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Abstract: The aim of this study was to develop a novel intuitionistic Type-2 fuzzy inference system
(IT-2 FIS) which adopts a parameterized Yager-generating function and particle swarm optimization
(PSO). In IT-2 FIS, the intuitionistic Type-2 is set as a fuzzy symmetrical triangular number in which
the hesitation degree adopts the Yager-generating function, and the parameters of the proposed IT-2
FIS adopting the PSO are tuned. The intuitionistic and Type-2 fuzzy sets have been proven to be the
most effective for handling more uncertainty. Therefore, this study proposes an intuitionistic Type-2
set with a Yager-generating function to enhance the conventional fuzzy inference system. Moreover,
PSO can improve the fuzzy inference system by searching for the optimal parameters of IT-2 FIS. In
this study, linguistic variables were represented by triangular fuzzy numbers (TFS). Two numerical
examples were examined: capacity-planning and medical diagnosis problems. An approaching
capacity-loadings example was used to verify that the proposed IT-2 FIS could effectively estimate
the results of the capacity loadings. In the medical diagnosis problem, IT-2 FIS could obtain a higher
correct rate by revealing experts’ knowledge. In both examples, the proposed IT-2 FIS provided more
objective estimated values than traditional fuzzy inference systems (FIS) and Type-2 FIS.

Keywords: fuzzy inference system; fuzzy symmetrical triangular number; intuitionistic Type-2 fuzzy
set; particle swarm optimization

1. Introduction

Fuzzy inference systems are based on fuzzy IF-THEN rules that connect the fuzzy input and
output variables. Therefore, a fuzzy inference system (FIS) can be used as a prediction model that
inputs or outputs data with a high uncertainty. In expert systems with approximate reasoning process
fields, FIS is one of the popular systems that can approach a single output (scalar) by a vector of several
inputs using fuzzy logic [1]. The fuzzy inference process, which effectively maps pattern discerning
or decision-making, includes four phases of FIS, which are determining membership functions,
constructing reasoning systems (inference rules), and calculating aggregation and defuzzification
processes, respectively [1,2].

Olvera-García [3] proposed a new evaluation model using fuzzy inferences combined with the
Analytic Hierarchy Process (AHP), to provide a new air quality index. The second phase of the
FIS consists of assigning a weight to each environmental parameter, using a priority analysis based
on the AHP. The experimental results showed that the proposed air quality index obtained a good
performance when compared with those presented in the literature. When weights were assigned
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based on the importance level in atmospheric pollution, the new evaluation model could provide
better assessments. Blanes-Vidal et al. [4] used neuro-fuzzy inference systems (NFIS) to develop a
novel approach for exposure assessment, in which the inputs of the model were easily obtainable
proximity measures and the output was the residential exposure to air pollutants. The results indicated
that, when emission-dispersion data are not available, NFIS is a useful tool for estimating individual
air pollution exposures in epidemiological studies on large populations. Kang et al. [5] used an FIS
in which fuzzy theory was applied for diagnosing performance degradation in feed water heaters
among power-generation facilities. According to the experimental results, inferences could be made
with a consideration of uncertainties based on fuzzy theory. Milan et al. [6] used FIS to automatically
determine groundwater withdrawal. In order to determine the best scenario with the highest prediction
performance for water withdrawal from an aquifer, the FIS model approached predictive variables
under different scenarios. The proposed model was able to predict the optimal amount of groundwater
withdrawal and could replace numerical optimization methods. Toseef and Khan [7] used FIS as the
main decision-making engine for the diagnosis of crop diseases in Pakistan. The proposed system was
tested on a pool of 100 real crop problems, and its inference engine showed an excellent performance
in predicting the right disease, with up to a 99% accuracy. Jamshidi et al. [8] used FIS to approach
health-risk levels. The input variables, including PM2.5, PM10, and total suspended particles (TSP), as
well as the health-risk level, as the output variable, were fuzzed by using a fuzzy inference system.
This method could be used effectively in other workplaces, such as hospitals and health-care facilities.
Wang et al. [9] developed the Genetic Algorithm and Rough Set Incorporated Neural Fuzzy Inference
System (GARSINFIS), which is an integrated autonomous computational model for underpricing
forecasting in initial public offerings. The experimental results showed a higher yield of initial returns
for initial public offerings, by following the advice provided by GARSINFIS in comparison to any
other benchmarking model. Hence, the GARSINFIS model was capable of offering investors highly
interpretable and reliable decision support to gain the money-left-on-the-table in initial public offerings.
Maciel and Ballini [10] proposed interval-valued fuzzy inference system (iFIS) modeling to predict
interval-valued time series. The fuzzy c-means clustering algorithm was used in interval-valued
data with adaptive distances for antecedent identification. In order to fit a linear regression model
to symbolize the interval data, the center-range methodology estimated the parameters of the linear
consequents. The results indicated that iFIS could obtain a better performance than traditional
alternative approach methods.

A summary of the research that has investigated FIS as a classification technique since 2016 is
shown in Table 1, illustrating that FIS has been widely applied in various fields and that combining FIS
with other techniques usually results in a better performance.

Table 1. Recent developments in the fuzzy inference system (FIS).

Author(s) Year Method Applied Field

Olvera-García et al. 2016 FIS + AHP Air quality index
Blanes-Vidal et al. 2017 NFIS Air pollution exposures

Kang et al. 2017 FIS Diagnosis of feedwater heater performance
degradation

Milan et al. 2018 FIS Determine the groundwater
withdrawal

Štěpnička and Mandal 2018 FIS with the satisfaction
of Moser–Navara axioms None

Toseef and Khan 2018 FIS Diagnosis of crop diseases in Pakistan
Jamshidi et al. 2018 FIS Estimating health risk of suspended dust

Wang et al. 2018 GARSINFIS Predictions of underpricing in initial public offerings
Maciel and Ballini 2019 iFIS Simulated interval-valued time series

This research developed a novel Type-2 fuzzy inference system (IT-2 FIS) for enhancing traditional
FIS in uncertain environments. In various situations [11–13], the Type-2 fuzzy set has been
shown to express uncertainty information effectively. The Type-2 fuzzy set can obtain a higher
computational power and better description of uncertainty than traditional FIS. Moreover, traditional
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degrees of the fuzzy membership function have been determined to be valued between 0 and
1. Atanassov [14] proposed an intuitionistic fuzzy set (IFS) that could express various degrees of
membership, non-membership, and hesitation in a fuzzy set for more clearly express uncertain
environments. However, degrees of hesitation are not easy to clearly determine. This study adopts
the parameterized Yager-generating function to determine degrees of hesitation in a Type-2 fuzzy set.
With the help of Atanassov’s intuitionistic fuzzy complement with Yager-generating functions [15], the
hesitation can be determined to promote efficiency of the proposed fuzzy inference system, and this
has been successfully examined in [16,17]. In this study, the parameterized Yager-generating function
could tune to optimal target values based on particle swarm optimization (PSO). Therefore, the concept
of IFS combined with a Type-2 fuzzy set would obtain a better description of uncertainty, and this
study develops an intuitionistic Type-2 FIS with PSO.

The main contributions of this paper are as follows:

(1) A novel Type-2 fuzzy inference system (IT-2 FIS) for enhancing traditional FIS in uncertain
environments is developed. The proposed IT-2 FIS adopts the parameterized Yager-generating
function to determine the degrees of hesitation in Type-2 fuzzy set, and optimal target values
based on particle swarm optimization.

(2) The proposed IT-2 FIS is capable of dealing with complex capacity loading and medical diagnosis
problems in which various uncertain variables and incomplete knowledge are involved. It is more
suitable for revealing expert knowledge and constructing fuzzy models in a human tractable form.

The rest of this paper is organized as follows: The proposed IT-2 FIS with the novel intuitionistic
Type-2 set and PSO is introduced in Section 2; in Section 3, two numerical examples of capacity-planning
and medical diagnosis problems are utilized to demonstrate the performance of different fuzzy inference
systems; finally, conclusions are made in Section 4.

2. IT-2 FIS with a Novel Intuitionistic Type-2 Fuzzy Set

This study developed an IT-2 FIS with a novel intuitionistic Type-2 set. Figure 1 and the following
steps illustrate the designed system. First, the intuitionistic Type-2 fuzzy sets are determined and the
parameters of the intuitionistic Type-2 fuzzy sets are continuously tuned by the PSO algorithm. Secondly,
the fuzzy IF-THEN rules are structured by experts as conventional FIS, and the novel intuitionistic
Type-2 fuzzy set with Yager-generating functions is used to substitute traditional triangular fuzzy
numbers (TFSs). Thirdly, the intuitionistic fuzzy Type-2 set is type-reduced to obtain the interval
consequent set. Fourthly, the interval consequent set is transformed to a crisp value, using the
defuzzification technique, and the defuzzification return to the PSO mechanism is calculated with
the fitness values for the optimal novel intuitionistic Type-2 fuzzy set, until the maximum number of
iterations is reached.
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Figure 1. Flowchart of the Type-2 fuzzy inference system (IT-2 FIS).

2.1. Intuitionistic Type-2 Fuzzy Sets with Yager-Generating Functions (Fuzzy Input)

Intuitionistic Type-2 fuzzy sets with Yager-generating functions were employed in all the definitions

of fuzzy input in the proposed IT-2 FIS. Firstly, an intuitionistic Type-2 membership function, ÃIT2,
is determined, and this particular set includes a non-membership function. Hence, the intuitionistic
Type-2 membership function can be expressed as µÃ(x, u, v), where x ∈ X and u ∈ Jx ⊆ [0, 1] are
calculated as follows:

ÃIT2 =

∫
x∈X

∫
u∈Jx

∫
v∈Jx

µ
ÃIT2(x, u, v)

(x, u, v)
, Jx ⊆ [0, 1], (1)

in which 0 ≤ µ
ÃIT2(x, u)+µ

ÃIT2(x, v) ≤ 1, with the help of Atanassov’s intuitionistic fuzzy complement
with Yager-generating functions. In Yager-generating functions for each value of parameter α ∈ (0,
∞), a particular fuzzy complement can be defined, which includes non-membership and hesitation
degree. µ

ÃIT2(x, u, v) can become based on Yager-generating functions, and the hesitation degree is

π(x) = 1− µAIT2(x) − (1− µAIT2(x)a)
1/a. In a traditional fuzzy operator, the hesitation degree has not

been reasonably considered and defined, and it is usually ignored. The parametric intuitionistic fuzzy
complement therefore can more effectively define the value of the hesitation degree based on historical
or observational data or experiments. Therefore, this study adopts the parametric intuitionistic fuzzy
complement to define the hesitation degree for fuzzy inference system.

The Footprint of Uncertainty (FOU) represents that proposed intuitionistic Type-2 fuzzy set that
consists of a bounded region, and it is determined as a union of all primary membership. FOU
characterizes intuitionistic Type-2 fuzzy sets:

FOU(ÃIT2) = ∪
x∈X

Jx. (2)

The upper membership functions (UMF) and lower membership functions (LMF), which are
associated with FOU, as proposed by [18], model the uncertainties in the shape and position of the
traditional fuzzy set by using two traditional membership functions. FOU represents the entire Type-2
fuzzy set, and uniform shading denotes the interval sets for the secondary membership functions.



Symmetry 2020, 12, 562 5 of 16

Meanwhile, the membership function, non-membership function, and hesitation degree are determined
as intuitionistic fuzzy sets. µ

ÃIT2(x), v
ÃIT2(x), and π

ÃIT2(x) are the upper bounds of the membership,
non-membership, and hesitation membership functions, respectively. All membership functions
are determined as triangular fuzzy numbers (c − d, c, c + d), where c is the mode, d is the spread
of membership functions, and these membership functions can associate with the upper bound of
FOU(ÃIT2),NFOU(ÃIT2), and IFOU(ÃIT2). Furthermore, the novel intuitionistic Type-2 membership
function includes the membership function and hesitation degree, which are denoted as follows:

µ
ÃIT2(x) ≡ FOU(ÃIT2),∀x ∈ X (3)

v
ÃIT2(x) ≡ NFOU(ÃIT2) = 1− FOU(ÃIT2) −π

ÃIT2(x),∀x ∈ X (4)

π
ÃIT2(x) ≡ IFOU(ÃIT2) = 1− FOU(ÃIT2) − (1− FOU(ÃIT2)

α

)
1/α

,∀x ∈ X (5)

Uµ
ÃIT2(x) ≡ µÃIT2(x) + π

ÃIT2(x),∀x ∈ X, (6)

where Uµ
ÃIT2(x) is the updated version of the upper membership function. The lower membership

function µ
ÃIT2(x) is associated with the FOU(ÃIT2). All membership functions are determined as

triangular fuzzy numbers (c− d, c, c + d), where c is the mode, d is the spread of membership functions,

and these membership functions can associate with the lower bound of FOU(ÃIT2), NFOU(ÃIT2), and
IFOU(ÃIT2). Uµ

ÃIT2(x) is the updated version of the lower membership function, which can also be

denoted as follows:
µ

ÃIT2(x) ≡ FOU(ÃIT2),∀x ∈ X (7)

v
ÃIT2(x) ≡ NFOU(ÃIT2) = 1− FOU(ÃIT2) −π

ÃIT2(x),∀x ∈ X (8)

π
ÃIT2(x) ≡ IFOU(ÃIT2) = 1−NFOU(ÃIT2) − (1− FOU(ÃIT2)

α
)

1/α
,∀x ∈ X (9)

Uµ
ÃIT2(x) ≡ µÃIT2(x) + π

ÃIT2(x),∀x ∈ X. (10)

In this study, the intuitionistic Type-2 fuzzy sets were as shown in Figure 2.
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2.2. Fuzzy IF-THEN Rules

General fuzzy rules are IF-THEN rules, in which the lth rule has the form “Rl: IF x1 is Fl
1 and x2 is

Fl
2 and . . . and xq is Fl

q, THEN y is Gl”, where xi represents the inputs, Fl
i represents the antecedent sets

(i = 1, . . . , q), y is the map of input xi, and Gl is the linguistic variable. The lth rule can also take the
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form “Rl: IF x1 is F̃l
1 and x2 is F̃l

2 and . . . and xq is F̃l
q, THEN y is G̃l”. The input and output sets can be

replaced by intuitionistic Type-2 sets. The structure of this intuitionistic fuzzy Type-2 rule is exactly
the same as that of a fuzzy Type-1 rule; the only difference is in the nature of the membership functions
using the upper and lower membership functions of intuitionistic Type-2 fuzzy sets.

2.3. Type Reduction and Defuzzification

The output of the intuitionistic fuzzy Type-2 inference engine is type-reduced as Type-2 FIS. The
type-reduction method is most commonly employed in Type-2 FIS and can determine the center of the
set. The type-reduction method can be expressed as follows:

Ycos(Y1, . . . , YM, F1, . . . , FM) = [yl, yr] =

∫
y1∈[y1

l ,y1
r ]

. . .

∫
yM∈[yM

l ,yM
r ]

∫
f 1∈[ f 1 , f 1 ]

. . .

∫
f M∈[ f M , f M ]

1

(
∑M

i=1 f i yi/
∑M

i=1 f i)
, (11)

where Ycos is an interval set determined by two end points, yl and yr; fi ∈ = [ f M, f M]; yi
∈ Yi = [yi

l, yi
r];

Yi is the centroid of the intuitionistic fuzzy Type-2 interval set of G̃i; and, i = 1, . . . , M. Due to Ycos

being an interval set, it can be defuzzified by using the average of yl and yr. The defuzzified output of
intuitionistic fuzzy interval Type-2 is as follows:

f (x) =
yl + yr

2
. (12)

2.4. Particle Swarm Optimization in the Proposed FIS

PSO was developed by Kennedy [19] and is a type of stochastic optimization technology. PSO is
adopted to identify the three parameters of d, d, and α in the proposed IT-2 FIS. Li et al. [20] mentioned
that PSO can model the social behavior of bird flocking and used a population-based search as a
genetic algorithm. Based on exploiting a population, the PSO can probe a promising region of the
search space. The PSO has been successfully applied in searching optimal parameters [21,22]. The
PSO mainly search optimal parameters of intuitionistic Type-2 fuzzy sets, and the performance of PSO
is accurate rate of IT-2 FIS based on upper and lower spread of membership functions and α in the
proposed IT-2 FIS. Algorithm 1 describes particle swarm optimization in the IT-2 FIS. In this study, the
notation for the PSO algorithm is as follows:

Population_size is initial population size;
pbest is the best movement;
gbest is the best position movement;
vid is a modification of velocity;
xid is the position of the ith particle;
rand(.) represents random variables with a uniform distribution

C1 and C2
are two acceleration constants that regulate the velocities to the best global and
local positions;

K is the current generation number;
wk is the inertia weight;
wmax is the initial weight;
wmin is the final weight;
kmax is the maximum number of generations;
d is the spread of membership functions which can associate with the upper bound;
d is the spread of membership functions which can associate with the lower bound;
α is tuned parameter of Yager-generating functions.
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Algorithm 1 Particle swarm optimization in an IT-2 FIS

1. Initial populations (Randomly)
2. Iteration = 0
3. Setting Population_size, x = (d, d, α)
4. Setting C1, C2, wmax, wmin
5. While (Iteration < Maximum number of iterations) do
6. If f(xi) < pbest then
7. pbest = xi
8. end if
9. If pbes < gbest then
10. gbest = pbest
11. end if
12. Calculating the modification of velocity and position of the ith particle
13. vk

id = wkvk−1
id + C1rand(.)(pbest − xk−1

id ) + C2rand(.)(gbest − xk−1
id )

14. Calculating inertia weight wk = wmax −
wmax−wmin

kmax
× k

15. Calculating new position of the particle xk
id = xk−1

id + vk
id

16. Iteration++

17. End while
18. Return d, d, and α

3. Numerical Examples

Two numerical examples were examined—capacity-planning and medical diagnosis problems. In
the first example, the fuzzy IF-THEN rules are employed to approach capacity loadings. The fuzzy
IF-THEN rules of capacity loadings refer to Pai et al. [23], who successfully adopted traditional FIS
to approach the actual capacity loadings. Therefore, the example that approached capacity loadings
was used to verify that the proposed IT-2 FIS could effectively estimate the results of the capacity
loadings. In the second example, the medical diagnosis problem was examined—which is a standard
classification problem—by using fuzzy IF-THEN rules. The fuzzy IF-THEN rules could simulate
the decision of a radiologist who is an expert at determining the stage of breast cancer. The medical
diagnosis problem was also used to verify that the proposed IT-2 FIS could obtain a higher accuracy by
revealing expert knowledge. Two different types of problems (estimating values and classification)
were examined, and the two examples were real cases from the manufacturing and medical industries,
respectively. In IT-2 FIS, the parameters of PSO are shown in Table 2 for the two numerical examples.

Table 2. Parameters of PSO in IT-2 FIS.

Parameters Values

Population_size 20
C1 1.4
C2 1.4
wmax 0.9
wmin 0.4
Maximum number of iterations 500

3.1. Proposed FIS in Capacity-Planning Problems

The capacity-planning is accurately approached as an actual quantity in advance, which can bring
many benefits, such as reducing the inventory, improving the quality, allowing on-time deliveries, and
reducing the processing time. In the proposed FIS, two stages of approximate reasoning are performed.
These data are collected by product-assembly companies in he manufacturing industry. In stage one,
the proposed FIS can approach the total capacity requirements (TCR) quantity (production requirement
+ set up resources) based on the demand (D) and failure rate (FR). Generally, the TCR is estimated by
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managerial experience in real environment. In stage two, the proposed FIS can approach the capacity
loadings (CL) during the production planning period. The fuzzy inputs of D, set-up resources (SR), and
capacity constraints (CC) in stage two are considered in capacity-planning systems [23]. A numerical
experiment verified that the proposed FIS can effectively approach the capacity loadings. Linguistic
variables are presented as Figures 3–5. This study adopted triangular fuzzy sets (TFSs) as linguistic
variables, making the study differ from the work of Pai et al. [23], because the proposed FIS adopted
the TFSs in this study to promote the performance. The term of “NB” is very less, “NM” is much
less, “NS” is less, “O” is normal, “PS” is more, “PM” is much more, and “PB” is very much more in
Figures 3–5. The bill of material (BOM) is illustrated in Figure 6.
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The TCR production quantity is inferred in stage one. The input data are the fuzzy D and fuzzy
FR of four periods. The rules of the total capacity requirements (TCR) can be referred to in [23], and
Figure 7 displays the surface of the fuzzy IF-THEN rules of the total capacity requirement. Table 3
displays the inference results of TCR, which also show the defuzzification of upper membership
functions (UMF) and lower membership functions (LMF) of TCR by using Type-2 FIS, and the proposed
FIS. The rules of the production requirement with traditional TFSs, fuzzy Type-2 (UMF and LMF)
sets, and intuitionistic Type-2 (UMF, LMF, and α1) fuzzy sets are shown in Table 3. The output of this
stage is the TCR of each period, and it shows the approaching values under FIS, Type-2 FIS, and the
proposed FIS. The UMF and LMF of the CR for the four periods are presented in Table 3, and the TCR
is shown in Table 3, after the exploration of BOM.
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Table 3. The fuzzy D, fuzzy FR, and set-up resources (SR) of four periods with various FIS.

Period
1 2 3 4

UMF LMF α1 UMF LMF α1 UMF LMF α1 UMF LMF α1

Fuzzy D 64 50 (75, 85, 95) (60, 70, 80)

Fuzzy FR (%) 1.5 0.8 (1, 2, 3) (1.5, 2, 2.5)

TCR
FIS 67 − 52 − 92 − 72 −

Type-2 FIS 66 65 − 53 52 0.9 93 87 − 73 67 −

Proposed IT-2
FIS 69 67 0.7 52 52 0.9 78 78 0.3 78 68 0.5

−: Non.

In stage two, the CL is inferred. The rules of the CL [23] are illustrated in Figure 8. The input
data of this stage are the fuzzy TCR and fuzzy CC with their UMF and LMF (Type-2 fuzzy sets). The
outputs of stage two are the fuzzy CL of four periods. Figure 9 shows the training error of proposed
IT-2 FIS via using proposed PSO. The performance has convergence with excellent stability in the
capacity-planning problem. Tables 4–6 indicate the defuzzified CL of the four periods by Equation (12).
The positive numbers in Tables 4–6 represent the overloading of the capacity, and the negative numbers
are the underloading of the capacity. The proposed IT-2 FIS can provide a more objective estimated
value than the traditional FIS because of the fuzzy bounds (UMF and LMF). In the simulated results,
period 4 considered the underloading of the capacity for tuning material and production projects.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 17 
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Figure 9. The training error of proposed IT-2 FIS in capacity-planning problem.

Table 4. Defuzzified capacity loadings of four periods with FIS.

Period 1 2 3 4

TCR (477, 502, 527) (362, 387, 412) (658, 683, 708) (507, 557, 607)
CR (500, 550, 600) (500, 550, 600) (500, 550, 600) (500, 550, 600)
CL −46 −162 127 7

Table 5. Defuzzified capacity loadings of four periods with Type-2 FIS.

Period
1 2

UMF LMF UMF LMF

TCR (465, 490, 515) (471, 496, 521) (368, 393, 418) (362, 387, 412)
CC (500, 550, 600) (500, 550, 600)

CL
UMF LMF UMF LMF UMF LMF UMF LMF
−56 −67 −52 −57 −148 −145 −149 −148

Defuzzification −58 −147.5

Period
3 4

UMF LMF UMF LMF

TCR (622, 647, 672) (658, 683, 708) (513, 563, 613) (477, 527, 577)
CC (500, 550, 600) (500, 550, 600)

CL
UMF LMF UMF LMF UMF LMF UMF LMF

98 95 138 125 20 5 −24 −21

Defuzzification 114 −5

In this capacity-planning case, the [23] has verified traditional FIS could approach capacity
loadings well. Hence, the performance evaluation is difference with results of traditional FIS (capacity
loadings is −46, −162, 127, and 7, with period is 1 to 4). Table 7 shows the result of proposed IT-2 FIS
is significantly similarity the FIS by T-test and verifies that the proposed IT-2 FIS could successfully
estimate the capacity-planning problem, too. A comparison of FIS, Type-2 FIS, and the proposed FIS
revealed a number of phenomena. First, the proposed FIS could obtain reasonable capacity loading
approach values, similar to [23], in capacity-planning problems. Second, since the proposed FIS could
appropriately tune the parameters of the Yager-generating functions using the PSO algorithm, it could
obtain a more suitable fuzzy input than FIS or Type-2 FIS, while the case has actual target values. Third,
the proposed FIS could be an effective alternative capacity-loading inference system.



Symmetry 2020, 12, 562 12 of 16

Table 6. Defuzzified capacity loadings of four periods with proposed IT-2 FIS.

Period
1 2

UMF LMF UMF LMF

TCR (477, 502, 527) (489, 514, 539) (387, 412, 437) (387, 412, 437)
CC (500, 550, 600) (500, 550, 600)
α2 0.7 0.5 0.8 0.8

CL
UMF LMF UMF LMF UMF LMF UMF LMF
−42 −50 −49 −50 −159 −165 −148 −176

Defuzzification −47.75 −162

Period
3 4

UMF LMF UMF LMF

TCR (543, 568, 593) (543, 568, 593) (483, 508, 533) (543, 568, 593)
CC (500, 550, 600) (500, 550, 600)
α2 0.5 0.5 0.4 0.06

CL
UMF LMF UMF LMF UMF LMF UMF LMF
125 125 125 125 125 125 125 125

Defuzzification 125 9.75

Table 7. The T-test CL estimate for difference (FIS to Type-2 FIS and FIS to proposed IT-2 FIS).

Period 1 2 3 4 T-Test
Estimate for Difference (p-Value)

FIS to Type-2 FIS 12 14.5 13 12
−11.250 (0.000)*

FIS to proposed IT-2 FIS 1.75 0 2 2.75

* Means p-value less than 0.05 is statistically significant.

3.2. Proposed FIS in a Medical Diagnosis Problem

The identification of micro-calcifications can be used in the effective detection of breast cancer,
which has been verified in the medical field. The procedure of mammography, a specific type of X-ray
radiograph, can digitally capture the contrasting imageries of both micro-calcifications and normal
breast tissues. However, different examiners of the same digitized images may arrive at divergent
diagnoses due to the varying experience and background of each examiner, as well as his/her own
subjectivity. In this numerical example, this study conducted a discussion with a professional physician
and investigated the variables of micro-calcifications, calcification density, and calcification abnormal
shape to establish the fuzzy decision rules (Table 8). The “H”, “M”, and “L” respectively represent
high (0.5, 0.75, 0.75), median (0.25, 0.5, 0.75), and lower (0.25, 0.25, 0.5) bounds, which are shown in
Figure 10. Figure 11 displays the fuzzy decision terms, which are “3” (0, 0.2, 0.4), “4A” (0.2, 0.4, 0.6),
“4B” (0.4, 0.6, 0.8), and “4C” (0.6, 0.8, 1), respectively. The fuzzy decision terms mean the breast cancer
stages. The “3” stage is when the tumor size is bigger than 50 mm. The “4A”, “4B”, and “4C” mean
different degrees of direct extension to the chest wall. Figure 12 shows the training error of proposed
IT-2 FIS via using proposed PSO. The performance also has convergence with excellent stability in a
breast cancer diagnosis problem. In the medical diagnosis case, correct rate is measure index. The
actual results are shown in Table 9, and the accurate rate of the proposed IT-2 FIS is 100%, which is
better than the traditional FIS (50%) and type-2 FIS (80%) in cases A to J. The results show that cases B,
C, E, G, and I were incorrect estimations of stages for breast cancer by using traditional FIS; and cases
B and G were incorrect estimation of stages for breast cancer by using Type-2 FIS.
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Table 8. Fuzzy decision rules of breast cancer diagnosis problems.

Variables Decision

Micro-calcification
clusters

H

Calcification
density

H

Calcification
abnormal

shape

H 4A
M 4A
L 3

M
H 4A
M 3
L 4A

L
H 3
M 3
L 3

M

H
H 4A
M 3
L 3

M
H 4A
M 3
L 3

L
H 3
M 3
L 3

L

H
H 4A
M 3
L 3

M
H 3
M 3
L 3

L
H 3
M 3
L 3

Notes: 3 means negative (60%); 4A means positive (60%).
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Table 9. Comparison of FIS, Type-2 FIS, and intuitionistic Type-2 FIS in a breast cancer diagnosis problem.

Fuzzy Input Actual
Results

Estimated Results

Micro-Calcification
Clusters

Calcification
Density

Calcification
Abnormal Shape FIS Type-2

FIS
IT-2 FIS

(α = 0.04)

Case A 0.8 0.9 0.8 4C 4C 4C 4C

Case B 0.6 0.6 0.3 4A 4B 4B 4A

Case C 0.3 0.6 0.3 3 4A 3 3

Case D 0.4 0.7 0.6 4B 4B 4B 4B

Case E 0.3 0.5 0.3 3 4A 3 3

Case F 0.2 0.3 0.2 3 3 3 3

Case G 0.4 0.5 0.4 4B 4A 4A 4B

Case H 0.2 0.5 0.2 3 3 3 3

Case I 0.7 0.6 0.3 4A 4B 4A 4A

Case J 0.8 0.6 0.7 4B 4B 4B 4B

Accurate
rate (%) 50% 80% 100%

Finally, the T-test was implemented to test the breast cancer diagnosis results. The test results,
presented in Table 10, show significant differences among the FIS and proposed IT-2 FIS models,
indicating the breast cancer diagnosis results of the proposed IT-2 FIS model are better than the
traditional FIS based on accurate rate. In this example, IT-2 FIS is successfully applied in breast cancer
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diagnosis problems. The IT-2 FIS is capable of dealing with complex breast cancer diagnosis. Through
the IT-2 FIS, managers can obtain more objective estimated values and higher accurate rates than those
obtained with traditional FIS and type-2 FIS in medical diagnosis.

Table 10. The T-test estimate for difference in a breast cancer diagnosis problem.

Type-2 FIS IT-2 FIS (α = 0.04)

FIS 0.3 (0.08) 0.5 (0.015) *
Type-2 FIS 0.8 (0.167)

Cell: standardize value (p-value); * Means p-value less than 0.05 is statistically significant.

4. Conclusions

In this study, the proposed IT-2 FIS, which adopts intuitionistic Type-2 fuzzy sets with
Yager-generating functions as the fuzzy input, was successfully applied in two numerical examples.
The proposed IT-2 FIS is capable of dealing with complex capacity loading and medical diagnosis
problems where various uncertain variables and incomplete knowledge are involved. It is more suitable
for revealing experts’ knowledge and constructing fuzzy models in a human tractable form. Through
the proposed IT-2 FIS, managers can obtain more flexible approach values compared to traditional FIS
and Type-2 FIS in numerical examples. This study was the first to use novel intuitionistic Type-2 fuzzy
sets with Yager-generating functions and PSO. However, this study did not examine the ability of the
proposed IT-2 FIS to approach other types of actual problems. For instance, the time-series financial
data (can refer to [24,25]) may also be examined by using proposed IT-2 FIS in future research. Another
unexamined issue is the appropriateness of combining the proposed IT-2 FIS with other approaches,
such as different linguistic models, to deal with uncertain data. The state-of-the-art FIS may also adopt
the Yager-generating functions and PSO to enhance their fuzzy inference system. The others heuristic
algorithm also could be adopted to search optimal parameters of IT-2 FIS, such as improved PSO
Algorithm. All issues are worth further investigation.
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