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Abstract: The Lie point symmetries are reported by performing the Lie symmetry analysis to the
Ablowitz-Kaup-Newell-Suger (AKNS) equation with time-dependent coefficients. In addition, the
optimal system of one-dimensional subalgebras is constructed. Based on this optimal system, several
categories of similarity reduction and some new invariant solutions for the equation are obtained,
which include power series solutions and travelling and non-traveling wave solutions.
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1. Introduction

The term nonlinear partial differential equation (NLPDE) is broadly utilized as a model in order
to represent actual phenomena that occur many science areas, particularly in plasma physics, optical
fields, and fluid mechanics. It is well known that many physical phenomena are described by NPDEs
with variable coefficients in light of the fact that the vast majority of genuine nonlinear physical
conditions have variable coefficients. On the one hand, many types of exact solutions have also been
constructed to explain complex physical phenomena, such as solitary wave solutions [1], doubled
Wronskian solutions [2], multiple rogue wave solutions [3], and localized excitation solutions [4]; on
the other hand, many powerful methods have been developed to construct solutions of NLPDEs,
such as the Hirota method [5–7], the generalized Darboux transformation [8–10], the extended tanh
method [11,12], the generalized Jacobi elliptic functions technique [13], numerical method [14], and the
Lie group method [15–17].

As well as we know, Lie symmetry analysis is a powerful and prolific method for constructing
exact solutions for NLPDEs with constant variable [18–20]. Recently, the Lie symmetry analysis is
extended to find exact solutions of fractional and variable coefficient NLPDEs, such as Time-Fractional
Boussinesq-Burgers [21], Gardner equations [22], coupled short pulse equation [23] and so on [24–26].

Recently, Zhang et al. [27] studied the multi-soliton solutions of the following Ablowitz- Kaup-
Newell-Suger (AKNS) equation

qt = α3(t)(qxxx − 6qrqx) + α2(t)(−qxx + 2q2r) + α1(t)qx − α0(t)q,
rt = α3(t)(rxxx − 6qrrx) + α2(t)(rxx − 2r2q) + α1(t)rx + α0(t)r,

(1)

which is a particular example at m = 3 of the generalized AKNS hierarchy(
q
r

)
t
=

m∑
i=0

αi(t)Li
(
−q
r

)
,(m = 1, 2, . . .),
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where the recursive operator is being utilized, as follows

L = σ ∂+ 2
(

q
−r

)
∂−1(r, q),σ =

(
−1 0
0 1

)
,∂ =

∂
∂x

,∂−1 =
1
2

(∫ x

−∞

dx−
∫
∞

x
dx

)
.

We note that system (1) includes a lot of famous NLPDEs as its special cases. For example,
if α0(t) = α1(t) = α2(t) = 0, α3(t) = −1 and r = −1, then system (1) is the KdV equation

qt + qxxx + 6qqx = 0.

If α0(t) = α1(t) = α2(t) = 0, α3(t) = −1 and r = −q, then system (1) is the mKdV equation

qt + qxxx + 6q2qx = 0.

If α0(t) = α1(t) = 0, α2(t) = i, α3(t) = −1 and r = −q, then system (1) is the mKdV-NLS equation

qt + qxxx + 6q2qx + i(qxx + 2q3) = 0.

If α0(t) = α1(t) = α3(t) = 0 and α2(t) = i, then system (1) is the second order AKNS coupled
system [28,29]

iqt = qxx − 2q2r,
irt = −rxx + 2r2q.

To our knowledge, the AKNS equation with time-dependent coefficients has not been studied
via Lie symmetry analysis. The aim of the present paper is to construct optimal system and invariant
solutions to (1) based on Lie point symmetries. The rest of this paper is organized, as follows. In Section 2,
the Lie point symmetries of (1) are obtained by utilizing Lie symmetry analysis. In Section 3, we construct
the optimal system of one-dimensional subalgebras of Lie algebra spanned by V1 −V3. In Section 4,
several types of similarity reduction and some invariant solutions are discussed on the optimal system.
In Section 5, we conclude this paper.

2. Symmetry Analysis

In this section, our aim is to obtain the symmetry algebra of the AKNS Equation (1) while using
the Lie symmetry analysis [15–17]. Suppose that the associated vector field of system (1) is as follows:

V = ξ(t, x, q, r)
∂
∂x

+ η(t, x, q, r)
∂
∂t

+ Q(t, x, q, r)
∂
∂q

+ R(t, x, q, r)
∂
∂r

, (2)

where ξ(t, x, q, r), η(t, x, q, r), Q(t, x, q, r), and R(t, x, q, r) are unknown functions that need to
be determined.

If vector field (2) generates a symmetry of system of Equation (1), then V must satisfy the
symmetry condition

pr(3)V(∆1)
∣∣∣∆1 = 0,

pr(3)V(∆2)
∣∣∣∆2 = 0,

where ∆1 = α3(t)(qxxx − 6qrqx) + α2(t)(−qxx + 2q2r) + α1(t)qx − α0(t)q− qt, ∆2 = α3(t)(rxxx − 6qrrx) +

α2(t)(rxx − 2r2q) + α1(t)rx + α0(t)r− rt.
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The infinitesimals ξ, η, Q and R must satisfy the following invariant conditions

Qt = α3
′(t)η(qxxx − 6qrqx) + α3(t)(Qxxx

− 6Qrqx − 6qRqx − 6qrQx)

+α2
′(t)η(−qxx + 2q2r) + α2(t)(−Qxx + 4qQr + 2q2R)
+α1

′(t)ηqx + α1(t)Qx
− α0

′(t)ηq− α0(t)Q,
Rt = α3

′(t)η(rxxx − 6qrrx) + α3(t)(Rxxx
− 6Qrrx − 6qRrx − 6qrRx)

+α2
′(t)η(rxx − 2r2q) + α2(t)(Rxx

− 4rRq− 2r2Q)

+α1
′(t)ηrx + α1(t)Rx + α0

′(t)ηr + α0(t)R,

(3)

where
Rt = Dt(R− ξrx − ηrt) + ξrxt + ξrtt,

Rx = Dx(R− ξrx − ηrt) + ξrxx + ξrxt,
Rxx = Dxx(R− ξrx − ηrt) + ξrxxx + ξrxxt,

Rxxx = Dxxx(R− ξrx − ηrt) + ξrxxxx + ξrxxxt,
Qt = Dt(Q− ξqx − ηqt) + ξqxt + ξqtt,

Qx = Dx(Q− ξqx − ηqt) + ξqxx + ξqxt,
Qxx = Dxx(Q− ξqx − ηqt) + ξqxxx + ξqxxt,

Qxxx = Dxxx(Q− ξqx − ηqt) + ξqxxxx + ξqxxxt.

(4)

Substituting (4) into system (3), we obtain a large number of determining equations

ξt = 0,ξxx = 0,Qr = 0,Qqq = 0,Rq = 0,Rrr = 0,
α1tη+ α1ηt − α1ξx = 0,α2tη+ α2ηt − α2ξx = 0,α3tη+ α3ηt − 3α3ξx = 0,

α3ξxqr− α3ηtqr− α3tηqr− α3qR− α3rQ = 0,
α2ηtq2r + α2tηq2r + α2q2R− α2Qqq2r + 2α2qrQ = 0,

α0tηq + α0ηtq− α0qQq + α0Q + Qt = 0,
α0tηr + α0ηtr− α0rRr + α0R−Rt = 0.

(5)

Solving the system, one can get

ξ = c1x + c2,η = 1
α3

(
3c1

∫
α3dt + c3

)
,

Q =
(
−

3c1α0
α3

∫
α3dt− c3α0

α3
− c1

)
q, R =

( 3c1α0
α3

∫
α3dt + c3α0

α3
− c1

)
r,

(6)

where c1, c2,, and c3 are arbitrary constants, and two coefficient functions α1 and α2 are determined by

ηtα1 + ηα1t − c1α1 = 0, ηtα2 + ηα2t − 2c1α2 = 0. (7)

The Lie algebra of infinitesimal symmetries of system (1) is generated by the three vector fields:

V1 = x ∂
∂x +

(
3
α3

∫
α3dt

)
∂
∂t −

( 3α0
α3

∫
α3dt + 1

)
q ∂
∂q +

( 3α0
α3

∫
α3dt− 1

)
r ∂∂r ,

V2 = ∂
∂x ,

V3 = 1
α3

∂
∂t −

(
α0
α3

q
)
∂
∂q +

(
α0
α3

r
)
∂
∂r .

(8)

Table 1 presents the commutator table.

Table 1. Table of Lie brackets.

[Vi,Vj] V1 V2 V3

V1 0 −V2 −3V3
V2 V2 0 0
V3 3V3 0 0
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3. Optimal System of Subalgebras

In present work, we shall construct the optimal system of one-dimensional subalgebra of the Lie
algebra L3 for AKNS Equation (1) by the method proposed in [19,30,31].

An arbitrary operator V ∈ L3 is written in the form

V = l1V1 + l2V2 + l3V3. (9)

The following generators are used in order to find the linear transformations of the vector
l =

(
l1, l2, l3

)
,

Ei = cτi jl
j ∂

∂lλ
,i = 1, 2, 3, (10)

where cτi j is defined by [Vi, V j] = cτi jVτ. According to Equation (10) and Table 1, E1, E2, and E3 are

E1 = −l2 ∂
∂l2 − 3l3 ∂

∂l3 ,
E2 = l1 ∂

∂l2 ,
E3 = 3l1 ∂

∂l3 .
(11)

For the generators E1, E2, and E3, the Lie equations with parameters a1, a2, and a3 with the initial

condition l
∣∣∣∣
ai=0

= l, i = 1, 2, 3 are written as

dl
1

da1
= 0,

dl
2

da1
= −l

2
,
dl

3

da1
= −3l

3
, (12)

dl
1

da2
= 0,

dl
2

da2
= l

1
,
dl

3

da2
= 0, (13)

dl
1

da3
= 0,

dl
2

da3
= 0,

dl
3

da3
= 2l

1
. (14)

The solutions of Equations (12)–(14) provide the transformation

T1 :l
1
= l1,l

2
= e−a1 l2,l

3
= e−2a1 l3, (15)

T2 :l
1
= l1,l

2
= a2l1 + l2,l

3
= l3, (16)

T3 :l
1
= l1,l

2
= l2,l

3
= 2a3l1 + l3. (17)

The method of constructing an optimal system needs a simplification of the vector

l =
(
l1, l2, l3

)
, (18)

By means of the transformation T1 − T3. Our aim is to find the simplest representative of each
class of similar vectors (18). The construction will be carried out under the following cases.

Case 1. l1 , 0
By taking a2 = − l2

l1 in the transformation T2, a3 = − l3
2l1 in the transformation T3, we obtain l

2
= 0,

l
3
= 0. Thus, vector (18) can be reduced to the form

l =
(
l1, 0, 0

)
. (19)

This case gives the operator:
V1.
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Case 2. l1 = 0

3.1. l2 , 0

The vector (18) can be reduced to the form

l =
(
0, l2, l3

)
. (20)

Using all of the possible combinations, this case give rise to following operators:

V2, V2 + V3, V2 −V3.

3.2. l2 = 0

The vector (22) is reduced to the form

l =
(
0, 0, l3

)
. (21)

Thus, we have the operator
V3.

Theorem 1. The optimal system of one-dimensional subalgebras of the Lie algebra is spanned by V1, V2, V3 of
Equation (1), as given by

V1, V2, V3, V2 + V3, V2 −V3. (22)

4. Symmetry Reductions and Exact Solutions

By virtue of the optimal system (22), we will deal with the similarity reductions and group
invariant solutions to the AKNS equation with time-dependent coefficients.

4.1. Solutions through V1

The characteristic equations of the generator V1 can be written as

dx
x

=
dt

3
α3

∫
α3dt

=
dq

−

( 3α0
α3

∫
α3dt + 1

)
q
=

dr( 3α0
α3

∫
α3dt− 1

)
r

. (23)

Solving these equations yields the three similarity variables

ξ = x
(∫

α3dt
)− 1

3

, q = e−
∫
α0dt·(

∫
α3dt)

−
1
3 F(ξ), r = e

∫
α0dt·(

∫
α3dt)

−
1
3 H(ξ), (24)

and solving the constrained conditions (7), we get

α1 =
1
3

k1α3

(∫
α3dt

)− 2
3

, α2 =
1
3

k2α3

(∫
α3dt

)− 1
3

,

where k1 and k2 are arbitrary constants and the AKNS Equation (1) is reduced to the following nonlinear
coupled ordinary differential equations (ODEs):

−
1
3 F− 1

3ξF′ = F′′′ − 6FHF′ − k2
3 F′′ + 2

3 k2F2H + k1
3 F′,

−
1
3 H − 1

3ξH′ = H′′′ − 6FHH′ + k2
3 H′′ − 2

3 k2H2F + k1
3 H′.

(25)
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The solution for (25) in a power series can be found in the form [32]

F =
∞∑

n=0

Anξ
n, H =

∞∑
n=0

Bnξ
n. (26)

Substituting (26) into (25), we get

−
1
3 A0 −

1
3

∞∑
n=1

Anξn
−

1
3

∞∑
n=1

An−1ξn = 6A3 +
∞∑

n=1
(n + 3)(n + 2)(n + 1)An+3ξn

− 6A0A1B0

−6
∞∑

n=1

n∑
k=0

k∑
i=0

(k− i + 1)AiAk−i+1Bn−kξ
n
−

2k2
3 A2 −

k2
3

∞∑
n=1

(n + 2)(n + 1)An+2ξn

+ 2k2
3 A2

0B0 +
2k2
3

∞∑
n=1

n∑
k=0

k∑
i=0

AiAk−iBn−kξ
n + k1

3 A1 +
k1
3

∞∑
n=1

(n + 1)An+1ξn,

−
1
3 B0 −

1
3

∞∑
n=1

Bnξn
−

1
3

∞∑
n=1

Bn−1ξn = 6B3 +
∞∑

n=1
(n + 3)(n + 2)(n + 1)Bn+3ξn

− 6A0B0B1

−6
∞∑

n=1

n∑
k=0

k∑
i=0

(k− i + 1)An−kBiBk−i+1ξ
n + 2k2

3 B2 +
k2
3

∞∑
n=1

(n + 2)(n + 1)Bn+2ξn

−
2k2
3 A0B2

0 −
2k2
3

∞∑
n=1

n∑
k=0

k∑
i=0

An−kBiBk−iξ
n + k1

3 B1 +
k1
3

∞∑
n=1

(n + 1)Bn+1ξn.

(27)

Now from (27), comparing coefficients, for n = 0, we get

A3 = 1
18

(
18A0A1B0 + 2k2A2 − 2k2A2

0B0 − k1A1 −A0
)
,

B3 = 1
18

(
18A0B0B1 − 2k2B2 + 2k2A0B2

0 − k1B1 − B0
)
.

(28)

Generally, for n ≥ 1, we obtain

An+3 = 1
(n+3)(n+2)(n+1)

[
−

1
3 An −

1
3 An−1 + 6

n∑
k=0

k∑
i=0

(k− i + 1)AiAk−i+1Bn−k +
k2
3 (n + 2)(n + 1)An+2

−
2k2
3

n∑
k=0

k∑
i=0

AiAk−iBn−k −
k1
3 (n + 1)An+1

]
,

Bn+3 = 1
(n+3)(n+2)(n+1)

[
−

1
3 Bn −

1
3 Bn−1 + 6

n∑
k=0

k∑
i=0

(k− i + 1)An−kBiBk−i+1 −
k2
3 (n + 2)(n + 1)Bn+2

+ 2k2
3

n∑
k=0

k∑
i=0

An−kBiBk−i −
k1
3 (n + 1)Bn+1

]
.

(29)

From (27) and (28), we can get all of the coefficients An, Bn (n ≥ 3) of the power series (25).
Substituting (28), (29) into (26) and using similarity transformations (24), we can obtain the solutions of
system (1).

4.2. Solutions through V2

The similarity variables of this generator are

ξ = t, q = F(ξ), r = H(ξ), (30)

and solving the constrained conditions (7), we get α0, α2 are arbitrary functions of t.
These reduce the system (1) to the following nonlinear coupled ODEs:

F′ = 2α2F2H − α0F,
H′ = −2α2H2F + α0H.

(31)
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Solving Equation (31) and using the similarity transformations (30), we obtain the solution of
system (1) is

q = et+
∫
(2α2−α0−1)dt,

r = e−t−
∫
(2α2−α0−1)dt.

(32)

4.3. Solutions through V3

The similarity variables of this generator are

ξ = x, q = e−
∫
α0dtF(ξ), r = e

∫
α0dtH(ξ), (33)

and solving the constrained conditions (7), we get

α1 = k1α3,α2 = k2α3,

where k1 and k2 are arbitrary constants, and the AKNS Equation (1) is reduced to the following
nonlinear coupled ODEs:

F′′′ − 6FHF′ − k2F′′ + 2k2F2H + k1F′ = 0,
H′′′ − 6FHH′ + k2H′′ − 2k2FH2 + k1H′ = 0.

(34)

To obtain the solutions of the reduction (34), we shall use the
(

G′
G

)
method, as described in [20,33].

Assume that the solution of (34) is given in a polynomial form, as follows:

F =
m∑

i=0

Ai

(
G′

G

)i

, H =
n∑

i=0

Bi

(
G′

G

)i

. (35)

By balancing highest order derivative term and nonlinear term in (34), we get m = n = 1 and
G = G(ξ) satisfies second-order linear ordinary differential equation (LODE)

G′′ + λG′ + µG = 0. (36)

Substituting (35) into (34) and equating coefficients of
(

G′
G

)
to 0, we obtain an algebraic system of

equations in A0, A1, B0, and B1. With the help of Maple, we obtain

λ =
A2

1B2
0 + µ

A1B0
, A0 =

µ

B0
, B1 =

1
A1

, k1 =
2µA2

1B2
0 + µA1B0k2 −A4

1B4
0 −A3

1B3
0k2 − µ2

A2
1B2

0

, (37)

where A1, B0, k2, and µ are the arbitrary constants.
Substituting (37) into (35) and using similarity transformations (33), we obtain three types of

solution of system (1), as follows:
When λ2

− 4µ > 0,

q = e−
∫
α0dt

(
A1
2

√
λ2 − 4µ×

(
C1 cosh

(
1
2

√
λ2−4µx

)
+C2sinh

(
1
2

√
λ2−4µx

)
C1sinh

(
1
2

√
λ2−4µx

)
+C2 cosh

(
1
2

√
λ2−4µx

))− A1λ
2 +

2µA1

λ±
√
λ2−4µ

)
,

r = e
∫
α0dt

(
1

2A1

√
λ2 − 4µ×

(
C1 cosh

(
1
2

√
λ2−4µx

)
+C2sinh

(
1
2

√
λ2−4µx

)
C1sinh

(
1
2

√
λ2−4µx

)
+C2 cosh

(
1
2

√
λ2−4µx

))− λ
2A1

+
λ±
√
λ2−4µ

2A1

)
,

(38)

where A1, C1, C2, λ, and µ are arbitrary constants and k1 =
2
(
(6µλ2+4µλk2−8µ2

−λ4
−k2λ

3)±(4µλ+2µk2−k2λ
2
−λ3)
√
λ2−4µ

)
(
λ±
√
λ2−4µ

)2 .

When we take A1 = 1, C1 = 2, C2 = 1, λ = 3, µ = 1 and α0 = tan t, the values of q and r are as
illustrated in Figure 1, below.
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A1 = 1, C1 = 2, C2 = 1, λ = 3, µ = 1, and α0 = tan t. (b). Spatial structure of the exact solution r of
(38), in which the parameters are the same as (a).

When λ2
− 4µ < 0,

q = e−
∫
α0dt

(
A1
2

√
4µ− λ2 ×

(
C1 cos

(
1
2

√
4µ−λ2x

)
−C2 sin

(
1
2

√
4µ−λ2x

)
C1 sin

(
1
2

√
4µ−λ2x

)
+C2 cos

(
1
2

√
4µ−λ2x

))− A1λ
2 +

2µA1

λ±i
√

4µ−λ2

)
,

r = e
∫
α0dt

(
1

2A1

√
4µ− λ2 ×

(
C1 cos

(
1
2

√
4µ−λ2x

)
−C2 sin

(
1
2

√
4µ−λ2x

)
C1 sin

(
1
2

√
4µ−λ2x

)
+C2 cos

(
1
2

√
4µ−λ2x

))− λ
2A1

+
λ±i
√

4µ−λ2

2A1

)
,

(39)

where A1, C1, C2, λ, and µ are arbitrary constants and k1 =

2
4k2µλ+6µλ2

−k2λ
3
−λ4
−8µ2

±(2k2µ+4µλ−k2λ
2
−λ3)i

√
4µ−λ2

(λ±i
√

4µ−λ2)
2 .

When λ2
− 4µ = 0,

q = e−
∫
α0dt

(
A1

(
−
λ
2 + C2

C1+C2x

)
+

2µA1
λ

)
,

r = e
∫
α0dt

(
1

A1

(
−
λ
2 + C2

C1+C2x

)
+ λ

2A1

)
,

(40)

where A1, C1, C2, λ, and µ are arbitrary constants and k1 = 0.

4.4. Solutions through V2 + V3

The similarity variables of this generator are

ξ =

∫
α3dt− x, q = e−

∫
α0dtF(ξ), r = e

∫
α0dtH(ξ), (41)

and solving the constrained conditions (7), we get

α1 = k1α3, α2 = k2α3,

where k1 and k2 are arbitrary constants, and the AKNS Equation (1) is reduced to the following
nonlinear coupled ODEs:

F′ = −F′′′ + 6FHF′ − k2F′′ + 2k2F2H − k1F′,
H′ = −H′′′ + 6FHH′ + k2H′′ − 2k2H2F− k1H′.

(42)
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We shall use the simplest equation method described in [34] to obtain the solutions of reduction
(42). Let us consider the solutions of (42), as

F =
m∑

i=0

Aiφ
i(ξ), H =

n∑
i=0

Biφ
i(ξ). (43)

By balancing highest order derivative term and nonlinear term in (42), we get m = n = 1 and
φ(ξ) satisfies the Riccati equation

φ′(ξ) = aφ2(ξ) + bφ(ξ) + c. (44)

The solutions of (44) can be written as

φ(ξ) = −
b
2a
−
θ
2a

tanh
(1

2
θ(ξ+ C)

)
, (45)

and

φ(ξ) = −
b
2a
−
θ
2a

tanh
(1

2
θξ

)
+

sec h
(
θξ
2

)
C cosh

(
θξ
2

)
−

2a
θ sinh

(
θξ
2

) , (46)

where θ2 = b2
− 4ac.

Substituting (43) into (42), an algebraic system of equations in A0, A1, B0, and B1 can be obtained
by equating the coefficients of the functions φi(ξ) to zero. With the aid of Maple, solution to this
system can be obtained, as follows:

A0 =
ac
B0

, A1 =

(
b±
√

θ2
)
a

2B0
, B1 =

2B0a

b±
√

θ2
, k2 =

−θ2
− k1 − 1

±

√

θ2
, (47)

where B0, k1, a, b, and c are arbitrary constants.
Substituting (47) into (43) and using similarity transformations (41), we obtain a set of solutions of

system (1) are

q = e−
∫
α0dt

{
ac
B0

+
(b+θ)a

2B0

[
−

b
2a −

θ
2a tanh

(
1
2θ(ξ+ C)

)]}
,

r = e
∫
α0dt

{
B0 +

2B0a
b+θ

[
−

b
2a −

θ
2a tanh

(
1
2θ(ξ+ C)

)]}
,

(48)

And

q = e−
∫
α0dt

{
ac
B0

+
(b+θ)a

2B0

[
−

b
2a −

θ
2a tanh

(
1
2θξ

)
+

sec h
(
θξ
2

)
C cosh

(
θξ
2

)
−

2a
θ sinh

(
θξ
2

) ]},

r = e
∫
α0dt

{
B0 +

2B0a
b+θ

[
−

b
2a −

θ
2a tanh

(
1
2θξ

)
+

sec h
(
θξ
2

)
C cosh

(
θξ
2

)
−

2a
θ sinh

(
θξ
2

) ]},
(49)

where ξ =
∫
α3dt− x.

We can choose different values of α3 in solution (48) in order to construct travelling and
non-travelling wave solutions of Equation (1). Figure 2 depicts the travelling wave solution, which is
obtained by taking α3 = 1. Figure 3 displays the non-travelling wave solution by selecting α3 = cos t.
Other parameters are selected as B0 = −3, a = 1, b = 3, c = 1, and α0 = 0.05.
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r of (48), in which the parameters are the same as (a). 

Figure 2. (a). Spatial structure of the exact solution q of (48) for Equation (1), with the parameters as
B0 = −3, a = 1, b = 3, c = 1, α0 = 0.05 and α3 = 1. (b). Spatial structure of the exact solution r of (48),
in which the parameters are the same as (a).
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4.5. Solutions through 2 3V V−  

The similarity variables of this generator are 

3 ,dt xξ α= +  0 ( ),dtq e Fα ξ−=  0 ( ),dtr e Hα ξ=                    (50) 

and solving the constrained conditions (7), we get 

1 1 3,kα α= 2 2 3,kα α=  

Figure 3. (a). Spatial structure of the exact solution q of (48) for Equation (1), with the parameters as
B0 = −3, a = 1, b = 3, c = 1, α0 = 0.05, and α3 = cos t. (b). Spatial structure of the exact solution r of
(48), in which the parameters are the same as (a).

When we take B0 = −3, a = 1, b = 3, c = 1, α0 = − sin t, and α3 = t in solution (49), the shapes of
non-travelling wave solutions of Equation (1) are displayed in Figure 4.
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The similarity variables of this generator are 
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Figure 4. (a). Spatial structure of the exact solution q of (49) for Equation (1), with the parameters as
B0 = −3, a = 1, b = 3, c = 1, α0 = − sin t, and α3 = t. (b). Spatial structure of the exact solution r of
(49), in which the parameters are the same as (a).

4.5. Solutions through V2 −V3

The similarity variables of this generator are

ξ =

∫
α3dt + x, q = e−

∫
α0dtF(ξ), r = e

∫
α0dtH(ξ), (50)

and solving the constrained conditions (7), we get

α1 = k1α3,α2 = k2α3,

where k1 and k2 are arbitrary constants, and the AKNS Equation (1) is reduced to the following
nonlinear coupled ODEs:

F′ = F′′′ − 6FHF′ − k2F′′ + 2k2F2H + k1F′,
H′ = H′′′ − 6FHH′ + k2H′′ − 2k2H2F + k1H′.

(51)

We shall use the simplest equation method to obtain the solutions of reduction (51) [34]. For the
Bernoulli equation

φ′(ξ) = aφ(ξ)2 + bϕ(ξ), (52)

We use the following solution

φ(ξ) = b
{

cosh[b(ξ+ C)] + sinh[b(ξ+ C)]
1− a cosh[b(ξ+ C)] − asinh[b(ξ+ C)]

}
.

The balancing procedure gives m = n = 1 and the solutions of (51), as

F = A0 + A1ϕ, H = B0 + B1ϕ. (53)

Substitution of (53) into (51) yields

A0 = 0, B0 =
ab
A1

, B1 =
a2

A1
, k1 = −b2 + bk2 + 1, (54)

where A1, k2, a, and b are arbitrary constants.
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Substituting (54) into (53) and using the similarity transformations (50), we obtain the solution of
system (1), as

q = e−
∫
α0dtA1b

{
cosh[b(ξ+C)]+sinh[b(ξ+C)]

1−a cosh[b(ξ+C)]−asinh[b(ξ+C)]

}
,

r = e
∫
α0dt

{
ab
A1

+ a2

A1
b
[

cosh(b(ξ+C))+sinh(b(ξ+C))
1−a cosh(b(ξ+C))−asinh(b(ξ+C))

]}
,

(55)

where ξ =
∫
α3dt + x.

Figure 5 illustrates the travelling wave solutions of Equation (1) by taking α3 = 1, A1 = 1, a = −1,
b = 1, C = 0, and α0 = sin t in Equation (55). Figure 6 portrays the non-travelling wave solutions of
Equation (1) by setting α3 = t, and the other parameters are the same as those in Figure 5.
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A1 = 1, a = −1, b = 1, C = 0, α0 = sin t, and α3 = 1. (b). Spatial structure of the exact solution r of (55),
in which the parameters are the same as (a).
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Figure 6. (a). Spatial structure of the exact solution q of (55) for Equation (1), with the parameters as
A1 = 1, a = −1, b = 1, C = 0, α0 = sin t, and α3 = t. (b). Spatial structure of the exact solution r of (55),
in which the parameters are the same as (a).

When compared with the results in the existing literature, we find that the obtained invariant
solutions are different from those in Refs. [28,29], due to α3(t) , 0 in Equation (6). To the best of our
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knowledge, the obtained invariant solutions (38)–(40), (48), (49), and (55) are new, and they have not
been reported in the literature.

5. Conclusions

In summary, by performing the Lie symmetry analysis on the AKNS Equation (1), Lie point
symmetries of the AKNS equation are discussed. Moreover, we construct the optimal system of
one-dimensional subalgebras of Lie algebra spanned by V1 −V3. Five types of similarity reduction are
presented by using the optimal system. Meanwhile, some new exact solutions, such as power series
solutions and travelling and non-traveling wave solutions are obtained for system (1).

It is easy to see that the obtained invariant solutions include coefficient functions α0 and α3, which
provide enough freedom for us to construct travelling and non-travelling wave solutions for the AKNS
Equation (1). This paper shows that the Lie symmetry analysis method is an effective mathematical
tool for constructing travelling and non-traveling wave solutions of some other nonlinear PDEs with
variable coefficients.
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