New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals
Abstract
:1. Introduction
2. New Generalized Fractional Integrals Identity and New Integral Inequality for Katugampola Fractional Integrals
3. Generalized Hermite-Hadamard Inequality and Related Integral Inequalities for Katugampola Fractional Integral on Fractal Sets
- 1.
- If and , we have the trapezoid inequality:
- 2.
- For , we have
- 1.
- For , we get
- 2.
- If , we have
4. Applications to Special Means
- The arithmetic mean:; , with .
- The generalized log-mean:; , with .
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peajcariaac, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Dragomir, S.S.; Pearce, C. Selected topics on Hermite-Hadamard inequalities and applications. Math. Prepr. Arch. 2003, 3, 463–817. [Google Scholar]
- Mehrez, K.; Agarwal, P. New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Gozpinar, A.; Set, E.; Dragomir, S.S. Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are s-convex. Acta Math. Univ. Comen. 2019, 88, 87–100. [Google Scholar]
- Korus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequationes Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, S.; Iscan, I. Some new Hermite-Hadamard type inequalities for s-convex functions and their applications. J. Inequalities Appl. 2019, 2019, 201. [Google Scholar] [CrossRef] [Green Version]
- Kılıçman, A.; Saleh, W. Some generalized Hermite-Hadamard type integral inequalities for generalized s-convex functions on fractal sets. Adv. Differ. Equ. 2015, 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. Integral inequalities for s-convexity via generalized fractional integrals on fractal sets. Mathematics 2020, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. New fractional inequalities of midpoint type via s-convexity and their applications. J. Inequalities Appl. 2019, 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Symmetrized convexity and Hermite-Hadamard type inequalities. J. Math. Inequalities 2016, 10, 901–918. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices. J. Math. Inequalities 2017, 11, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. J. Math. Inequalities 2019, 13, 675–686. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Torebek, B.T. Some Hermite–Hadamard type inequalities in the class of hyperbolic p-convex functions. Rev. De La Real Acad. De Cienc. Exactas Fis. Y Naturales. Ser. A. Mat. 2019, 113, 3413–3423. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 517–527. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, E.C.; Jarosz, S.; Vaz, J., Jr. Fractional calculus via Laplace transform and its application in relaxation processes. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 58–72. [Google Scholar] [CrossRef]
- Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Zhu, C.; Fečkan, M.; Wang, J. Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inform. 2012, 8, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.; Sui, X. Generalized-convex functions on fractal sets. Abstract Appl. Anal. 2014, 2014, 254737. [Google Scholar] [CrossRef] [Green Version]
- Tomar, M.; Agarwal, P.; Choi, J. Hermite-Hadamard type inequalities for generalized convex functions on fractal sets style. Bol. Da Soc. Parana. De Matemática 2020, 38, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fečkan, M. Fractional Hermite-Hadamard Inequalities; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018; Volume 5. [Google Scholar]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. Mellin transforms of generalized fractional integrals and derivatives. Appl. Math. Comput. 2015, 257, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Baleanu, D.; Bai, Y.; Wu, G. Fractional differential equations of Caputo–Katugampola type and numerical solutions. Appl. Math. Comput. 2017, 315, 549–554. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Emin, S. Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv. Differ. Equ. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kermausuor, S. Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals. J. Nonlinear Sci. Appl. 2019, 12, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Mumcu, I.; Set, E.; Akdemir, A.O. Hermite-Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals. Miskolc Math. Notes 2019, 20, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Toplu, T.; Set, E.; Iscan, I.; Maden, S. Hermite-Hadamard type inequalities for p-convex functions via katugampola fractional integrals. Facta Univ. Ser. Math. Inform. 2019, 34, 149–164. [Google Scholar]
- Dubey, R.S.; Goswami, P. Some fractional integral inequalities for the Katugampola integral operator. AIMS Math. 2019, 4, 193–198. [Google Scholar] [CrossRef]
- Mercer, A.M. An improvement of the Grüss inequality. J. Inequal. Pure Appl. Math. 2005, 6, 93. [Google Scholar]
- Lupinska, B.; Odzijewicz, T. A Lyapunov-type inequality with the Katugampola fractional derivative. Math. Methods Appl. Sci. 2018, 41, 8985–8996. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, O.; Kılıçman, A. New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals. Symmetry 2020, 12, 568. https://doi.org/10.3390/sym12040568
Almutairi O, Kılıçman A. New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals. Symmetry. 2020; 12(4):568. https://doi.org/10.3390/sym12040568
Chicago/Turabian StyleAlmutairi, Ohud, and Adem Kılıçman. 2020. "New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals" Symmetry 12, no. 4: 568. https://doi.org/10.3390/sym12040568
APA StyleAlmutairi, O., & Kılıçman, A. (2020). New Generalized Hermite-Hadamard Inequality and Related Integral Inequalities Involving Katugampola Type Fractional Integrals. Symmetry, 12(4), 568. https://doi.org/10.3390/sym12040568