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Abstract: In the current paper, we study a majorization issue for a general category S∗(ϑ) of starlike
functions, the region of which is often symmetric with respect to the real axis. For various special
symmetric functions ϑ, corresponding consequences of the main result are also presented with some
relevant connections of the outcomes rendered here with those obtained in recent research. Moreover,
coefficient bounds for some majorized functions are estimated.
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1. Introduction and Preliminaries

Let U denote the unit disk {z ∈ C : |z| < 1} andH represent the class of analytic functions in U.
We denote by A the subclass ofH consisting of functions

f (z) = z +
∞

∑
n=2

anzn. (1)

Let Φ represent the category of all analytic functions v in U that satisfy the requirements of
v(0) = 0 and |v(z)| < 1 for z ∈ U, i.e., we consider Φ the set of Schwarz functions.

Definition 1. [1,2] For two analytic functions θ and Θ in the unit disk, we state θ(z) is quasi-subordinate to
Θ(z) if there is a function ν(z), analytic in U, so that θ(z)/ν(z) is analytic in U

θ(z)
ν(z)

≺ Θ(z) (z ∈ U)

and |ν(z)| ≤ 1 (z ∈ U), where ≺ stands for the usual subordination for analytic functions in U. We denote the
above quasi-subordination by

θ(z) ≺q Θ(z) (z ∈ U). (2)

It is remarkable that the relation (2) can be rewritten as follows

θ(z) = ν(z)Θ(v(z)) (z ∈ U),
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where |ν(z)| ≤ 1 (z ∈ U) and v ∈ Φ. For ν(z) ≡ 1 and v(z) = z, the quasi-subordination reduces the
subordination [3] and the majorization [4], i.e.,

θ(z) = Θ(v(z)) (z ∈ U),

written as θ(z) ≺ Θ(z) and

θ(z) = ν(z)Θ(z) (z ∈ U),

written as θ(z)� Θ(z), respectively.
Using the principle of subordination, a different subclass S∗(ϑ) of starlike functions was defined

by Ma and Minda [5] where ϑ is analytic and univalent with Re(ϑ(z)) > 0 in U, starlike with ϑ(0) = 1
and ϑ(U) is symmetric with respect to the real axis so that ϑ′(0) > 0. They introduced the class by:

S∗(ϑ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ϑ(z), z ∈ U

}
.

For example, for the function ϑ(z) = (1 + Cz)/(1 + Dz) (−1 ≤ D < C ≤ 1), the class S∗(ϑ)
becomes the subclass S∗[C, D] of the well-known Janowski starlike functions. By replacing C = 1− 2γ

and D = −1 where 0 ≤ γ < 1, we obtain the category S∗(γ) of the starlike functions of order γ.
Specifically, S∗ := S∗(0) is the well-known category of starlike functions in U. Some special subclasses
of the class S∗(ϑ) play a significant act in geometric function theory because of their geometric
properties. It is fairly common that a function in one of these subclasses is lying in a given region in
the right half-plan and the region is often symmetric with respect to the real axis.

Taking ϑ(z) =
√

1 + z we get a category of S∗L , which was reviewed by Sokół and Stankiewicz [6]
and implies that f ∈ S∗L if and only if z f ′(z)/ f (z) ∈ B, where B = {w ∈ C : |w2 − 1| < 1}. Moreover,
the features of the category S∗e := S∗(ez) comprising functions f ∈ A, with the requirement of
| log(z f ′(z)/ f (z))| < 1 was considered by Mendiratta et al. in [7]. In [8] researchers investigated the
category S∗(h), where

h(z) = z +
√

1 + z2 = 1 + z +
z2

2
+ · · · ,

and proved that f ∈ S∗(h) if and only if z f ′(z)/ f (z) ∈ R, where R = {w ∈ C : |w2 − 1| < 2|w|}.
Lately, Kanas et al. [9] defined the class ST hpl(b) := S∗(qb(z)) and obtained some geometric properties
in this class where the function

qb(z) =
1

(1− z)b = eb log(1−z) = 1 + bz +
b(b + 1)

2
z2 +

b(b + 1)(b + 2)
6

z3 + · · · (0 < b ≤ 1),

where the branch of the logarithm is considered by qb(0) = 1, maps U onto a region, which is bounded
by a right branch of a hyperbola

H(b) =
{

σeiχ : σ =
1

(2 cos(χ/b))b , |χ| < πb
2

}
.

Moreover, qb(U) is symmetric about the real axis, starlike with respect to qb(0) = 1 and convex.
Further qb(z) has positive real part in U and q′b(0) > 0. Therefore, qb(z) satisfies the classification of
Ma-Minda functions.

Recently, Goel and Kumar [10] introduced the class S∗SJ and obtained some different problems in
this class as follows:

S∗SJ =: S∗(J) =
{

f ∈ A :
z f ′(z)

f (z)
≺ 2

1 + e−z , z ∈ U
}

.
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The modified sigmoid function

J(z) =
2

1 + e−z = 1 +
1
2

z− 1
24

z3 + · · · ,

maps U onto a domain ∆SJ := {ξ ∈ C : | log(ξ/(2− ξ))| < 1}, which is symmetric about the real axis.
Also, J(z) is a convex function and so starlike function with respect to J(0) = 1. Moreover, J(z) has
positive real part in U and J′(0) > 0. Therefore, J(z) satisfies the classification of Ma-Minda functions.

MacGregor [4] and Altintas et al. [11] (see also [12]) studied the majorization issues for the category
S∗ and for specific analytic functions by convex and starlike functions of complex order.

Theorem 1. ([4], Theorem 1. A) Let θ(z) and Θ(z) be analytic functions in U with θ(z) � Θ(z) and
Θ(0) = 0. If 0 ≤ r ≤

√
2− 1, then

max
|z|=r
|θ′(z)| ≤ max

|z|=r
|Θ′(z)|.

By setting Θ(z) = z, in above outcome we conclude the next well-known result:

Lemma 1. [13] If θ(z) be analytic in U with |θ(z)| ≤ 1 and θ(0) = 0, then |θ′(z)| ≤ 1 for |z| ≤
√

2− 1.

Recently, several authors have investigated majorization issues for the families of meromorphic
and multivalent meromorphic or univalent and multivalent functions including various linear and
nonlinear operators, which all are subordinated by the similar function ϑ(z) = (1 + Cz)/(1 + Dz)
(for example, see [14–20]). Lately, Tang et al. [21] studied majorization problem for the subclasses
of S∗(ϑ), which are relevant to S∗(1 + sin z) and S∗(cos z), regardless of any linear or nonlinear
operators. Hence, in this work, we study a majorization issue for the general category S∗(ϑ) with
various special consequences of the main result. Also, some suitable relations of the outcomes are
presented with those reported in the earlier results. Moreover, coefficient estimates for majorized
functions related to the class S∗(ϑ) are obtained.

2. Main Results

We first state and establish a majorization feature for the general category S∗(ϑ) and then some
consequences of the main result are stated.

Theorem 2. Let θ ∈ A, Θ ∈ S∗(ϑ) with θ(z)� Θ(z), then |θ′(z)| ≤ |Θ′(z)| for all z in the disk |z| ≤ r1,
where r1 is the smallest positive root of the equation

min
|z|=r
|ϑ(z)| (1− r2)− 2r = 0, r ∈ (0, 1).

Proof. Since θ(z)� Θ(z), considering the concept of majorization, there is a function ν that is analytic
in U with |ν(z)| ≤ 1 satisfying

θ(z) = ν(z)Θ(z).

Differentiating the last equality with respect to z, it follows that

θ′(z) = ν′(z)Θ(z) + ν(z)Θ′(z) = Θ′(z)
(

ν′(z)
Θ(z)
Θ′(z)

+ ν(z)
)

. (3)
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Now, let Θ ∈ S∗(ϑ), then from the subordination concept, there exists a v ∈ Φ with |v(z)| ≤
|z| = r so that

zΘ′(z)
Θ(z)

= ϑ(v(z)),

or equivalently
Θ(z)
Θ′(z)

=
z

ϑ(v(z))
. (4)

Since Re(ϑ(z)) > 0 in U, so ϑ(z) 6= 0 for all z ∈ U. Now, by the minimum modulus principle
we conclude

min
|z|=r
|ϑ(z)| ≤ min

|v(z)|=r
|ϑ((v(z))| = min

|v(z)|≤r
|ϑ((v(z))| .

We know that ϑ is a continuous function with Re(ϑ(z)) > 0 in U and so min|z|=r |ϑ(z)| 6= 0.
Therefore, from this point, (4) and the above relation we obtain∣∣∣∣ Θ(z)

Θ′(z)

∣∣∣∣ = |z|
|ϑ(v(z))| ≤

r
min|z|=r |ϑ(z)|

. (5)

On the other hand, applying the popular inequality for Schwarz functions, which states that∣∣ν′(z)∣∣ (1− |z|2) ≤ 1− |ν(z)|2 . (6)

Utilizing (5) and (6) in (3), we obtain

∣∣θ′(z)∣∣ ≤ (1− |ν(z)|2

1− |z|2
r

min|z|=r |ϑ(z)|
+ |ν(z)|

) ∣∣Θ′(z)∣∣ (|z| = r < 1).

Setting |ν(z)| = γ (0 ≤ γ ≤ 1), it follows that

∣∣θ′(z)∣∣ ≤ (1− γ2

1− r2
r

min|z|=r |ϑ(z)|
+ γ

) ∣∣Θ′(z)∣∣ (0 ≤ γ ≤ 1).

Define

l(r, γ) = γ +
1− γ2

1− r2
r

min|z|=r |ϑ(z)|
(0 ≤ γ ≤ 1, 0 < r < 1).

In order to determine r1, we must choose

r1 = max {r ∈ [0, 1) : l(r, γ) ≤ 1, γ ∈ [0, 1]} .

We know l(r, γ) ≤ 1 if and only if

0 ≤ min
|z|=r
|ϑ(z)| (1− r2)− (1 + γ)r =: p(r, γ).

Clearly, the function p(r, γ) chooses its minimum value for γ = 1, that is,

min {p(r, γ) : γ ∈ [0, 1]} = p(r, 1) =: p(r),

where
p(r) = min

|z|=r
|ϑ(z)| (1− r2)− 2r (0 < r < 1).
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Further, since p(0) = 1 > 0 and p(1) = −2 < 0, there exists r1, so that for all r ∈ [0, r1], we have
p(r) ≥ 0 where r1 is the smallest positive root of the above equality and this completes the proof.

Remark 1. Since ϑ is a convex and symmetric with Re(ϑ(z)) > 0, we get min|z|=r |ϑ(z)| = ϑ(−r) (see [22],
Proposition 5.3).

The following corollary concludes a majorization property for the subclass ST hpl(b) considering
Lemma 2.1 in [9].

Corollary 1. Let θ ∈ A, Θ ∈ ST hpl(b) with θ(z) � Θ(z). Then for all z in the disk |z| ≤ r2, we get
|θ′(z)| ≤ |Θ′(z)| , where r2 is the smallest positive root of the equation

1− r2 − 2r(1 + r)b = 0, r ∈ (0, 1).

Example 1. If we choose the functions

Θ(z) = z exp(B1z) ∈ ST hpl(b) for 0 < B1 < 1− 2−b

(see [9]) and
θ(z) =

z
3 + z

exp(B1z),

then these functions satisfy in the relation θ(z)� Θ(z) with ν(z) = 1
3+z . Therefore, from Corollary 1 we have∣∣∣∣ 3

(3 + z)2 +
B1z

3 + z

∣∣∣∣ ≤ |1 + B1z|

for |z| ≤ r2.

Since 2/(1 + er) ≤ 2/|1 + e−z| (|z| = r < 1), the next corollary concludes a majorization feature
for the subclass S∗SJ .

Corollary 2. Let θ ∈ A, Θ ∈ S∗SJ with θ(z) � Θ(z). Then |θ′(z)| ≤ |Θ′(z)| for |z| ≤ r3, where r3 is the
smallest positive root of the equation

2
1 + er (1− r2)− 2r = 0, r ∈ (0, 1).

Since
| sin z| ≤ sinh r (|z| = r < 1)

(see [23]), we have

0 < 1− sinh r ≤ 1− | sin z| ≤ |1 + sin z| (|z| = r < 0.8813735870),

so the following corollary concludes a majorization property for the subclass S∗s := S∗(1 + sin z)
studied by Cho et al. in [23] and also we have the result which was given by Tang et al. in ([20],
Theorem 2.1).

Corollary 3. Let θ ∈ A, Θ ∈ S∗s with θ(z)� Θ(z). Then for |z| ≤ r4, we get |θ′(z)| ≤ |Θ′(z)| , where r4

is the smallest positive root of the equation

(1− r2)(1− sinh r)− 2r = 0, r ∈ (0, 1).
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Example 2. If we consider the functions

Θ(z) = zez/2 ∈ S∗s

(see [23]) and
θ(z) =

z
2 + z

ez/2,

then we have θ(z)� Θ(z) with ν(z) = 1
2+z . Therefore, from Corollary 3 we get∣∣∣∣ 2

(2 + z)2 +
z

2(2 + z)

∣∣∣∣ ≤ ∣∣∣1 + z
2

∣∣∣ ,

for |z| ≤ r4.

Since
cos r ≤ | cos z| (|z| = r < 1),

the following corollary concludes a majorization property for a subclass S∗(cos z) and also we have a
correction of the result which was given by Tang et al. in ([21], Theorem 2.2).

Corollary 4. Let θ ∈ A, Θ ∈ S∗(cos z) with θ(z)� Θ(z). Then |θ′(z)| ≤ |Θ′(z)| for |z| ≤ r5, where r5 is
the smallest positive root of the equation

(1− r2) cos r− 2r = 0, r ∈ (0, 1).

In the following corollaries, we obtain majorization properties for two subclasses S∗α,e = S∗(α +

(1− α)ez) (0 ≤ α < 1) and SL∗(α) = S∗
(
α + (1− α)

√
1 + z

)
(0 ≤ α < 1), which were defined by

Khatter et al. considering Lemma 2.1 in [24]. For α = 0, these results reduce to the subclasses S∗(ez)

and S∗(
√

1 + z) (see [6,7]).

Corollary 5. Let θ ∈ A, Θ ∈ S∗α,e with θ(z) � Θ(z). Then |θ′(z)| ≤ |Θ′(z)| for |z| ≤ r6, where r6 is the
smallest positive root of the equation

[α + (1− α)e−r](1− r2)− 2r = 0, r ∈ (0, 1).

Corollary 6. Let θ ∈ A, Θ ∈ SL∗(α) with θ(z) � Θ(z). Then for |z| ≤ r7, we get |θ′(z)| ≤ |Θ′(z)| ,
where r7 is the smallest positive root of the equation

[α + (1− α)
√

1− r](1− r2)− 2r = 0, r ∈ (0, 1).

The following result concludes a majorization property for a subset S∗RL = S∗
(

ϕ0
)

introduced by
Mendiratta et al. considering Theorem 2.2 in [25], in which

ϕ0(z) =
√

2− j

√
1− z

1 + 2jz
j =
√

2− 1,

where function ϕ0 is a univalent and convex in U.

Corollary 7. Let θ ∈ A, Θ ∈ S∗RL with θ(z) � Θ(z). Then |θ′(z)| ≤ |Θ′(z)| for |z| ≤ r8, where r8 is the
smallest positive root of the equation

ϕ0(r)(1− r2)− 2r = 0, r ∈ (0, 1).
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In the following result, we get a majorization property for a category S∗(pl(z)) introduced by
Kanas and Wiśniowska in [26] in which

pl(z) = 1 + P1(l)z + P2(l)z2 + · · · ,

where pk(z) satisfies the conclusion of Remark 1 (see also [27,28]).

Corollary 8. Let θ ∈ A, Θ ∈ S∗(pk(z)) with θ(z)� Θ(z). Then for |z| ≤ r9, we have |θ′(z)| ≤ |Θ′(z)| ,
where r9 is the smallest positive root of the equation

pl(−r)(1− r2)− 2r = 0, r ∈ (0, 1).

Since ϑ(z) = (1 + Cz)/(1 + Dz) satisfies in Remark 1 we obtain a majorization property for the
class S∗[C, D] as follows:

Corollary 9. Let θ ∈ A, Θ ∈ S∗[C, D] with θ(z) � Θ(z). Then for |z| ≤ r10, we get |θ′(z)| ≤ |Θ′(z)| ,
where r10 is the smallest positive root of the equation

(1− C)(1− r2)− 2r(1− D) = 0, r ∈ (0, 1).

To prove the following result, we state the next lemma due to Kuroki and Owa [29] (see also [30]).

Lemma 2. Let ϑ be a convex in U with form ϑ(z) = 1 +
∞
∑

n=1
Bnzn. If f ∈ S∗ (ϑ), then

|an| ≤
∏n

m=2 (m− 2 + |B1|)
(n− 1)!

(n = 2, 3, · · · ) .

Theorem 3. Let ϑ be convex in U and θ(z) = z +
∞
∑

n=2
anzn ∈ A, Θ(z) = z +

∞
∑

n=2
bnzn ∈ S∗(ϑ) with

θ(z)� Θ(z). Then

|an| ≤ 1 +
n

∑
j=2

(
∏

j
m=2 (m− 2 + |B1|)

(j− 1)!

)
(n = 2, 3, · · · ) .

Proof. Since θ(z)� Θ(z), by the majorization principle there is an analytic function ν(z) =
∞
∑

n=0
cnzn

with |ν(z)| ≤ 1 satisfying
θ(z) = ν(z)Θ(z),

where it concludes,
an = c0bn + c1bn−1 + · · ·+ cn−2b2 + cn−1. (7)

If γ is any circle |z| = r, 0 < r < 1, where z = reiζ , 0 ≤ ζ ≤ 2π, then

ck =
1

2πi

∫
γ

ν(z)
zk+1 dz for k = 0, 1, · · · , n− 1.

In view of the above equality, we can write the equality (7) in the form (see [4], p. 99)

an =
1

2πi

∫
γ

ν(z)
zn [1 + b2z + · · ·+ bnzn−1]dz.
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From the above equality for n ≥ 2, we obtain

|an| ≤
1

2π

∫ 2π

0

1
rn−1

∣∣∣1 + b2reiζ + · · ·+ bnrn−1ei(n−1)ζ
∣∣∣dζ

≤ 1
rn−1 (1 + |b2|+ · · ·+ |bn|).

Since this inequality holds for all r in the interval 0 < r < 1, it follows that

|an| ≤ 1 + |b2|+ · · ·+ |bn|.

Now using Lemma 2 we have

|an| ≤ 1 +
n

∑
j=2

(
∏

j
m=2 (m− 2 + |B1|)

(j− 1)!

)
,

which completes the proof.

Corollary 10. Let θ(z) = z +
∞
∑

n=2
anzn ∈ A, Θ(z) = z +

∞
∑

n=2
bnzn ∈ ST hpl(b) with θ(z)� Θ(z). Then

|an| ≤ 1 +
n

∑
j=2

(
∏

j
m=2 (m + b− 2)

(j− 1)!

)
(n = 2, 3, · · · ) .

Corollary 11. Let θ(z) = z +
∞
∑

n=2
anzn ∈ A, Θ(z) = z +

∞
∑

n=2
bnzn ∈ S∗(ez) with θ(z)� Θ(z). Then

|an| ≤ 1 +
n

∑
j=2

(
∏

j
m=2 (m− 1)
(j− 1)!

)
= n (n = 2, 3, · · · ) .

Since the identity function Θ(z) = z belongs to the category S∗(ez), from Corollary 11 we get the
next result:

Example 3. Let θ ∈ A and |θ(z)| < 1, then

|an| ≤ n (n = 2, 3, · · · ) .

3. Conclusions

In the current paper, we obtain a majorization result for a general category S∗(ϑ) of starlike
functions. Also, we investigate coefficient bounds for majorized functions associated with the class
S∗(ϑ). Furthermore, we can consider some particular functions ϑ in Theorems 2 and 3 to get the
corresponding majorization results.
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