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Abstract: We show that in a relativistically covariant formulation of the two-body problem, the bound
state spectrum is in agreement, up to relativistic corrections, with the non-relativistic bound-state
spectrum. This solution is achieved by solving the problem with support of the wave functions in an
O(2, 1) invariant submanifold of the Minkowski spacetime. The O(3, 1) invariance of the differential
equation requires, however, that the solutions provide a representation of O(3, 1). Such solutions
are obtained by means of the method of induced representations, providing a basic insight into the
subject of the symmetries of relativistic dynamics.

Keywords: relativistic quantum mechanics; bound states; symmetries; spectrum; covariant two-body
central force problem

1. Introduction

In the non-relativistic Newtonian-Galilean view, two particles may be thought of as interacting
through a potential function V(x1(t), x2(t)); for Galilean invariance, V must be a scalar function of the
difference, i.e., V(x1(t)− x2(t)). In such a potential model, x1 and x2 are taken to be at equal time,
corresponding to a correlation between the two particles consistent with the Newtonian-Galilean picture.

For the relativistic theory, two world lines with action at a distance interaction between two points
xµ

1 and xµ
2 cannot be correlated by the variable t in every frame.

The Stueckelberg (SHP) theory [1] provides an effective andsystematic way of dealing with the N
body problem, and has been applied in describing relativistic fluid mechanics [2], the Gibbs ensembles
in statistical mechanics and the Boltzmann equation [3], systems of many identical particles [4],
and other applications.

The basic idea of the SHP theory is the parametrization of the world lines of particles with a
universal parameter τ [5] (see also [6,7]). Stueckelberg [8] described classical pair annihilation with a
world line that proceeds, in τ, in the positive direction of the time t (the observable time of Einstein [9])
and then passes to a motion in the negative direction of time for τ proceeding in its monotonic
development, precisely as postulated by Newton [10,11]. The transition is caused by interaction,
such as emission of a photon. Although this process was considered to be classical, it occurs in a
diagram in Feynman’s perturbative expansion of the S-matrix [12].

Stueckelberg [8] then considered the symplectic manifold of {xµ, pµ}, with µ, ν = (0, 1, 2, 3)
with diagonal metric ηµν = (−,+,+,+) (raising and lowering indices). Here, xµ = {x0, x1, x2, x3},
where x0 = ct (For c→ ∞, ct may remain finite for t→ 0 and can be taken to be an arbitrary constant),
p0 = E/c. We shall generally write c = 1 but note that in the non-relativistic (NR) limit, c → ∞,
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so that p0 → 0 for finite energy E. Stueckelberg then wrote an invariant Hamiltonian of the form (for
V(x) scalar)

K =
pµ pµ

2M
+ V(x), (1)

which goes over to the usual NR Hamiltonian for in the NR limit.
He assumed the equations of motion

ẋµ ≡ dxµ

dτ
=

∂K
∂pµ

ṗµ = − ∂K
∂xµ ≡

dpµ

dτ
(2)

It then follows from (1) that the proper time ds2 = −dxµdxµ satisfies

ds2

dτ2 = −
pµ pµ

M2 =
m2

M2 . (3)

The theory implies that the particle mass m is a dynamical variable, reflecting the fact that the Einstein
time t is an observable, and therefore that E = ±

√
p2 + m2, conjugate to t, must be an observable as

well [5]. For m2 = M2, (3) implies that the square of the proper time interval is equal to (dτ)2, but in
general, this relation cannot be maintained for non-trivial interaction.

The Poisson bracket structure then follows from (2). The τ derivative of a function of x, p is
given by

d
dτ

F(x, p) =
∂F
∂xµ

dxµ

dτ
+

∂F
∂pµ

dpµ

dτ
=

∂F
∂xµ

∂K
∂pµ
− ∂F

∂pµ

∂K
∂xµ ≡ [F, K]PB; (4)

With this, we see that
[xµ, pν]PB = δµ

ν. (5)

Following Dirac [13], it is assumed that the operator commutation relations, following the group action
of translation implied by the Poisson bracket,

[xµ, pν] = ih̄δµ
ν (6)

as the basis for the construction of the quantum theory [5].
The corresponding Stueckelberg-Schrödinger equation is then taken to be, derived from the

unitary evolution of the wave function ψτ(x),

ih̄
∂ψτ(x)

∂τ
= Kψτ(x), (7)

with the operators pµ in K represented as −ih̄ ∂
∂xµ , self-adjoint in the scalar product (ψ, χ) =∫

d4xψτ
∗(x)χτ(x).

Equation (7) corresponds to the quantum one particle problem. We now proceed to discuss the
two-body problem.

2. The Two-Body Bound State

We review here the relativistic two-body problem with invariant action at a distance potential,
for bound states.

As a candidate for an invariant action at a distance potential for the two-body relativistic bound
state we take for the potential V the function V(ρ), for

ρ2 = (x1 − x2)
2 − (t1 − t2)

2 ≡ x2 − t2, (8)

where xµ
1 and xµ

2 are taken at equal τ, acting as a correlation parameter as well as the global generating
parameter of evolution. This “relative coordinate” (squared) reduces to (x1 − x2)

2 ≡ x2 at equal time
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for the two particles in the non-relativistic limit, so that ρ becomes r in this limit (for simultaneous t1

and t2). Clearly, the solutions of a problem with this potential must then reduce to the solutions of the
corresponding non-relativistic problem in that limit.

The two-body Stueckelberg Hamiltonian, is

K =
p1

µ p1µ

2M1
+

p2
µ p2µ

2M2
+ V(x). (9)

Since K does not depend on the total (spacetime) “center of mass”

Xµ =
M1xµ

1 + M2xµ
2

M1 + M2
, (10)

the two-body Hamiltonian can be separated into the sum of two Hamiltonians, one for the “center
of mass” motion and the second for the relative motion, by defining the total momentum, which is
absolutely conserved,

Pµ = pµ
1 + pµ

2 (11)

and the relative motion momentum

pµ =
M2 pµ

1 −M1 pµ
2

M1 + M2
. (12)

The pairs Pµ, Xµ and pµ, xµ satisfy separately the canonical Poisson bracket (classically) and
commutation relations (quantum mechanically), and commute with each other. Then

K =
PµPµ

2M
+

pµ pµ

2m
+ V(x),≡ KCM + Krel , (13)

where M = M1 + M2, m = M1M2/(M1 + M2), and x = x1 − x2. Both KCM and Krel are constants
of the motion; the total and relative momenta for the quantum case may be represented by partial
derivatives with respect to the corresponding coordinates. This problem was solved explicitly for the
classical case by Horwitz and Piron [5], where it was shown that there is no precession of the type
predicted by Sommerfeld [14], who used the non-relativistic form 1/r for the potential (and obtained a
period for the precession of Mercury that does not fit the data).

The corresponding quantum problem was solved by Cook [15], with support for the wave
functions in the full space-like region; however, he obtained a spectrum of the form 1/(n + 1

2 )
2, with n

an integer, which does not agree with the Balmer spectrum for hydrogen. Zmuidzinas [16], brought to
our attention by P. Winternitz [17]), however, proved that there is no complete orthogonal set of functions
in the full space-like region, and separated the space-like region into two submanifolds, in each of
which there could be complete orthogonal sets. The region for which x2 > t2, in particular, permits the
solution of the differential equations corresponding to the problem posed by (9) by separation of
variables and provides spectra that coincide, up to relativistic corrections, with the corresponding
non-relativistic problems with potentials depending on r alone. We shall call this sector the RMS
(reduced Minkowski space) [18,19].

We may see, moreover, that the RMS carries an important physical interpretation for the nature of
the solutions of the differential equations by examining the appropriate variables describing the full
space-like and RMS regions. The full space-like region is spanned by

x0 = ρ sinh β, x1 = ρ cosh β cos φ sin θx2 = ρ cosh β sin φ sin θ, x3 = ρ cosh β cos θ (14)

overall ρ from 0 to ∞, β in (−∞, ∞), φ in (0, 2π) and θ in (0, π). Separation of variables in this choice,
however, leaves the variable β for last; the quantum number (separation constant) obtained in this
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way has no obvious physical interpretation. Moreover, as found by Cook [15], the resulting spectrum
for the Coulomb type potential (proportional to 1/ρ) does not agree with the Balmer series.

On the other hand, the set of variables describing the RMS, running over the same range of
parameters [16],

x0 = ρ sin θ sinh β, x1 = ρ sin θ cosh β cos φx2 = ρ sin θ cosh β sin φ, x3 = ρ cos θ, (15)

cover the entire space within the RMS (for x2
1 + x2

2 > t2). In this coordinatization, the separation
constant for θ (at the last stage), which enters the radial equation and determines the corresponding
spectrum, has the interpretation of the angular momentum quantum number `(`+ 1).

As for (14), for β → 0, these coordinates become the standard spherical representation of the
three-dimensional space (at the “simultaneity” point t = 0, where ρ becomes r). Independently of
the form of the potential V(ρ), one obtains the same radial equation (in ρ) as for the non-relativistic
Schrödinger equation (in r), and therefore, the same spectra (the two-body mass squared) for the
reduced Hamiltonian. We shall discuss the relation of these results to the energy spectrum after writing
the solutions. We summarize in the following the basic mathematical steps.

Assuming the total wavefunction (for P→ P′, a point on the continuum of the spectrum of the
conserved operator P)

ΨP′τ(X, x) = eiP′µXµ ψP′τ(x), (16)

the evolution equation for each value of the total energy momentum of the system is then

i
∂

∂τ
ΨP′τ(X, x) = (KCM + Krel)ΨP′τ(X, x) =

[ P′2

2M
+ Krel

]
ΨP′τ(X, x). (17)

For the case of discrete eigenvalues Ka of Krel .
We then have the eigenvalue equation (cancelling the center of mass wave function factor and

KCM on both sides)

Krelψ
(a)(x) = Kaψ(a)(x) = (−(1/2m)∂µ∂µ + V(ρ))ψ(a)(x). (18)

Using the O(3, 1) Casimir operator, in a way quite analogous to the use of the square of the total
angular momentum operator, the Casimir operator of the rotation group O(3) in the non-relativistic
case, we may separate the angular and hyperbolic angular degrees of freedom from the ρ dependence.
There are two Casimir operators defining the representations of O(3, 1) [20–22]. The first Casimir
operator is

Λ =
1
2

Mµν Mµν; (19)

the second Casimir operator 1
2 εµνλσ Mµν Mλσ is identically zero for two particles without spin.

Recalling that our separation into center of mass and relative motion is canonical, and that

Mµν = xµ pν − xν pµ; (20)

using the canonical commutation relations, one finds that

Λ = x2 p2 + 2ix · p− (x · p)2. (21)

Since
x · p ≡ xµ pµ = −iρ

∂

∂ρ
, (22)

so that

Λ = −ρ2∂µ∂µ + 3ρ
∂

∂ρ
+ ρ2 ∂2

∂ρ2 ,
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or

−∂µ∂µ = − ∂2

∂ρ2 −
3
ρ

∂

∂ρ
+

Λ
ρ2 . (23)

Equation (18) can then be written as

Kaψ(a)(x) =
{ 1

2m
[
− ∂2

∂ρ2 −
3
ρ

∂

∂ρ
+

Λ
ρ2

]
+ V(ρ)

}
ψ(a)(x). (24)

Choosing the RMS variables as we have defined them in (15), and with

Li =
1
2

εijk(xj pk − xk pj), (25)

corresponding to the definition of the non-relativistic angular momentum L, and

Ai = x0 pi − xi p0, (26)

corresponding to the boost generator A,

Λ = L2 −A2. (27)

We then find that

Λ = − ∂2

∂θ2 − 2 cot θ
∂

∂θ
+

1
sin2 θ

N2, (28)

where
N2 = L2

3 − A2
1 − A2

2 (29)

is the Casimir operator of the O(2, 1) subgroup of O(3, 1) leaving the z axis (and the RMS submanifold)
invariant [18]. In terms of the RMS variables that we have defined above,

N2 =
∂2

∂β2 + 2 tanh β
∂

∂β
− 1

cosh2 β

∂2

∂φ2 . (30)

We now proceed to separate variables and find the eigenfunctions. The solution of the general
eigenvalue problem (24) can be written

ψ(x) = R(ρ)Θ(θ)B(β)Φ(φ), (31)

with invariant measure in the L2(R4) of the RMS

dµ = ρ3 sin2 θ cosh βdρdφdβdθ. (32)

To satisfy the φ derivatives in (2.23), it is necessary to take

Φm(φ) =
1√
2π

ei[m+ 1
2 ]φ, 0 ≤ φ < 2π, (33)

where we have indexed the solutions by the separation constant m. For the case m an integer, this is a
double valued function. To be compatible with the conditions on the other factors, this is the necessary
choice; one must use, in fact, Φm(φ) for m ≥ 0 and Φ∗m(φ) for m < 0.

It has been suggested by M. Bacry [23] that the occurrence of the half-integer in the phase is
associated with the fact that the RMS is a connected, but not simply connected manifold. One can see
this by considering the projective form of the restrictions

x2 + y2 + z2 − t2 > 0 (34)
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assuring that the events are relatively space-like, and

x2 + y2 − t2 > 0, (35)

assuring, in addition, that the relative coordinates lie in the RMS. Dividing (34) and (35) by t2,
and calling the corresponding projective variables X, Y, Z, we have from (34)

X2 + Y2 + Z2 > 1, (36)

the exterior of the unit sphere in the projective space, and from (35),

X2 + Y2 > 1, (37)

the exterior of the unit cylinder along the z-axis. Identifying the points at infinity of the cylinder,
we see that this corresponds to a torus with the unit sphere imbedded in the torus at the origin. Such a
topological structure is associated with half-integer phase (e.g., [24]).

We now continue with our discussion of the structure of the solutions.
The operator Λ contains the O(2, 1) Casimir N2; with our solution (38), we then have

N2Bmn(β) =
[ ∂2

∂β2 + 2 tanh β
∂

∂β
+

(m + 1
2 )

2

cosh2 β

]
Bmn(β) ≡ (n2 − 1

4
)Bmn(β), (38)

where n2 is the separation constant for the variable β. The term (m + 1
2 )

2 must be replaced by
(m− 1

2 )
2 = (|m|+ 1

2 )
2 for m < 0. We study only the case m ≥ 0 in what follows. The remaining

equation for Λ is then

ΛΘ(θ) =
[
− ∂2

∂θ2 − 2 cot θ
∂

∂θ
+

1
sin2 θ

(
n2 − 1

4
)]

Θ(θ). (39)

For the treatment of Equation (38), it is convenient to make the substitution

ζ = tanh β, (40)

so that −1 ≤ ζ ≤ 1. One then finds that for

Bmn(β) = (1− ζ2)1/4B̂mn(ζ), (41)

(38) becomes

(1− ζ2)
∂2B̂mn(ζ)

∂ζ2 − 2ζ
∂B̂mn(ζ)

∂ζ
+
[
m(m + 1)− n2

1− ζ2

]
B̂mn(ζ) = 0. (42)

The solutions are the associated Legendre functions of the first and second kind (Gel’fand [21]; see also
Merzbacher [25]), Pn

m(ζ) and Qn
m(ζ). The normalization condition on these solutions, with the measure

(42) is ∫
cosh β|B(β)|2 < ∞,

or, in terms of the variable ζ ∫ 1

−1
(1− ζ2)−1|B̂(ζ)|2dζ < ∞. (43)
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The second kind Legendre functions do not satisfy this condition. For the condition on the Pn
m(ζ), it is

simplest to write the known result [26]

∫ 1

−1
(1− ζ2)−1|P−ν

µ+ν(ζ)|2dζ =
1
ν

Γ(1 + µ)

Γ(1 + µ + 2ν)
(44)

The normalized solutions (it is sufficient to consider n ≥ 0) may be written as

B̂mn(ζ) =
√

n
√
[Γ(1 + m + n)/Γ(1 + m− n)]× P−n

m (ζ), (45)

where m ≥ n.
The case n = 0 must be treated with special care; it requires a regularization. For n = 0,

the associated Legendre functions become the Legendre polynomials Pm(ζ). In terms of the integration
on β, the factor cosh β = (1− ζ2)−1/2 in the measure is cancelled by the square of the factor (1− ζ2)1/4

in the norm, so that the integration appears as∫ ∞

−∞
|B̂m(ζ)|2dβ.

The Legendre polynomials do not vanish at ζ = ±1, so if B̂m and Pm are related by a finite coefficient,
the integral would diverge. When n goes to zero, associated with the ground state, the wave function
spreads along the hyperbola labelled by ρ, going asymptotically to the light plane; the probability
density with respect to intervals of β becomes constant for large β. The (regularized) expectation values
reproduce the distribution of the Schrödinger bound states, although the spacetime wave function
approaches that of a generalized eigenfunction.

To carry out the regularization, we take the limit as n goes continuously to zero after computation
of scalar products. Thus, we assume the form

B̂m(ζ) =
√

ε(1− ζ2)ε/2Pm(ζ), (46)

with ε → 0 after computation of scalar products. This formula is essentially a residue of the
Rodrigues formula

P−n
m (ζ) = (−1)n(1− ζ2)n/2 dn

dζn Pm(ζ) (47)

for n→ 0.
The operator for the differential Equation (2.17) for the eigenvalue of the reduced motion is

invariant under the action of the Lorentz group. It follows from acting on the equation with the unitary
representation of the Lorentz group that the eigenfunctions must be representations of that group [27]
for each value of the eigenvalue. However, as one can easily see, the solutions that we found are,
in fact, irreducible representations of O(2, 1), not, a priori, representations of the Lorentz group O(3, 1).
We discuss below how to construct such a representation.

We have required that the wave functions be eigenfunctions of the Casimir operator (29) of the
O(2, 1) subgroup. For the generators of O(2, 1), we note that

H± ≡ A1 ± iA2 = e±iφ(−i ∂
∂β ± tanh β ∂

∂φ

)
,

L3 = −i ∂
∂φ ,

A3 = −i
(
cot θ cosh β ∂

∂β − sinh β ∂
∂θ

)
L± = L1 ± iL2

= e±iφ(± cosh β ∂
∂θ − sinh β cot θ ∂

∂β

+ i cot θ
cosh β

∂
∂φ

)
.

(48)
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It then follows that H± are raising and lowering operators for m on the functions

ξ−n
n+k(ζ, φ) ≡ Bn+k,n(β)Φn+k(φ)

= (1− ζ2)1/4B̂n+k,n(ζ)Φn+l(φ),
(49)

where it is convenient to replace m by n + k. With the relation

[L3, H±] = ±H± (50)

one can show [19] that

H+χ−n
n+k(ζ, φ) = i

√
(k + 1)(2n + k + 1)χ−n

n+k+1(ζ, φ) (51)

and that
H−χ−n

n+k+1(ζ, φ) = −i
√
(k + 1)(2n + k + 1)χ−n

n+k(ζ, φ). (52)

The complex conjugate of χ−n
n+k transforms in a similar way, resulting in a second (inequivalent)

representation of O(2, 1) with the same value of the O(2, 1) Casimir operator (these states correspond
to replacement of m+ 1

2 by m− 1
2 for m < 0, and are the result of charge conjugation. Since the operators

A1, A2 and L3 are Hermitian, complex conjugation is equivalent to the transpose. Replacing these
operators by their negative transpose (defined by C), leaves the commutation relations invariant. Thus,
the action on the complex conjugate states involves

HC
− = −H∗+ = H−, HC

+ = −H∗− = H+, LC
3 = −L∗3 = L3; (53)

These are precisely the operators under which the complex conjugate states transform, and this
operation therefore corresponds to charge conjugation.

The wave functions we have obtained are irreducible representations of O(2, 1), determined by
the differential equations with solutions restricted to support in a particular choice of orientation of the
RMS. To construct representations of O(3, 1), let us consider first the well-established method which
is effective in constructing representations of O(3, 1) from representations of O(3), a group that we
would have found if we were working with solutions in the time-like region [20,26], called the ladder
representation. It follows from the Lie algebra of O(3, 1) that the O(3) subgroup Casimir operators
`(` + 1) are stepped by ` → ` ± 1 under the action of the boost from O(3, 1). The whole set of
representations of O(3), from ` = 0 to ∞ form a representation of O(3, 1). Each of the representations
of O(3) entering this tower are trivially normalizable, since they are of dimension (2`+ 1). However,
attempting to apply this method to the representations of O(2, 1) fails because the application of the
Lie algebra to this set connects the lowest state of the tower with the ground state which, as we have
shown, requires regularization. The action of the algebra does not provide such a regularization,
and therefore the method is inapplicable.

We therefore turn to the method of induced representations [27]. We may apply this method to
constructing the representations of O(3, 1) based on an induced representation with the O(2, 1) “little
group”, based on a space-like vector corresponding to the choice of the z axis. We shall discuss his
method in detail below.

We first record the solutions of the Equation (18).
Defining

ξ = cos θ (54)

and the functions
Θ̂(θ) = (1− ξ2)1/4Θ(θ), (55)
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Equation (39) becomes

d
dξ

(
(1− ξ2)

d
dξ

Θ̂(θ)
)
+
(
`(`+ 1)− n2

1− ξ2

)
Θ̂(θ) = 0, (56)

where we have defined
Λ = `(`+ 1)− 1

4
. (57)

The solutions are proportional to the associated Legendre functions of the first or second kind, Pn
` (ξ) or

Qn
` (ξ). For n 6= 0, the second kind functions are not normalizable. We therefore reject these.

The normalizable irreducible representations of O(2, 1) are single or double valued, and hence m
must be integer or half integer. As we have seen, k is integer valued, and therefore n must be integer or
half integer also. Normalizability conditions on the associated Legendre functions then require that `
be respectively, positive half-integer or integer. The lowest mass state, as we shall see from the spectral
results, corresponds to ` = 0, and hence we shall consider only integer values of `. Therefore, n and m
must be integer.

We now turn to the solution of the radial equations, containing the spectral content of the theory.
With the evaluation of Λ in (57), we may write the radial equation as

[ 1
2m
(
− ∂2

∂ρ2 −
3
ρ

∂

∂ρ
+

`(`+ 1)− 3
4

ρ2

)
+ V(ρ)

]
R(a)(ρ) = KaR(a)(ρ). (58)

If we put

R(a)(ρ) =
1
√

ρ
R̂(a)(ρ), (59)

Equation (58) becomes precisely the non-relativistic Schrödinger equation for R̂(a) in the variable
ρ, with potential V(ρ) (the measure for these functions is, from (32), just ρ2dρ, as for the
non-relativistic theory)

d2R̂(a)(ρ)

dρ2 +
2
ρ

dR̂(a)(ρ)

dρ
− `(`+ 1)

ρ2 R̂(a)(ρ) + 2m(Ka −V(ρ))R̂(a)(ρ) = 0. (60)

3. The Spectrum

The lowest eigenvalue Ka, as for the energy in the non-relativistic Schrödinger equation,
corresponds to the ` = 0 state of the sequence ` = 0, 1, 2, 3, ..., and therefore the quantum number
` plays a role analogous to the orbital angular momentum. This energy is of a lower value than
achievable with wave functions with support in the full space-like region [15] and the relaxation of the
system to wave functions with support in the RMS may be thought of, in this sense, as a spontaneous
symmetry breaking (we thank A. Ashtekar for his remark on this point [28]).

The value of the full generator K is then determined by these eigenvalues and the value of the
center of mass total mass squared operator, i.e.,

K =
PµPµ

2M
+ Ka. (61)

The first term corresponds to the total effective rest mass of the system. In particular, the invariant
mass squared of the system is given by (sometimes called the Mandelstam variable s [29])

sa ≡ −P2
a = 2M(Ka − K). (62)

This total center of mass momentum is observed in the laboratory in scattering and decay processes,
where it is defined as the sum of the outgoing momenta squared. In the case of two particles, it would
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be given by −(pµ
1 + pµ

2 )(p1µ + p2µ), as we have defined it in (62). This quantity is given in terms of
total energy and momentum by

sa = E2
T − P2

T , (63)

and in the center of momentum frame, for P = 0, is just E2
T .

To extract information about the energy spectrum, we must therefore make some assumption on the
value of the conserved quantity K. In the case of a potential that vanishes for large ρ, we may consider
the two particles to be asymptotically free, so the effective Hamiltonian in this asymptotic region

K ∼=
p1

µ p1µ

2M1
+

p2
µ p2µ

2M2
. (64)

Furthermore, assuming that the two particles at very large distances, in accordance with our experience,
undergo a relaxation to their mass shells, so that p2

i
∼= −M2

i . In this case, K would be assigned the value

K ∼= −
M1

2
− M2

2
= −M

2
. (65)

The two particles in this asymptotic state would, for the bound-state problem, be at the ionization point.
If these assumptions are approximately valid, we find for the total energy, which we now label Ea,

Ea/c ∼=
√

M2c2 + 2MKa, (66)

where we have restored the factors c.
In the case of excitations small compared to the total mass of the system, we may factor out Mc

and represent the result in a power series expansion

Ea ∼= Mc2 + Ka −
1
2

Ka

Mc2 + . . . , (67)

so that the energy spectrum is just the set {Ka} up to relativistic corrections. Thus, the spectrum for
the 1/ρ potential is just that of the non-relativistic hydrogen problem up to relativistic corrections,
of order 1/c2.

If the spectral set {Ka} includes large negative values, the result (66) could become imaginary,
indicating the possible onset of instability. However, the asymptotic condition imposed on the
evaluation of K must be re-examined in this case. If the potential grows very rapidly as ρ → 0,
then at large space-like distances, where the hyperbolic surfaces ρ = const approach the light cone,
the Euclidean measure d4x (thought of, in this context, as small but finite) on the R4 of spacetime
starts to cover very singular values and the expectation values of the Hamiltonian at large space-like
distances may not permit the contribution of the potential to become negligible; it may have an
effectively very long range. This effect can occur in the transverse direction to the z axis along the
tangent to the light cone; the hyperbolas cannot reach the light cone in the z direction, which may play
an important role in the modelling the behavior of the transverse scattering amplitudes in high energy
scattering studied, for example, by Hagedorn [30].

4. Some Examples

In this section, we give the examples of the Coulomb potential and the oscillator.
For the analog of the Coulomb potential, we take

V(ρ) = −Ze2

ρ
. (68)

As we have remarked above, for c→ ∞, this potential reduces to 1/r, the usual Coulomb, and therefore
the spectrum must reduce to the usual Balmer series in this limit.
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In this case, the spectrum, according to the solutions above, is given by

Ka = −
Z2me4

2h̄2(`+ 1 + na)2
, (69)

where na = 0, 1, 2, 3..... The wave functions R̂(ρ)a are the usual hydrogen functions

R̂na`(ρ) =

√
Zna!

(na + `+ 1)2(na + 2`+ 1)
e−x/2x`+1L2`+1

na (x), (70)

where L2`+1
na are the Laguerre polynomials, and the variable x is defined by

x =
(2Zρ/a0)

(na + `+ 1)
, (71)

and a0 = h̄2/me2. The size of the bound state, which is related to the atomic form factor, is measured
according to the variable ρ [31]. For the lowest level (using the regularized functions) na = ` = 0,

< ρ >na=`=0=
3
2

a0. (72)

The total mass spectrum, given by (62), is then

sna ,`
∼= M2c2 − mMZ2e4

h̄2(na + `+ 1)2
. (73)

For the case that the non-relativistic spectrum has value small compared to the sum of the particle rest
masses, we may use the approximate relation (66) to obtain

Ea,`
∼= Mc2 − Z2me4

2h̄2(na + `+ 1)2
− 1

8
Z4m2e8

Mc2h̄4(na + `+ 1)4
+ . . . . (74)

The lowest order relativistic correction to the rest energy of the two body system with Coulomb-like
potential is then

∆(Ea,` −Mc2)

Ea,` −Mc2 =
Zα2

4
( m

M
) 1
(na + `+ 1)2 . (75)

For positronium, ∆(E−Mc2) ∼ 2× 10−5 eV it is about one part in 105, about 2% of the positronium
hyperfine splitting of 8.4× 10−4 eV [32]. We see quantitatively that the relativistic theory gives results
that are consistent with the known data on these experimentally well studied bound-state systems.

For the four-dimensional oscillator, with V(ρ) = 1
2 mω2ρ2, Equation (60) takes the form

d2R̂(a)(ρ)

dρ2 +
2
ρ

dR̂(a)(ρ)

dρ
− `(`+ 1)

ρ2 R̂(a)(ρ) + 2m
(
Ka −

m2ω2

h̄2 ρ2 − `(`+ 1)
ρ2

)
R̂(a)(ρ) = 0. (76)

With the transformation
R̂(a)(ρ) = x`/2e−x/2w(a)(x), (77)

for
x =

mω

h̄
ρ2, (78)

we obtain the equation

x
d2w(a)

dx2 +
(
`+

3
2
− x
)dw(a)

dx
+

1
2
(
`+

3
2
− Ka

h̄ω

)
w(a) = 0 (79)
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Normalizable solutions, the Laguerre polynomials L`+1/2
na (x), exist [Landau (1965)] when the coefficient

of w(a)(x) is a negative integer, so that the eigenvalues are

Ka = h̄ω(`+ 2na +
3
2
), (80)

where na = 0, 1, 2, 3, . . . The total mass spectrum is given by (62) as

sna ,` = −2MK + 2Mh̄ω(`+ 2na +
3
2
), (81)

Please note that the “zero point” term is 3
2 , indicating that in the RMS, in the covariant equations there

are effectively three intrinsic degrees of freedom, as for the non-relativistic oscillator.
The choice of K is arbitrary here, since there is no ionization point for the oscillator, and no a

priori way of assigning it a value; setting K = −Mc2

2 as for the Coulomb problem (a choice that may be
justified by setting the spring constant equal to zero and adiabatically increasing it to its final value),
one obtains, for small excitations relative to the particle masses,

Ea ∼= Mc2 + h̄ω
(
`+ 2na +

3
2
)
− 1

2
h̄2ω2(`+ 2na +

3
2 )

2

Mc2 + . . . (82)

Feynman, Kislinger and Ravndal [33], Kim and Noz [34] and Leutwyler and Stern [35] have studied the
relativistic oscillator and obtained a positive spectrum by imposing a subsidiary condition suppressing
time-like excitations, which lead, in the formalism of annihilation-creation operators to generate the
spectrum, to negative norm states (“ghosts”). There are no ghost states in the covariant treatment
we discuss here, and no extra constraints invoked in finding the spectrum. The solutions are given
in terms of Laguerre polynomials, but unlike the case of the standard treatment of the 4D oscillator,
in which xµ ± ipµ are considered annihilation-creation operators, the spectrum generating algebra (for
example, Dothan [36]) for the covariant SHP oscillator has been elusive [37].

5. The Induced Representation

We have remarked that the solutions of the invariant two-body problem results in solutions that
are irreducible representations of O(2, 1), in fact, the complex representations of its covering group
SU(1, 1), and pointed out that the ladder representations generated by the action of the Lorentz group
on these states cannot be used to obtain representations of the full Lorentz group O(3, 1) or its covering
SL(2, C). Since the differential equations defining the physical states are covariant under the action
of O(3, 1), the solutions must be representations of O(3, 1). To solve this problem, one observes [1]
that the O(2, 1) solutions are constructed in the RMS which is referred to the space-like z axis. Under a
Lorentz boost, the entire RMS turns, leaving the light cone invariant. After this transformation, the new
RMS is constructed on the basis of a new space-like direction which we call here mµ. However,
the differential equations remain identically the same since the operator form of these equations is
invariant. The change of coordinates to RMS variables has the same form as well, and therefore the
set of solutions of these equations have the same structure. These functions are now related to the
new “z” axis. Under the action of the full Lorentz group the wave functions undergo a transformation
involving a linear combination of the set of eigenfunctions found in the previous section; this action
does not change the value of the SU(1, 1) (or O(2, 1)) Casimir operator; together with the change in
direction of the vector mµ, they provide an induced representation of SL(2, C) (or O(3, 1) with little
group SU(1, 1) in the same way that relativistic spin is a representation of SL(2, C) with SU(2) little
group [27]. The coefficients in this superposition then play the role of the Wigner D functions in the
induced representation of relativistic particles with spin.

Let us define the coordinates {yµ}, isomorphic to the set {xµ}, defined in an accompanying
frame for the RMS(mµ)), with y3 along the axis mµ. Along with infinitesimal operators of the O(2, 1)
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generating changes within the RMS(mµ)), there are generators on O(3, 1) which change the direction of
mµ; as for the induced representations for systems with spin [27], the Lorentz group contains these two
actions, and therefore both Casimir operators are essential to defining the representations, i.e., both

c1 ≡ L(m)2 −A(m)2 (83)

and
c2 ≡ L(m) ·A(m), (84)

which is not identically zero, and commutes with c1.
In the following, we construct functions on the orbit of the SU(1, 1) little group representing the

full Lorentz group; along with the designation of the point on the orbit, labelled by mµ, these functions
constitute a description of the physical state of the system.

It is a quite general result that the induced representation of a non-compact group contains
all of the irreducible representations. We decompose the functions along the orbit into basis sets
corresponding to eigenfunctions for the O(3) subgroup Casimir operator L(m)2 → L(L + 1) and
L1 → q that take on values that persist along the orbit; these solutions correspond to the principal
series of Gel’fand [21]. These quantum numbers for the induced representation do not correspond
directly to the observed angular momenta of the system. The values that correspond to spectra
and wavefunctions with non-relativistic limit coinciding with those of the non-relativistic problem,
are those with L half-integer for the lowest Gel’fand L level. The partial wave expansions in scattering
theory, which we discuss in a later chapter (for the continuous spectrum of Krel), depend on the
quantum number ` of the O(3, 1) defined on the whole space, defined by the quantum form of (95),
and a magnetic quantum number, which we shall call n, associated with the Casimir of the SU(1, 1)
discussed above, then playing the role of the magnetic quantum number, as discussed in the previous
section for the bound-state problem. In fact, in the Gel’fand classification, the two Casimir operators
take on the values c1 = L2

0 + L2
1 − 1, c2 = −iL0L1, where L1 is pure imaginary and, in general, L0 is

integer or half-integer. In the non-relativistic limit, the action of the group on the relative coordinates
becomes deformed in such a way that the O(3, 1) goes into the non-relativistic O(3), and the O(2, 1)
into the O(2) subgroup in the initial configuration of the RMS based on the z axis.

The representations that we shall obtain, in the principal series of Gel’fand [21], are unitary in
a Hilbert space with scalar product product that is defined by an integration invariant under the
full SL(2, C), including an integration over the measure space of SU(1, 1), carried out in the scalar
product in L2(R4 ⊆ RMS(mµ)), for each mµ (corresponding to the orientation of the new z axis,
and an integration over the measure of the coset space SL(2, C)/SU(1, 1); the complete measure is
d4yd4mδ(m2 − 1), i.e., a probability measure on R7, where yµ ∈ RMS(mµ). The coordinate description
of the quantum state therefore corresponds to an ensemble of (relatively defined) events lying in a set
of RMS(mµ)’s over all possible space-like {mµ}.

A coordinate system oriented with its z axis along the direction mµ, as referred to above, can be
constructed by means of a coordinate transformation of Lorentz type (here m represents the space-like
orientation of the transformed RMS, not to be confused with a magnetic quantum number),

yµ = L(m)µ
νxν. (85)

For example, if we take a vector xµ parallel to mµ, with xµ = λmµ, then the corresponding yµ is
λm0

µ, with m0
µ in the direction of the initial orientation of the orbit, say, the z axis. This definition

may be replaced by another by right multiplication of an element of the stability group of mµ and left
multiplication by an element of the stability group of m0

µ, constituting an isomorphism in the RMS.
The variables yµ may be parametrized by the same trigonometric and hyperbolic functions as in

(15) since they span the RMS, and provide a complete characterization of the configuration space in
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the RMS(mµ) that is universal in the sense that it is the same in every Lorentz frame. It is convenient to
define the functions

ψm(y) = φm(LT(m)y) = φm(x) (86)

We can then define the map of the Hilbert spaces associate with each mµ in the foliationHm →
HΛm such that the state vectors are related by the norm preserving transformation

ΨΛ
Λm = U(Λ)Ψm. (87)

In the new Lorentz frame (with y = L(Λm)x),

φΛ
Λm(x) = Λm < x|ΨΛ

Λm >= Λm < x|U(Λ)Ψm >= φΛ
Λm(LT(Λm)y) = ψΛ

Λm(y). (88)

If φm(x) is scalar under Lorentz transformation, so that (we assume no additional phase)

φΛ
Λm(Λx) = φm(x), (89)

it follows from (88) that
U(Λ)|x >m= |Λx >Λm . (90)

The wave function φΛ
Λm(x) describes a system in a Lorentz frame in motion with respect to the frame in

which the state is described by φm(x), and for which the support is in the RMS((Λm)µ). The value of
this function at x in the new frame is determined by its value at Λ−1x in the original frame; moreover,
the sub-ensemble associated with values of mµ over the orbit in the new frame is determined by the
sub-ensemble associated with the values of (Λ−1m)µ in the old frame. We define the description of the
state of the system in the new frame in terms of the set (over {mµ}) of transformed wave functions

ψΛ
m(y) ≡ φΛ−1m(Λ

−1x) = ψΛ
m(D−1(Λ, m)y) (91)

where we have used (88) (the transformed function has support oriented with mµ) and defined the
(pseudo) orthogonal matrix (we define a “matrix” A as {Aµ

ν})

D(Λ, m) = L(m)ΛLT(Λ−1m). (92)

The transformation D−1(Λ, m) stabilizes m0
µ, and is therefore in the O(2, 1) subgroup that leaves the

RMS of the original system invariant. Equation (91) defines an induced representation of SL(2, C),
the double covering of O(3, 1).

Classification of the orbits of the induced representation are determined by the Casimir operators
of SL(2, C), defined as differential operators on the functions ψm(y) of (86), i.e., the operators defined
in (83) and (84). To define these variables as differential operators on the space {y}, we study the
infinitesimal Lorentz transformations

Λ ∼= 1 + λ, (93)

for which
ψ1+λ

m(y) = ψm−λm(D−1(1 + λ, n)y), (94)

and λ is an infinitesimal Lorentz transformation (antisymmetric). To first order, the little group
transformation is

D−1(1 + λ, n) ∼= 1− (dm(λ)L(m))LT(m)− L(m)λLT(m), (95)

where dm is a derivative with respect to mµ holding yµ fixed,

dm(λ) = λµ
νmν

∂

∂nµ
. (96)
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From the property L(m)LT(m) = 1, it follows that

(dm(λ)L(m))LT(m) = −L(m)(dm(λ)LT(m)), (97)

so that (95) can be written as

D−1(1 + λ, n) ∼= 1 + L(m)(dn(λ)LT(m)− λLT(m)) ≡ 1− Gm(λ). (98)

For the transformation of ψm we then obtain

ψ1+λ
m(y) ∼= ψm(y)− dm(λ + gm(λ))ψm(y), (99)

where
gm(λ) = Gm(λ)µ

νyν
∂

∂yµ
. (100)

Equation (99) displays explicitly the effect of the transformation along the orbit and the transformation
within the little group.

The algebra of these generators of the Lorentz group are investigated in [1]; the closure of
this algebra follows from the remarkable property of compensation for the derivatives of the little
group generators along the orbit (behaving as a covariant derivative in differential geometry).
The general structure we have exhibited here is a type of fiber bundle, sometimes called a Hilbert
bundle, consisting of a set of Hilbert spaces on the base space of the orbit; in this case, the fibers,
corresponding to these Hilbert spaces, transform under the little group O(2, 1).

There are functions on the orbit with definite values of the two Casimir operators, as well as
L(m)2 and L1(m); one finds the Gel’fand Naimark canonical representation with decomposition over
the SU(2) subgroup of SL(2, C), enabling an identification of the angular momentum content of the
representations [17]. With a consistency relation between the Casimir operators (for the solution of the
finite set of equations involving functions on the hyperbolic parameters of the space-like four vector
mµ), we find that we are dealing with the principal series of Gel’fand [20,21].

6. Conclusions

We have reviewed and discussed the symmetry of the two-body central potential problem in the
relativistically covariant framework of the SHP theory. The solutions of the Stuekelberg-Schrödinger
equation with support in the full space-like region of the Minkowski space provide a spectrum that
does not agree with the solutions of the non-relativistic Schrödinger equation. Guided by the work
of Zmuidzinas [15] we used variables in the Minkowski configuration space that span a space-like
O(2, 1) invariant subspace of the full Minkowski space for the relative coordinates. In this subspace
the spectrum agrees, up to relativistic corrections, with the non-relativistic Schrödinger spectrum.

In this subspace, which we call the RMS (reduced Minkowski space), the eigenfunctions of the
stationary Stueckelberg-Schrödiger equation form representations of the orthogonal group O(2, 1).
However, the Hamiltonian operator is O(3, 1) invariant, which implies that the solutions must be
representations of O(3, 1). Extending the O(2, 1) representations by the method of stepping to get
a ladder representation leads to a non-normalizable state, and we therefore turned to an induced
representation [19]. This representation was constructed following Wigner’s method [27] for dealing
with spin in a relativistic framework, but with the non-compact O(2, 1) little group instead of the
O(3) little group used by Wigner to describe spin. One might think of the reduced symmetry O(2, 1),
as suggested by Ashtekar [28] as a spontaneous symmetry breaking (the ground state has lower energy
than for the solutions in the full space-like region). This construction leads to eigenfunctions for
the two-body problem that have the intrinsic spinorial property of being double valued, perhaps a
reflection of the topological properties of the O(2, 1) invariant submanifold [23].
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