s (p), E2

s (p)) = 0.98

6. The MAGDM Method Based on the MULTIMOORA Approach under the PHIFLTSs Environment

Based on the novel operational laws and correlation measures, we propose a new MAGDM method
for the probabilistic hesitant intuitionistic fuzzy linguistic term sets utilizing the MULTIMOORA
approach in this section.

6.1. The Problem Statement

Here, let M = {1, 2, . . . , m}, N = {1, 2, . . . , n}, K = {1, 2, . . . , k}; i ∈ M, j ∈ N, t ∈ K. The multiple
attribute group decision making problems considered in this paper can be represented as follows:
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Let A = {a1, a2, · · · am}(m ≥ 2) be a discrete set of m feasible alternatives, and C = {c1, c2, · · · , cn} be
a finite set of attributes. Let D = {d1, d2, · · · , dk} be a group of decision makers; the individual decision
matrix given by the decision maker dt(t = 1, 2, . . . , k) are as follows:

Dt = (Et
i j(P))m×n

= (Mt
i j(P), Nt

i j(P))m×n
=



(Mt
11(p), Nt

11(p))
(Mt

21(p), Nt
21(p))

. . .
(Mt

1n(p), Nt
1n(p))

(Mt
2n(x), Nt

2n(p))
...

. . .
...

(Mt
m1(p), Nt

m1(p))
· · ·

(Mt
mn(p), Nt

mn(p))


where Et

i j(P) represent the values associate with the criteria c j in alternative ai given by the decision
maker dt, which is assessed as PHIFLEs.

6.2. Determine the Optimal Weights of Attributes Based on the TOPSIS and LP Optimization Method

The optimal weights of attributes w∗j( j = 1, 2, . . . , n) are discussed in this section. It is assumed that
Catt and Batt are the collections of the cost attributes and the benefit attributes, respectively, such that
Batt ∩Catt = ∅. For benefit attribute, the decision maker desires to have a minimum value in case of
cost attribute and a maximum value among the alternatives. First, we derive the positive ideal decision
(PID) H+ and the negative ideal decision (NID) H− associated with the attribute u j( j = 1, 2, . . . , n) as
follows:

H+ = {( max
1≤i≤m

{ri j}
∣∣∣c j ∈ Batt ), ( min

1≤i≤m
{ri j}

∣∣∣c j ∈ Catt)} = {h+1 , h+2 , . . . , h+n } (12)

H− = {( min
1≤i≤m

{ri j}
∣∣∣c j ∈ Batt ), ( max

1≤i≤m
{ri j}

∣∣∣c j ∈ Catt)} = {h−1 , h−2 , . . . , h−n } (13)

where max{ri j} and min{ri j} can be determined based on Definitions 5 and 6. Let Sim+
i j and Sim−i j denote

the similarity measures between the j-th elements in the i-th row of the collective decision matrix and
the positive ideal decision H+ and the negative ideal decision H−, respectively. It can be obtained as
follows:

Sim+
i j = w∗j ·KPHIFLTS(ri j, h+j ) = w∗j ·

CPHIFLTS(ri j, h+j )√
EPHIFLTS(ri j)•

√
EPHIFLTS(h+j )

(14)

where Sim+
i j ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n,

n∑
j=1

w∗j = 1, w∗j ∈ [0, 1].

Sim−i j = w∗j ·KPHIFLTS(ri j, h−j ) = w∗j ·
CPHIFLTS(ri j, h−j )√

EPHIFLTS(ri j)•
√

EPHIFLTS(h−j )
(15)

where Sim−i j ∈ [0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n,
n∑

j=1
w∗j = 1, w∗j ∈ [0, 1].

Subsequently, the LP optimization method should be formulated to determine the w∗j( j =

1, 2, . . . , n). The objective function of the optimization model aims at minimizing the relative similarity
from the H− and maximizing the relative similarity from the H+ simultaneously.

max
m∑

i=1

n∑
j=1

(Sim+
i − Sim−i )

Subject to :


n∑

j=1
(w∗j)

2 = 1

0 ≤ w∗j ≤ 1, j = 1, 2, . . . , n
(16)
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6.3. The MULTIMOORA Approach under the PHIFLTSs Environment

The MULTIMOORA approach is selected as the ranking techniques to solve our problem. First of
all, we can calculate the scores of R based on Definition 5, which is depicted as follows:

S = (Si j)m×n = (S(ri j))m×n (17)

The vector normalization of S(Et
i j) can be derived by

SN
ij = Si j/

√√ m∑
i=1

(Si j)
2 (18)

1. Probabilistic Hesitant Intuitionistic Fuzzy Linguistic Ratio System (PHIFLRS) model

The PHIFLRS model is defined as the arithmetic weighted aggregation operator, and we can
obtain the first subordinate utility value U1(ai) of the alternative ai(i = 1, 2, . . . , m).

U1(ai) =

g∑
j=1

w∗jS
N
ij −

n∑
j=g+1

w∗jS
N
ij (19)

where w∗j are the weights of the attribute c j( j = 1, 2, . . . , n). c j( j = 1, 2, . . . , g) and c j( j = g + 1, g +

2, . . . , n) are benefit attributes and cost attributes, respectively. The alternatives ai (i = 1, 2, . . . , m) are
ranked by the value of U1(ai)(i = 1, 2, . . . , m) in descending order, and we obtain the first subordinate
ranks of alternatives as Rank1 = {ar1

1 , ar1
2 , . . . , ar1

n }.

2. Probabilistic Hesitant Intuitionistic Fuzzy Linguistic Reference Point (PHIFLRP) model

For the reasons of avoiding the selected alternative that has poor performance under some specific
attributes, we define the PHIFLRP model, which is determined by the worst performance of alternatives
ai with respect to different attributes.

U2(ai) = max
j

w∗j
∣∣∣∣SN

j − SN
ij

∣∣∣∣ (20)

where SN
j = maxi (SN

ij ) if c j is a benefit attribute and SN
j = mini (SN

ij ) if c j is a cost attribute. The
alternatives ai (i = 1, 2, . . . , m) are ranked by the value of U2(ai)(i = 1, 2, . . . , m) in ascending order,
and we obtain the second subordinate ranks of alternatives as Rank2 = {ar2

1 , ar2
2 , . . . , ar2

n }.

3. Probabilistic Hesitant Intuitionistic Fuzzy Linguistic Full Multiplicative Form (PHIFLFMF) model

We can obtain the third subordinate utility value U3(ai) of the alternative ai (i = 1, 2, . . . , m) based
on the geometric weighted aggregation operator.

U3(ai) =

g∏
j=1

(SN
ij )

w∗j /
n∏

j=g+1

(SN
ij )

w∗j (21)

where w∗j are the weights of the attribute c j( j = 1, 2, . . . , n). c j( j = 1, 2, . . . , g) and c j( j = g + 1, g +

2, . . . , n) are benefit attributes and cost attributes, respectively. The alternatives ai (i = 1, 2, . . . , m) are
ranked by the value of U3(ai) (i = 1, 2, . . . , m) in descending order, and we obtain the third subordinate
ranks of alternatives as Rank3 = {ar3

1 , ar3
2 , . . . , ar3

n }.
At last, the above three subordinate ranks of alternatives need to be aggregated comprehensively

to derive the final ranking. Since different conditions of problems are resolved by the three models,
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they can be regarded as three attributes, which are PHIFLRS (C1), PHIFLRP (C2), and PHIFLFMF (C3).
Then, two matrices can be built based on the utility value Uy(ai) and the rank Ranky associated with
each attribute cy(y = 1, 2, 3), which are the utility value matrix U = (Ui j)m×3 and the rank matrix
RK = (Ranki j)m×3.

U = (Ui j)m×3 =



U1(a1), U2(a1), U3(a1)

U1(a2), U2(a2), U3(a2)

.

. .

. .
U1(am), U2(am), U3(am)


RK = (Ranki j)m×3 =



ar1
1 , ar2

1 , ar3
1

ar1
2 , ar2

2 , ar3
2

.

. .

. .
ar1

m , ar2
m , ar3

m


In the traditional MULTIMOORA approach, the dominance theory was adopted to carry out

the aggregation. However, as per the analysis in [23], this technique not only fails to consider the
utility value of each alternative associated with each model but also has an extremely complex and
time-consuming operation process. Therefore, inspired by the method proposed in [23], we utilized
the improving Borda rule to derive the final ranking.

Firstly, the vector of these three kinds of subordinate utility value U = (Ui j)m×3 can be normalized
and derived the vector UN as

UN = (UN
ij )m×3

=
U j(ai)√

m∑
i=1

(U j(ai))
2

(22)

Subsequently, we can translate the ordinal values to the scores for reasons of aggregating the
cardinal of an alternative, which can be depicted as the weight of each cardinal value. The final ranking
can be derived by the values of FSi in descending order, which is defined as

FSi = UN
i1 ×

m + 1− ar1
i

m
−UN

i2 ×
ar2

i
m

+ UN
i3 ×

m + 1− ar3
i

m
, i = 1, 2, . . .m. (23)

To clarify the proposed MAGDM method based on the MULTIMOORA approach under the
PHIFLTSs environment, we summarize the specific processes and describe them in Algorithm 1.
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Algorithm 1. The MAGDM method based on the MULTIMOORA approach

Step 1. Collect the individual linguistic evaluations values described as PHIFLEs from experts and construct
the individual decision matrices Dt = (Et

i j(P))m×n
. Go to the next step.

Step 2. The collective decision matrix R = (ri j(P))m×n can be built based on the frequency or the aggregation
of probabilities associated with each linguistic term that appear in each individual decision matrix Dt. Go to
the next step.¶

Step 3. The score function and the variance value function of PHIFLEs defined in Definitions 5 and 6 are
utilized to derive the PID H+ and the NID H− associated with each attribute in the collective decision matrix R.
Go to the next step.

Step 4. The PHIFLEs in R should be adjusted to the same probability set based on Definition 8 to calculate
the correlation coefficients between (ri j(P))m×n and the PID H+ and the NID H−.

Step 5. The LP optimization method should be utilized to determine the optimal weights of each attributes
based on Equations (14)–(16). Subsequently, we can derive the vector normalization of the scores of the
collective decision matrix R based on Equations (17) and (18).

Step 6. The MULTIMOORA approach is utilized to calculate the final ranking for all alternatives. Firstly,
the subordinated methods as PHIFLRS are used to obtain the utility values U1(ai) and the ranks of alternatives
as Rank1 based on Equation (19).

Step 7. The second subordinated methods as PHIFLPR in the MULTIMOORA approach are used to obtain
the utility values U2(ai) and the ranks of alternatives as Rank2 based on Equation (20).

Step 8. The third subordinated methods as PHIFLFMF in the MULTIMOORA approach are used to obtain
the utility values U3(ai) and the ranks of alternatives as Rank3 based on Equation (21).

Step 9. The above three subordinate ranks of alternatives Rankv(ai), v = 1, 2, 3 need to be aggregated to
obtain the final ranking. Two matrices can be built based on the utility values Uy(ai), y = 1, 2, 3 and the ranks
Ranky, y = 1, 2, 3 associated with each attribute cy.

Step 10. The improving Borda rules are utilized to obtain the final ranking of alternatives. Firstly,
the normalized vectors of utility value UN are obtained based on Equation (22). Secondly, the ordinal values
need to be translated to the scores based on the Borda rules for the reasons of aggregating the cardinal of each
alternative. Finally, the final ranking can be derived by the values of FSi (i = 1, 2, . . . , m) in descending order
based on Equation (23). End.

7. Application Example

For reasons of comparison, this part applies the same application example as [27] and [47] to validate
the proposed theory and decision making models. Seven experts, denoted by {d1, d2, d3, d4, d5, d6, d7},
need to select the most profitable method for their savings. Through interviews and surveys, four
attributes, which are c1: Risk factor, c2: Growth, c3: Quick refund, c4: Complicated documents, are used to
evaluate five alternatives: x1: Real estate, x2: Stock market, x3: T-bills, x4: National saving scheme, and x5:
Insurance company.

The LTSs used on all attributes are united to S = {s−3 = verybad, s−2 = bad, s−1 = somewhatbad,
s0 = medium, s1 = somewhatgood, s2 = good, s3 = verygood}. All experts assess the performance of the
alternatives with respect to each attribute based on the LTS, and their opinions in terms of HIFLTSs are
listed in Tables 1–3. In addition, we need to consider the semantics of unbalanced LTSs, and the second
type of LSF shown as Equation (4) is selected for all attributes.

Table 1. The valuation values provided by decision makers dt(t = 1, 2, 3).

c1: Risk Factor c2: Growth c3: Quick Refund
c4: Complicated

Documents
Requirement

a1 〈{s3, s4, s5}, {s1, s2}〉 〈{s4, s5}, {s0, s1}〉 〈{s1, s2}, {s3, s4}〉 〈{s1, s2}, {s3, s4}〉

a2 〈{s1, s2}, {s3, s4}〉 〈{s3, s4, s5}, {s1, s2}〉 〈{s3, s4}, {s0, s1}〉 〈{s4, s5}, {s1, s2}〉

a3 〈{s4, s5}, {s0, s1, s2}〉 〈{s3, s4}, {s1, s2}〉 〈{s5, s6}, {s0}〉 〈{s1, s2}, {s2, s3, s4}〉

a4 〈{s5, s6}, {s0, s1}〉 〈{s1, s2}, {s3, s4}〉 〈{s1, s2}, {s3, s4}〉 〈{s3, s4, s5}, {s1, s2}〉

a5 〈{s6}, {s0}〉 〈{s1, s2}, {s3, s4, s5}〉 〈{s0, s1}, {s2, s3}〉 〈{s4, s5}, {s1, s2}〉
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Table 2. The evaluation values provided by decision makers dt(t = 4, 5).

c1: Risk Factor c2: Growth c3: Quick Refund
c4: Complicated

Documents
Requirement

a1 〈{s1, s2}, {s3, s4}〉 〈{s5, s6}, {s0, s1}〉 〈{s0, s1}, {s3, s4}〉 〈{s3, s4}, {s1, s2}〉

a2 〈{s0, s1}, {s2, s3}〉 〈{s1, s2}, {s2, s3, s4}〉 〈{s3, s4}, {s0, s1}〉 〈{s5, s6}, {s0, s1}〉

a3 〈{s3, s4}, {s0, s1}〉 〈{s1, s2}, {s3, s4}〉 〈{s4, s5}, {s1, s2}〉 〈{s0, s1}, {s2, s3}〉

a4 〈{s5, s6}, {s0}〉 〈{s3, s4}, {s0, s1, s2}〉 〈{s1, s2}, {s2, s3, s4}〉 〈{s4, s5}, {s0}〉

a5 〈{s4, s5}, {s1, s2}〉 〈{s3, s4}, {s1, s2, s3}〉 〈{s1, s2}, {s3, s4}〉 〈{s5, s6}, {s0}〉

Table 3. The evaluation values provided by decision makers dt(t = 6, 7).

c1: Risk Factor c2: Growth c3: Quick Refund
c4: Complicated

Documents
Requirement

a1 〈{s4, s5}, {s0, s1}〉 〈{s5, s6}, {s0}〉 〈{s3, s4}, {s1, s2}〉 〈{s0, s1}, {s3, s4}〉

a2 〈{s3, s4}, {s1, s2, s3}〉 〈{s1, s2}, {s3, s4}〉 〈{s5, s6}, {s0}〉 〈{s3, s4}, {s1, s2}〉

a3 〈{s1, s2}, {s2, s3, s4}〉 〈{s5, s6}, {s0}〉 〈{s4, s5}, {s0, s1}〉 〈{s0, s1}, {s3, s4}〉

a4 〈{s4, s5}, {s1, s2}〉 〈{s4, s5}, {s0, s1}〉 〈{s0, s1, s2}, {s2, s3}〉 〈{s3, s4, s5}, {s1, s2}〉

a5 〈{s3, s4}, {s0, s1, s2}〉 〈{s1, s2}, {s2, s3, s4}〉 〈{s2, s3}, {s3, s4}〉 〈{s6}, {s0}〉

In Step 1, the HIFLEs evaluation values given by each decision maker dt(t = 1, 2, . . . , 7) are
integrated to develop the collective decision matrix R based on the frequency associated with each
linguistic term appearing in the individual decision matrices, the elements of which are listed in Table 4.

Table 4. The PHIFLEs collective decision matrix R.

c1: Risk Factor c2: Growth

a1

〈
{s1(0.12), s2(0.12), s3(0.18), s4(0.29), s5(0.29)},
{s0(0.14), s1(0.36), s2(0.22), s3(0.14), s4(0.14)}

〉 〈
{s4(0.21), s5(0.5), s6(0.29)},
{s0(0.58), s1(0.42)}

〉
a2

〈
{s0(0.14), s1(0.36), s2(0.22), s3(0.14), s4(0.14)},

{s1(0.13), s2(0.25), s3(0.44), s4(0.18)}

〉 〈
{s1(0.23), s2(0.23), s3(0.18), s4(0.18), s5(0.18)},

{s1(0.19), s2(0.31), s3(0.25), s4(0.25)}

〉
a3

〈
{s1(0.14), s2(0.14), s3(0.14), s4(0.36), s5(0.22)},
{s0(0.26), s1(0.26), s2(0.26), s3(0.11), s4(0.11)}

〉 〈
{s1(0.14), s2(0.14), s3(0.22), s4(0.22), s5(0.14), s6(0.14)},
{s0(0.17), s1(0.25), s2(0.25), s3(0.17), s4(0.16), }

〉
a4

〈
{s4(0.14), s5(0.5), s5(0.36)},
{s0(0.42), s1(0.42), s2(0.16)}

〉 〈
{s1(0.21), s2(0.21), s3(0.14), s4(0.3), s5(0.14)},
{s0(0.25), s1(0.25), s2(0.12), s3(0.19), s4(0.19)}

〉
a5

〈
{s3(0.18), s4(0.36), s5(0.18), s6(0.28)},

{s0(0.38), s1(0.31), s2(0.31)}

〉 〈
{s1(0.36), s2(0.36), s3(0.14), s4(0.14)},

{s1(0.1), s2(0.19), s3(0.33), s4(0.24), s5(0.14)}

〉
c3: Quick Refund c4: Complicated Documents Requirement

a1

〈
{s0(0.14), s1(0.36), s2(0.22), s3(0.14), s4(0.14)},

{s1(0.14), s2(0.14), s3(0.36), s4(0.36)}

〉 〈
{s0(0.14), s1(0.36), s2(0.22), s3(0.14), s4(0.14)},

{s1(0.14), s2(0.14), s3(0.36), s4(0.36)}

〉
a2

〈
{s3(0.21), s4(0.36), s5(0.29), s6(0.14)},

{s0(0.58), s1(0.42)}

〉 〈
{s3(0.14), s4(0.36), s5(0.36), s6(0.14)},

{s0(0.16), s1(0.42), s2(0.42)}

〉
a3

〈
{s4(0.29), s5(0.5), s6(0.21)},
{s0(0.46), s1(0.36), s2(0.18)}

〉 〈
{s0(0.29), s1(0.5), s2(0.21)},
{s2(0.29), s3(0.41), s4(0.3)}

〉
a4

〈
{s0(0.12), s1(0.44), s2(0.44},
{s2(0.25), s3(0.44), s4(0.31)}

〉 〈
{s3(0.26), s4(0.37), s5(0.37)},
{s0(0.16), s1(0.42), s2(0.42)}

〉
a5

〈
{s0(0.21), s1(0.36), s2(0.29), s3(0.14)},

{s2(0.21), s3(0.5), s4(0.29)}

〉 〈
{s4(0.25), s5(0.42), s6(0.33)},
{s0(0.4), s1(0.3), s2(0.3)}

〉

In Step 2, for reasons of comparison between PHIFLEs, the score function and the variance value
function of PHIFLE defined in Definitions 5 and 6 are utilized to obtain the positive ideal decision
H+ and the negative ideal decision H− associated with each attribute c j( j = 1, 2, 3, 4) in the collective
decision matrix R, which are listed in Tables 5 and 6.
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Table 5. The score of the collective decision matrix R.

c1: Risk Factor c2: Growth c3: Quick Refund c4: Complicated
DocumentsRequirement

a1 0.2478 0.7168 −0.1667 −0.1667
a2 −0.1354 0.0406 0.6005 0.4595
a3 0.2690 0.2448 0.6303 −0.3104
a4 0.6800 0.1776 −0.2416 0.3934
a5 0.5466 −0.1434 −0.2490 0.6307

Table 6. The PID H+ and the NID H− associated with each attribute c j( j = 1, 2, 3, 4).

c1: Risk Factor c2: Growth

H+

〈
{s0(0.14), s1(0.36), s2(0.22), s3(0.14), s4(0.14)},

{s1(0.13), s2(0.25), s3(0.44), s4(0.18)}

〉 〈
{s4(0.21), s5(0.5), s6(0.29)},
{s0(0.58), s1(0.42)}

〉
H−

〈
{s4(0.14), s5(0.5), s5(0.36)},
{s0(0.42), s1(0.42), s2(0.16)}

〉 〈
{s1(0.36), s2(0.36), s3(0.14), s4(0.14)},

{s1(0.1), s2(0.19), s3(0.33), s4(0.24), s5(0.14)}

〉
c3: Quick Refund c4: Complicated Documents Requirement

H+

〈
{s4(0.29), s5(0.5), s6(0.21)},
{s0(0.46), s1(0.36), s2(0.18)}

〉 〈
{s0(0.29), s1(0.5), s2(0.21)},
{s2(0.29), s3(0.41), s4(0.3)}

〉
H−

〈
{s0(0.21), s1(0.36), s2(0.29), s3(0.14)},

{s2(0.21), s3(0.5), s4(0.29)}

〉 〈
{s4(0.25), s5(0.42), s6(0.33)},
{s0(0.4), s1(0.3), s2(0.3)}

〉

In Step 3, to calculate the correlation coefficients between the collective decision matrix R and the
PID H+ and the NID H− for all the alternatives ai(i = 1, 2, . . . , 5), the PHIFLEs should be adjusted to
the same probability set based on Definition 8.

In Step 4, Equations (14) and (15) are utilized to calculate the similarity Sim+
i and Sim−i between

the adjusted PHIFLEs of the collective decision matrix R and the PID H+ and the NID H− for all
alternatives ai(i = 1, 2, . . . , 5), which are listed in Tables 7 and 8.

Table 7. The similarity Sim+
i between the adjusted PHIFLEs of R and the PID H+.

c1: Risk Factor c2: Growth c3: Quick Refund
c4: Complicated

Documents
Requirement

a1 0.7706 1 0.5357 0.8597
a2 1 0.9693 0.8759 0.4729
a3 0.7855 0.7877 1 1
a4 0.4935 0.6771 0.4553 0.0676
a5 0.5842 0.5479 0.4637 0.3739

Table 8. The similarity Sim−i between the adjusted PHIFLEs of R and the NID H−.

c1: Risk Factor c2: Growth c3: Quick Refund
c4: Complicated

Documents
Requirement

a1 0.7475 0.5479 0.6766 0.5277
a2 0.4935 0.9637 0.3791 0.8866
a3 0.7011 0.7938 0.4637 0.1636
a4 1 0.7377 −0.2416 0.1636
a5 0.8995 1 1 1

In Step 5, the LP optimization method is utilized to determine the optimal weights of the attributes
c j( j = 1, 2, 3, 4) based on Equation (16), which is w∗j = (0.2653, 0.2848, 0.2310, 0.2189).
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In Step 6, based on Equations (17) and (18), we can obtain the vector normalization of the scores
of the collective decision matrix R.

In Step 7, the MULTIMOORA approach is utilized to calculate the final ranking for all alternatives
ai( j = 1, 2 . . . , 5). Firstly, the subordinated methods as PHIFLRS are used to obtain the utility values
U1(ai) = (0.1872, 0.0911, 0.2384,−0.275,−0.41) and the ranks of alternatives as Rank1 = (2, 3, 1, 4, 5)
based on Equation (19).

In Step 8, the second subordinated methods as PHIFLPR in the MULTIMOORA approach are used
to obtain the utility values U2(ai) = (0.1934, 0.2431, 0.1697, 0.2263, 0.3039) and the ranks of alternatives
as Rank1 = (2, 3, 1, 4, 5) based on Equation (20).

In Step 9, the third subordinated methods as PHIFLFMF in the MULTIMOORA approach are used
to obtain the utility values U3(ai) = (1.1036, 1.0606, 1.2139, 0.7781, 0.6832) and the ranks of alternatives
as Rank3 = (2, 3, 1, 4, 5) based on Equation (21).

In Step 10, the above three subordinate ranks of alternatives Rankv(ai), v = 1, 2, 3; i= 1, 2, . . . , 5
need to be aggregated to obtain the final ranking. Two matrices can be built based on the utility values
Uy(ai), y = 1, 2, 3; i = 1, 2, . . . , 5 and the ranks Ranky, y = 1, 2, 3; i = 1, 2, . . . , 5 associated with each
attribute cy(y = 1, 2, 3), which are listed as follows.

U = (Ui j)5×3 =


0.1872, 0.1934, 1.1036
0.0911, 0.2431, 1.0606
0.2384, 0.1697, 1.2139
−0.275, 0.2263, 0.7781
−0.410, 0.3093, 0.6832


RK = (Ranki j)5×3 =


2, 2, 2
3, 4, 3
1, 1, 1
4, 3, 4
5, 5, 5


In Step 11, the improving Borda rules are utilized to derive the final ranking of alternatives ai

(i = 1, 2, . . . , 5). Firstly, the normalized vectors of utility value UN are obtained based on Equation (22).
Secondly, the ordinal values need to be translated to the scores based on the Borda rules for reasons of
aggregating the cardinal of each alternative. Finally, the final ranking can be derived by the values of
FSi (i = 1, 2, . . . , m) in descending order based on Equation (23), which are listed in Table 9.

Table 9. The final score and ranking of alternatives ai(i = 1, 2, . . . , m).

c a1 a2 a3 a4 a5

FS 0.5063 0.0082 0.8904 −0.3070 −0.6708
Ranking a3 � a1 � a2 � a4 � a5

8. Comparison with Other Related Research Works

In this section, we present a comparison with the existing related works to show the advantages
and innovation of the proposed method.

8.1. Comparative Analysis from the Numerical Points with the existing method

The authors in [27] firstly defined the PHIFLTSs and the corresponding application in MAGDM.
The proposed method in this paper differs from the approach in [27] with respect to the following points:

(1) The operations over PHIFLTSs proposed in [27] are directly based on multiplying the probabilities
by the subscript of the corresponding linguistic terms, which may lose the associated probability
information. For example, the PIS and NIS obtained in [27] are (〈{3, 3}, {0, 0}〉, 〈{3, 2.4}, {0, 0}〉, . . .)
and (〈{0, 0.661}, {2.25, 1}〉, 〈{1, 1}, {2.25, 1.25}〉, . . .); however, the PIS H+ and NIS H− obtained in this
paper are

〈
{s0(0.14), s1(0.36), s2(0.22), s3(0.14), s4(0.14)}, . . .

〉
and

〈
{s4(0.29), s5(0.5), s6(0.21)}, . . .

〉
.

Obviously, the former one loses the probability information, which may lead to the failure of the
final decision-making;
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(2) The method in [27] does not consider the situations of unbalanced linguistic terms on the
PHIFLTSs environment; however, this paper selects the second type of linguistic scale function
for all attributes to deal with the semantics of unbalanced LTSs;

(3) Table 10 shows the difference of the ranking orders between the work in [27] and this paper,
which is due to the effect of the innovation in the basic operational laws, the unbalance LTSs,
the distance measure and the MULTIMOORA approach proposed in this paper. It can be clearly
seen that the method proposed in this paper is an advantages and innovation to solve MAGDM
problems over the PHIFLTSs environment.

Table 10. Comparison of results.

Ranking

Result in [27] a5 � a4 � a1 � a2 � a3
Proposed model a3 � a1 � a2 � a4 � a5

8.2. Comparative Analysis from the Numerical Points with HIFLTSs

For purposes of comparison, the application example presented in Section 7 will be solved based
on the TOPSIS method with HIFLTSs, that is to say, the probabilities associated with each linguistic
term will be omitted. Then, we can obtain the final ranking as a5 � a1 � a4 � a2 � a3. Obviously,
the difference is due to the effect of probabilities associated with each linguistic term, which verified
clearly the importance of the probabilities in the whole process of decision making.

9. Conclusions

In this paper, we proposed a new MAGDM model based on the MULTIMOORA approach under
the PHIFLTSs environment, which has the following superiorities:

(1) Utilizing the new score function and variance value function of PHIFLTSs makes the comparison
between PHIFLEs more accurate and rational;

(2) The unbalanced linguistic term sets were considered during the whole decision processes;
(3) The correlation coefficient of the PHIFLTSs was used to measure the similarity instead of the

current distance function in order to alleviate the drawbacks;
(4) The decision results are robustness, simplicity, and effectiveness based on the three aggregation

subordinated methods with the use of the extension of the MULTIMOORA approach.

For future research, we shall further analyze the PHIFLTSs in MAGDM problems and extend the
proposed methodology to make it apply widely. Modeling the dynamic environment that allows the
individual sets of attributes and alternatives is an interesting topic for further discussion. We also want
to extend the PHIFLTSs to the probabilistic hesitant intuitionistic fuzzy linguistic preference relation
(PHIFLPR), which can be utilized in more extensive decision making situations.
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