Dynamically Generated Inflationary ΛCDM
Abstract
:1. Introduction
2. A Simple Model of Unification of Dark Energy and Dark Matter
- The first term in (10) is the standard Einstein–Hilbert action with denoting the scalar curvature with respect to metric in the second order (metric) formalism;
- is particular representative of a non-Riemannian volume-element density (6):
- is general-coordinate invariant Lagrangian of a single scalar field :
3. Inflation and Unified Dark Energy and Dark Matter
- (ii) (37) has a stable minimum for a small finite value : for , where:
- (iii) As it will be explicitly exhibited in the dynamical system analysis in Section 4, the region of u around the stable minimum at (41) corresponds to the late-time de Sitter expansion of the universe with a slightly varied late-time Hubble parameter (dark energy dominated epoch), wherein the minimum value of the potential:
4. Cosmological Implications
- (A) Stable critical point:
- (B) Unstable critical point:
5. Numerical Solutions
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. 2006, D15, 1753–1936. [Google Scholar] [CrossRef] [Green Version]
- Novikov, E.A. Quantum Modification of General Relativity. Electron. J. Theor. Phys. 2016, 13, 79–90. [Google Scholar]
- Benitez, F.; Gambini, R.; Lehner, L.; Liebling, S.; Pullin, J. Critical collapse of a scalar field in semiclassical loop quantum gravity. Phys. Rev. Lett. 2020, 124, 071301. [Google Scholar] [CrossRef] [Green Version]
- Budge, L.; Campbell, J.M.; De Laurentis, G.; Keith Ellis, R.; Seth, S. The one-loop amplitude for Higgs + 4 gluons with full mass effects. arXiv 2020, arXiv:2002.04018. [Google Scholar]
- Bell, G.; Beneke, M.; Huber, T.; Li, X.Q. Two-loop non-leptonic penguin amplitude in QCD factorization. arXiv 2020, arXiv:2002.03262. [Google Scholar]
- Fröhlich, J.; Knowles, A.; Schlein, B.; Sohinger, V. A path-integral analysis of interacting Bose gases and loop gases. arXiv 2020, arXiv:2001.11714. [Google Scholar]
- D’Ambrosio, F. Semi-Classical Holomorphic Transition Amplitudes in Covariant Loop Quantum Gravity. arXiv 2020, arXiv:2001.04651. [Google Scholar]
- Novikov, E.A. Ultralight gravitons with tiny electric dipole moment are seeping from the vacuum. Mod. Phys. Lett. 2016, A31, 1650092. [Google Scholar] [CrossRef] [Green Version]
- Dekens, W.; Stoffer, P. Low-energy effective field theory below the electroweak scale: Matching at one loop. JHEP 2019, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.T.; Pezzella, F. Stringy Effects at Low-Energy Limit and Double Field Theory. arXiv 2019, arXiv:1909.00411. [Google Scholar]
- Jenkins, E.E.; Manohar, A.V.; Stoffer, P. Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching. JHEP 2018, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Brandyshev, P.E. Cosmological solutions in low-energy effective field theory for type IIA superstrings. Grav. Cosmol. 2017, 23, 15–19. [Google Scholar] [CrossRef]
- Gomez, C.; Jimenez, R. Cosmology from Quantum Information. arXiv 2020, arXiv:2002.04294. [Google Scholar]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. 1981, D23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682–685. [Google Scholar]
- Kazanas, D. Dynamics of the Universe and Spontaneous Symmetry Breaking. Astrophys. J. 1980, 241, L59–L63. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91B, 99–102. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. 1982, 108B, 389–393. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ottewill, A.C. The Stability of General Relativistic Cosmological Theory. J. Phys. 1983, A16, 2757. [Google Scholar] [CrossRef]
- Blau, S.K.; Guendelman, E.I.; Guth, A.H. The Dynamics of False Vacuum Bubbles. Phys. Rev. 1987, D35, 1747. [Google Scholar] [CrossRef] [Green Version]
- Cervantes-Cota, J.L.; Dehnen, H. Induced gravity inflation in the standard model of particle physics. Nucl. Phys. 1995, B442, 391–412. [Google Scholar] [CrossRef] [Green Version]
- Berera, A. Warm inflation. Phys. Rev. Lett. 1995, 75, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V.F. k - inflation. Phys. Lett. 1999, B458, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Olive, K.A. Assisted chaotic inflation in higher dimensional theories. Phys. Lett. 1999, B464, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Mukhanov, V.F. Perturbations in k-inflation. Phys. Lett. 1999, B458, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Gordon, C.; Wands, D.; Bassett, B.A.; Maartens, R. Adiabatic and entropy perturbations from inflation. Phys. Rev. 2000, D63, 023506. [Google Scholar] [CrossRef] [Green Version]
- Bassett, B.A.; Tsujikawa, S.; Wands, D. Inflation dynamics and reheating. Rev. Mod. Phys. 2006, 78, 537–589. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, Y. Quasi-Single Field Inflation and Non-Gaussianities. JCAP 2010, 1004, 27. [Google Scholar] [CrossRef] [Green Version]
- Germani, C.; Kehagias, A. New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity. Phys. Rev. Lett. 2010, 105, 011302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. G-inflation: Inflation driven by the Galileon field. Phys. Rev. Lett. 2010, 105, 231302. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.J.; Li, X.Z.; Saridakis, E.N. Preventing eternality in phantom inflation. Phys. Rev. 2010, D82, 023526. [Google Scholar] [CrossRef] [Green Version]
- Burrage, C.; de Rham, C.; Seery, D.; Tolley, A.J. Galileon inflation. JCAP 2011, 1101, 14. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511–529. [Google Scholar] [CrossRef]
- Ohashi, J.; Tsujikawa, S. Potential-driven Galileon inflation. JCAP 2012, 1210, 35. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Tsamparlis, M. Two scalar field cosmology: Conservation laws and exact solutions. Phys. Rev. 2014, D90, 043529. [Google Scholar] [CrossRef] [Green Version]
- Dimakis, N.; Paliathanasis, A. Crossing the phantom divide line as an effect of quantum transitions. arXiv 2020, arXiv:2001.09687. [Google Scholar]
- Dimakis, N.; Paliathanasis, A.; Terzis, P.A.; Christodoulakis, T. Cosmological Solutions in Multiscalar Field Theory. Eur. Phys. J. 2019, C79, 618. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I. A transition between bouncing hyper-inflation to ΛCDM from diffusive scalar fields. Int. J. Mod. Phys. 2018, A33, 1850119. [Google Scholar] [CrossRef]
- Barrow, J.D.; Paliathanasis, A. Observational Constraints on New Exact Inflationary Scalar-field Solutions. Phys. Rev. 2016, D94, 083518. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Paliathanasis, A. Reconstructions of the dark-energy equation of state and the inflationary potential. Gen. Rel. Grav. 2018, 50, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olive, K.A. Inflation. Phys. Rept. 1990, 190, 307–403. [Google Scholar] [CrossRef]
- Linde, A.D. Hybrid inflation. Phys. Rev. 1994, D49, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Liddle, A.R.; Parsons, P.; Barrow, J.D. Formalizing the slow roll approximation in inflation. Phys. Rev. 1994, D50, 7222–7232. [Google Scholar] [CrossRef] [PubMed]
- Lidsey, J.E.; Liddle, A.R.; Kolb, E.W.; Copeland, E.J.; Barreiro, T.; Abney, M. Reconstructing the inflation potential: An overview. Rev. Mod. Phys. 1997, 69, 373–410. [Google Scholar] [CrossRef]
- Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Variable gravity: A suitable framework for quintessential inflation. Phys. Rev. 2014, D90, 023512. [Google Scholar] [CrossRef] [Green Version]
- Wali Hossain, M.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Unification of inflation and dark energy à la quintessential inflation. Int. J. Mod. Phys. 2015, D24, 1530014. [Google Scholar] [CrossRef]
- Cai, Y.F.; Gong, J.O.; Pi, S.; Saridakis, E.N.; Wu, S.Y. On the possibility of blue tensor spectrum within single field inflation. Nucl. Phys. 2015, B900, 517–532. [Google Scholar] [CrossRef] [Green Version]
- Geng, C.Q.; Hossain, M.W.; Myrzakulov, R.; Sami, M.; Saridakis, E.N. Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results. Phys. Rev. 2015, D92, 023522. [Google Scholar] [CrossRef] [Green Version]
- Kamali, V.; Basilakos, S.; Mehrabi, A. Tachyon warm-intermediate inflation in the light of Planck data. Eur. Phys. J. 2016, C76, 525. [Google Scholar] [CrossRef]
- Geng, C.Q.; Lee, C.C.; Sami, M.; Saridakis, E.N.; Starobinsky, A.A. Observational constraints on successful model of quintessential Inflation. JCAP 2017, 1706, 11. [Google Scholar] [CrossRef] [Green Version]
- Dalianis, I.; Kehagias, A.; Tringas, G. Primordial black holes from α-attractors. JCAP 2019, 1901, 37. [Google Scholar] [CrossRef] [Green Version]
- Dalianis, I.; Tringas, G. Primordial black hole remnants as dark matter produced in thermal, matter, and runaway-quintessence postinflationary scenarios. Phys. Rev. 2019, D100, 083512. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D. Inflation from Fermions. arXiv 2019, arXiv:1912.11124. [Google Scholar]
- Benisty, D.; Guendelman, E.I. Inflation compactification from dynamical spacetime. Phys. Rev. 2018, D98, 043522. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Saridakis, E.N. The Scale Factor Potential Approach to Inflation. arXiv 2019, arXiv:1909.01982. [Google Scholar]
- Gerbino, M.; Freese, K.; Vagnozzi, S.; Lattanzi, M.; Mena, O.; Giusarma, E.; Ho, S. Impact of neutrino properties on the estimation of inflationary parameters from current and future observations. Phys. Rev. 2017, D95, 043512. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, M. Planckian hypersurfaces, inflation and bounces. arXiv 2020, arXiv:2001.11799. [Google Scholar]
- Brahma, S.; Brandenberger, R.; Yeom, D.H. Swampland, Trans-Planckian Censorship and Fine-Tuning Problem for Inflation: Tunnelling Wavefunction to the Rescue. arXiv 2020, arXiv:2002.02941. [Google Scholar]
- Domcke, V.; Guidetti, V.; Welling, Y.; Westphal, A. Resonant backreaction in axion inflation. arXiv 2020, arXiv:2002.02952. [Google Scholar]
- Tenkanen, T.; Tomberg, E. Initial conditions for plateau inflation. arXiv 2020, arXiv:2002.02420. [Google Scholar]
- Martin, J.; Papanikolaou, T.; Pinol, L.; Vennin, V. Metric preheating and radiative decay in single-field inflation. arXiv 2020, arXiv:2002.01820. [Google Scholar]
- Cheon, K.; Lee, J. N = 2 PNGB Quintessence Dark Energy. arXiv 2020, arXiv:2002.01756. [Google Scholar]
- Saleem, R.; Zubair, M. Inflationary solution of Hamilton Jacobi equations during weak dissipative regime. Phys. Scr. 2020, 95, 035214. [Google Scholar] [CrossRef] [Green Version]
- Giacintucci, S.; Markevitch, M.; Johnston-Hollitt, M.; Wik, D.R.; Wang, Q.H.S.; Clarke, T.E. Discovery of a giant radio fossil in the Ophiuchus galaxy cluster. arXiv 2020, arXiv:2002.01291. [Google Scholar] [CrossRef]
- Aalsma, L.; Shiu, G. Chaos and complementarity in de Sitter space. arXiv 2020, arXiv:2002.01326. [Google Scholar]
- Kogut, A.; Fixsen, D.J. Calibration Method and Uncertainty for the Primordial Inflation Explorer (PIXIE). arXiv 2020, arXiv:2002.00976. [Google Scholar]
- Arciniega, G.; Jaime, L.; Piccinelli, G. Inflationary predictions of Geometric Inflation. arXiv 2020, arXiv:2001.11094. [Google Scholar]
- Rasheed, M.A.; Golanbari, T.; Sayar, K.; Akhtari, L.; Sheikhahmadi, H.; Mohammadi, A.; Saaidi, K. Warm Tachyon Inflation and Swampland Criteria. arXiv 2020, arXiv:2001.10042. [Google Scholar]
- Aldabergenov, Y.; Aoki, S.; Ketov, S.V. Minimal Starobinsky supergravity coupled to dilaton-axion superfield. arXiv 2020, arXiv:2001.09574. [Google Scholar]
- Tenkanen, T. Tracing the high energy theory of gravity: an introduction to Palatini inflation. arXiv 2020, arXiv:2001.10135. [Google Scholar]
- Shaposhnikov, M.; Shkerin, A.; Zell, S. Standard Model Meets Gravity: Electroweak Symmetry Breaking and Inflation. arXiv 2020, arXiv:2001.09088. [Google Scholar]
- Garcia, M.A.G.; Amin, M.A.; Green, D. Curvature Perturbations From Stochastic Particle Production During Inflation. arXiv 2020, arXiv:2001.09158. [Google Scholar]
- Hirano, K. Inflation with very small tensor-to-scalar ratio. arXiv 2019, arXiv:1912.12515. [Google Scholar]
- Gialamas, I.D.; Lahanas, A.B. Reheating in R2 Palatini inflationary models. arXiv 2019, arXiv:1911.11513. [Google Scholar]
- Kawasaki, M.; Yamaguchi, M.; Yanagida, T. Natural chaotic inflation in supergravity. Phys. Rev. Lett. 2000, 85, 3572–3575. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Inflation from quantum geometry. Phys. Rev. Lett. 2002, 89, 261301. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. 2003, D68, 123512. [Google Scholar] [CrossRef] [Green Version]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Maldacena, J.M.; McAllister, L.P.; Trivedi, S.P. Towards inflation in string theory. JCAP 2003, 310, 13. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying phantom inflation with late-time acceleration: Scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Rel. Grav. 2006, 38, 1285–1304. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflation. Phys. Rev. 2007, D75, 084031. [Google Scholar] [CrossRef] [Green Version]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. 2008, D77, 046009. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Saridakis, E.N. Inflation in Entropic Cosmology: Primordial Perturbations and non-Gaussianities. Phys. Lett. 2011, B697, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Sloan, D. Probability of Inflation in Loop Quantum Cosmology. Gen. Rel. Grav. 2011, 43, 3619–3655. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.; Saridakis, E.N. Entropic Force Scenarios and Eternal Inflation. Phys. Rev. 2012, D85, 043504. [Google Scholar] [CrossRef] [Green Version]
- Briscese, F.; Marcianò, A.; Modesto, L.; Saridakis, E.N. Inflation in (Super-)renormalizable Gravity. Phys. Rev. 2013, D87, 083507. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Nanopoulos, D.V.; Olive, K.A. No-Scale Supergravity Realization of the Starobinsky Model of Inflation. Phys. Rev. Lett. 2013, 111, 111301. [Google Scholar] [CrossRef] [Green Version]
- Basilakos, S.; Lima, J.A.S.; Sola, J. From inflation to dark energy through a dynamical Lambda: An attempt at alleviating fundamental cosmic puzzles. Int. J. Mod. Phys. 2013, D22, 1342008. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, L.; Cognola, G.; Myrzakulov, R.; Odintsov, S.D.; Zerbini, S. Nearly Starobinsky inflation from modified gravity. Phys. Rev. 2014, D89, 023518. [Google Scholar] [CrossRef] [Green Version]
- Baumann, D.; McAllister, L. Inflation and String Theory; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Dalianis, I.; Farakos, F. On the initial conditions for inflation with plateau potentials: the R+R2 (super)gravity case. JCAP 2015, 1507, 44. [Google Scholar] [CrossRef] [Green Version]
- Kanti, P.; Gannouji, R.; Dadhich, N. Gauss-Bonnet Inflation. Phys. Rev. 2015, D92, 041302. [Google Scholar] [CrossRef] [Green Version]
- De Laurentis, M.; Paolella, M.; Capozziello, S. Cosmological inflation in F(R,) gravity. Phys. Rev. 2015, D91, 083531. [Google Scholar] [CrossRef] [Green Version]
- Basilakos, S.; Mavromatos, N.E.; Solà, J. Starobinsky-like inflation and running vacuum in the context of Supergravity. Universe 2016, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Platania, A. Asymptotically safe inflation from quadratic gravity. Phys. Lett. 2015, B750, 638–642. [Google Scholar] [CrossRef]
- Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R2 inflation in non-local UV-complete gravity. JHEP 2016, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Odintsov, S.D.; Saridakis, E.N. Inflationary cosmology in unimodular F(T) gravity. Mod. Phys. Lett. 2017, A32, 1750114. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, H.; Starobinsky, A.A. f(R) constant-roll inflation. Eur. Phys. J. 2017, C77, 538. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, V.K. Autonomous dynamical system approach for inflationary Gauss–Bonnet modified gravity. Int. J. Mod. Phys. 2018, D27, 1850059. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Vasak, D.; Guendelman, E.; Struckmeier, J. Energy transfer from spacetime into matter and a bouncing inflation from covariant canonical gauge theory of gravity. Mod. Phys. Lett. 2019, A34, 1950164. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I. Two scalar fields inflation from scale-invariant gravity with modified measure. Class. Quant. Grav. 2019, 36, 095001. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Karam, A.; Lykkas, A.; Tamvakis, K. Palatini inflation in models with an R2 term. JCAP 2018, 1811, 28. [Google Scholar] [CrossRef] [Green Version]
- Karam, A.; Pappas, T.; Tamvakis, K. Frame-dependence of inflationary observables in scalar-tensor gravity. PoS 2019, CORFU2018, 64. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Holographic inflation. Phys. Lett. 2019, B797, 134829. [Google Scholar] [CrossRef]
- Benisty, D.; Guendelman, E.I.; Saridakis, E.N.; Stoecker, H.; Struckmeier, J.; Vasak, D. Inflation from fermions with curvature-dependent mass. arXiv 2019, arXiv:1905.03731. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.; Nissimov, E.; Pacheva, S. Dynamically Generated Inflation from Non-Riemannian Volume Forms. arXiv 2019, arXiv:1906.06691. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Nissimov, E.; Pacheva, S. Dynamically generated inflationary two-field potential via non-Riemannian volume forms. arXiv 2019, arXiv:1907.07625. [Google Scholar] [CrossRef]
- Kinney, W.H.; Vagnozzi, S.; Visinelli, L. The zoo plot meets the swampland: Mutual (in)consistency of single-field inflation, string conjectures, and cosmological data. Class. Quant. Grav. 2019, 36, 117001. [Google Scholar] [CrossRef] [Green Version]
- Brustein, R.; Sherf, Y. Causality Violations in Lovelock Theories. Phys. Rev. 2018, D97, 084019. [Google Scholar] [CrossRef] [Green Version]
- Sherf, Y. Hyperbolicity Constraints in Extended Gravity Theories. Phys. Scr. 2019, 94, 085005. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Luongo, O. Connecting early and late universe by f(R) gravity. Int. J. Mod. Phys. 2014, D24, 1541002. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, D.; Tokareva, A. Scale-invariance as the origin of dark radiation? Phys. Lett. 2014, B739, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Myrzakulov, R.; Odintsov, S.; Sebastiani, L. Inflationary universe from higher-derivative quantum gravity. Phys. Rev. 2015, D91, 083529. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Myrzakulov, R.; Odintsov, S.D.; Sebastiani, L. Trace-anomaly driven inflation in modified gravity and the BICEP2 result. Phys. Rev. 2014, D90, 043505. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Vasak, D.; Struckmeier, J.; Stoecker, H. Quadratic curvature theories formulated as Covariant Canonical Gauge theories of Gravity. Phys. Rev. 2018, D98, 106021. [Google Scholar] [CrossRef] [Green Version]
- Aashish, S.; Panda, S. Covariant quantum corrections to a scalar field model inspired by nonminimal natural inflation. arXiv 2020, arXiv:2001.07350. [Google Scholar]
- Rashidi, N.; Nozari, K. Gauss-Bonnet Inflation after Planck2018. arXiv 2020, arXiv:2001.07012. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Geometric Inflation and Dark Energy with Axion F(R) Gravity. Phys. Rev. 2020, D101, 044009. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Karam, A.; Lykkas, A.; Pappas, T.; Tamvakis, K. Single-field inflation in models with an R2 term. In Proceedings of the 19th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2019), Corfu, Greece, 31 August–25 September 2019. [Google Scholar]
- Benisty, D.; Guendelman, E.I. Correspondence between the first and second order formalism by a metricity constraint. Phys. Rev. 2018, D98, 044023. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Paul, T.; SenGupta, S. Inflation driven by Einstein-Gauss-Bonnet gravity. Phys. Rev. 2018, D98, 083539. [Google Scholar] [CrossRef] [Green Version]
- Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535. [Google Scholar]
- Guth, A.H.; Pi, S.Y. Fluctuations in the New Inflationary Universe. Phys. Rev. Lett. 1982, 49, 1110–1113. [Google Scholar] [CrossRef]
- Faraoni, V.; Capozziello, S. Beyond Einstein Gravity; Springer: Dordrecht, The Netherlands, 2011; Volume 170. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijevic, I.; Dragovich, B.; Koshelev, A.S.; Rakic, Z.; Stankovic, J. Cosmological Solutions of a Nonlocal Square Root Gravity. Phys. Lett. 2019, B797, 134848. [Google Scholar] [CrossRef]
- Bilic, N.; Dimitrijevic, D.D.; Djordjevic, G.S.; Milosevic, M.; Stojanovic, M. Tachyon inflation in the holographic braneworld. JCAP 2019, 1908, 034. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. arXiv 2018, arXiv:1807.06211. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe. Phys. Rev. 2006, D74, 086005. [Google Scholar] [CrossRef] [Green Version]
- Lozano, L.; Garcia-Compean, H. Emergent Dark Matter and Dark Energy from a Lattice Model. arXiv 2019, arXiv:hep-th/1912.11224. [Google Scholar]
- Chamings, F.N.; Avgoustidis, A.; Copeland, E.J.; Green, A.M.; Pourtsidou, A. Understanding the suppression of structure formation from dark matter 2013 dark energy momentum coupling. arXiv 2019, arXiv:astro-ph.CO/1912.09858. [Google Scholar]
- Liu, L.H.; Xu, W.L. The running curvaton. arXiv 2019, arXiv:1911.10542. [Google Scholar]
- Cheng, G.; Ma, Y.; Wu, F.; Zhang, J.; Chen, X. Testing interacting dark matter and dark energy model with cosmological data. arXiv 2019, arXiv:1911.04520. [Google Scholar]
- Cahill, K. Zero-point energies, dark matter, and dark energy. arXiv 2019, arXiv:1910.09953. [Google Scholar]
- Bandyopadhyay, A.; Chatterjee, A. Time-dependent diffusive interactions between dark matter and dark energy in the context of k-essence cosmology. arXiv 2019, arXiv:1910.10423. [Google Scholar]
- Kase, R.; Tsujikawa, S. Scalar-Field Dark Energy Nonminimally and Kinetically Coupled to Dark Matter. arXiv 2019, arXiv:1910.02699. [Google Scholar] [CrossRef] [Green Version]
- Ketov, S.V. Inflation, Dark Energy and Dark Matter in Supergravity. In Proceedings of the Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), Boston, MA, USA, 29 July–2 August 2019. [Google Scholar]
- Mukhopadhyay, U.; Paul, A.; Majumdar, D. Probing Pseudo Nambu Goldstone Boson Dark Energy Models with Dark Matter—Dark Energy Interaction. arXiv 2019, arXiv:1909.03925. [Google Scholar]
- Yang, W.; Pan, S.; Vagnozzi, S.; Di Valentino, E.; Mota, D.F.; Capozziello, S. Dawn of the dark: unified dark sectors and the EDGES Cosmic Dawn 21-cm signal. JCAP 2019, 1911, 44. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I.; Kaganovich, A.B. The Principle of nongravitating vacuum energy and some of its consequences. Phys. Rev. 1996, D53, 7020–7025. [Google Scholar] [CrossRef] [Green Version]
- Gronwald, F.; Muench, U.; Macias, A.; Hehl, F.W. Volume elements of space-time and a quartet of scalar fields. Phys. Rev. 1998, D58, 084021. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I.; Kaganovich, A.B. Dynamical measure and field theory models free of the cosmological constant problem. Phys. Rev. 1999, D60, 065004. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I. Scale invariance, new inflation and decaying lambda terms. Mod. Phys. Lett. 1999, A14, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I.; Kaganovich, A.B. Absence of the Fifth Force Problem in a Model with Spontaneously Broken Dilatation Symmetry. Ann. Phys. 2008, 323, 866–882. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Nissimov, E.; Pacheva, S.; Vasihoun, M. A New Mechanism of Dynamical Spontaneous Breaking of Supersymmetry. Bulg. J. Phys. 2014, 41, 123–129. [Google Scholar]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Vacuum structure and gravitational bags produced by metric-independent space–time volume-form dynamics. Int. J. Mod. Phys. 2015, A30, 1550133. [Google Scholar] [CrossRef]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Unified Dark Energy and Dust Dark Matter Dual to Quadratic Purely Kinetic K-Essence. Eur. Phys. J. 2016, C76, 90. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Singleton, D.; Yongram, N. A two measure model of dark energy and dark matter. JCAP 2012, 1211, 44. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form. Eur. Phys. J. 2015, C75, 472. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Gravity-Assisted Emergent Higgs Mechanism in the Post-Inflationary Epoch. Int. J. Mod. Phys. 2016, D25, 1644008. [Google Scholar] [CrossRef]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Modified Gravity and Inflaton Assisted Dynamical Generation of Charge Confinement and Electroweak Symmetry Breaking in Cosmology. AIP Conf. Proc. 2019, 2075, 090030. [Google Scholar] [CrossRef]
- Guendelman, E.; Nissimov, E.; Pacheva, S. Unification of Inflation and Dark Energy from Spontaneous Breaking of Scale Invariance. In Proceedings of the 8th Mathematical Physics Meeting, Summer School and Conference on Modern Mathematical Physics, Belgrade, Serbia, 24–31 August 2014; pp. 93–103. [Google Scholar]
- Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating Universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef] [Green Version]
- Mathews, G.J.; Kusakabe, M.; Kajino, T. Introduction to Big Bang Nucleosynthesis and Modern Cosmology. Int. J. Mod. Phys. 2017, E26, 1741001. [Google Scholar] [CrossRef] [Green Version]
- Liddle, A. Einfuehrung in die Moderne Kosmologie; Wiley-VCH: Berlin, Germany, 2008. [Google Scholar]
- Liddle, A.R. An Introduction to Modern Cosmology; Wiley-VCH: West Sussex, UK, 2003. [Google Scholar]
- Dodelson, S. Modern Cosmology; Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Dodelson, S.; Easther, R.; Hanany, S.; McAllister, L.; Meyer, S.; Page, L.; Ade, P.; Amblard, A.; Ashoorioon, A.; Baccigalupi, C.; et al. The Origin of the Universe as Revealed Through the Polarization of the Cosmic Microwave Background. arXiv 2009, arXiv:0902.3796. [Google Scholar]
- Baumann, D.; Cooray, A.; Dodelson, S.; Dunkley, J.; Fraisse, A.A.; Jackson, M.G.; Kogut, A.; Krauss, L.M.; Smith, K.M.; Zaldarriaga, M. CMBPol Mission Concept Study: A Mission to Map our Origins. AIP Conf. Proc. 2009, 1141, 3–9. [Google Scholar] [CrossRef]
- Dodelson, S. Cosmic microwave background: Past, future, and present. Int. J. Mod. Phys. 2000, A15S1, 765–783. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, M.P.; Garecki, J.; Blaschke, D.B. Conformal transformations and conformal invariance in gravitation. Annalen Phys. 2009, 18, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Angus, C.R.; Smith, M.; Sullivan, M.; Inserra, C.; Wiseman, P.; D’Andrea, C.B.; Thomas, B.P.; Nichol, R.C.; Galbany, L.; Childress, M.; et al. Superluminous Supernovae from the Dark Energy Survey. Mon. Not. R. Astron. Soc. 2019, 487, 2215–2241. [Google Scholar] [CrossRef]
- Zhang, Y.; Yanny, B.; Palmese, A.; Gruen, D.; To, C.; Rykoff, E.S.; Leung, Y.; Collins, C.; Hilton, M.; Abbott, T.M.; et al. Dark Energy Survey Year 1 results: Detection of Intra-cluster Light at Redshift ∼0.25. Astrophys. J. 2019, 874, 165. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Böhmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: Dark energy and modified gravity. Phys. Rept. 2018, 775–777, 1–122. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys. 2014, 571, A22. [Google Scholar] [CrossRef] [Green Version]
- Adam, R.; Ade, P.A.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck intermediate results-XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes. Astron. Astrophys. 2016, 586, A133. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Hall, L.J.; Kolda, C.F.; Murayama, H. A New perspective on cosmic coincidence problems. Phys. Rev. Lett. 2000, 85, 4434–4437. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopædia Inflationaris. Phys. Dark Univ. 2014, 5–6, 75–235. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benisty, D.; Guendelman, E.I.; Nissimov, E.; Pacheva, S. Dynamically Generated Inflationary ΛCDM. Symmetry 2020, 12, 481. https://doi.org/10.3390/sym12030481
Benisty D, Guendelman EI, Nissimov E, Pacheva S. Dynamically Generated Inflationary ΛCDM. Symmetry. 2020; 12(3):481. https://doi.org/10.3390/sym12030481
Chicago/Turabian StyleBenisty, David, Eduardo I. Guendelman, Emil Nissimov, and Svetlana Pacheva. 2020. "Dynamically Generated Inflationary ΛCDM" Symmetry 12, no. 3: 481. https://doi.org/10.3390/sym12030481
APA StyleBenisty, D., Guendelman, E. I., Nissimov, E., & Pacheva, S. (2020). Dynamically Generated Inflationary ΛCDM. Symmetry, 12(3), 481. https://doi.org/10.3390/sym12030481