
symmetryS S

Article

ZDC: A Zone Data Compression Method for Solid
State Drive Based Flash Memory

Xin Ye *, Zhengjun Zhai and Xiaochang Li

School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
zhaizjun@nwpu.edu.cn (Z.Z); xcli@mail.nwpu.edu.cn (X.L.)
* Correspondence: yexinishere@163.com

Received: 18 March 2020; Accepted: 26 March 2020; Published: 15 April 2020
����������
�������

Abstract: Solid-state drive (SSD) with flash memory as the storage medium are being widely used in
various data storage systems. SSD data compression means that data is compressed before it is written
to Not-And (NAND) Flash. Data compression can reduce the amount of data written in NAND
Flash and improve the performance and reliability of SSDs. At present, the main problem facing
data compression of SSD is how to improve the efficiency of data compression and decompression.
In order to improve the performance of data compression and decompression, this study proposes
a method of SSD data deduplication based on zone division. First, this study divides the storage
space of the SSD into zones and divides them into one hot zone and multiple cold zones according
to the different erasing frequency. Second, the data in each zone is divided into hot data and cold
data according to the number of erasures. At the same time, the address mapping table in the hot
zone is loaded into the cache. Finally, when there is a write or read request, the SSD will selectively
compress or decompress the data according to the type of different zones. Through simulation
tests, the correctness and effectiveness of this study are verified. The research results show that the
data compression rate of this research result can reach 70–95%. Compared with SSD without data
compression, write amplification is reduced by 5 to 30%, and write latency is reduced by 5 to 25%. The
research results have certain reference value for improving the performance and reliability of SSD.

Keywords: flash memory; SSD; data compression; zone

1. Introduction

SSDs with flash memory as the storage medium are replacing HHD as the main storage device.
Compared with HDD, SSD has fast read and write speed, good shock resistance and low power
consumption [1]. At the same time, with the improvement of flash memory manufacturing technology,
the capacity of flash memory is rapidly increasing, and the capacity of a single SSD has been
further improved.

Flash memory can be divided into four levels: target, logical unit (LUN), block, and page [2].
A block consists of multiple pages. A block is the basic unit of data erasure, and a page is the basic
unit of read and write operations in flash memory [3]. When data are updated on a page, the block
where the page is located must be erased before data can be updated on the page. In order to improve
performance, SSD generally adopts an offsite update method. When the data of a certain page need to
be updated, the SSD writes the new data to a new page first and marks the original page as invalid.
However, as the SSD usage time increases, the number of invalid pages also increases. In order to
reuse these invalid pages, the SSD will recycle them and reallocate those [4]. The reclamation process
consumes a lot of system overhead, which causes the SSD performance to decrease. At the same time,
since the number of program/erasures (P/E) cycles of the blocks in the SSD is limited, the number of
P/E cycles of the SLC architecture is about 100K, the number of P/E cycles of the MLC is about 10K,

Symmetry 2020, 12, 623; doi:10.3390/sym12040623 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/4/623?type=check_update&version=1
http://dx.doi.org/10.3390/sym12040623
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 623 2 of 11

and the number of P/E cycles of the TLC is about 1K [5]. The latest QLC P/E cycles have been reduced
to 500 [6]. As the usage time of an SSD increases, its reliability gradually decreases.

In order to improve the reliability and read/write performance of SSDs, researchers have carried out
a lot of research work and obtained a lot of research results. These research results include wear-leveling
technology, bad block management methods and on-chip Raid. Through the application of these results,
the reliability and service life of the SSD are greatly improved. For example, wear-leveling can evenly
spread the wear of NAND Flash in each block—thus reducing the failure of a block in NAND Flash
due to excessive wear [7]. However, these research results have not fundamentally reduced SSD user
data writing. The main methods to improve SSD performance include: I/O performance optimization,
garbage collection method optimization, and address mapping table scheduling optimization [8].
For example, Huyang [9] proposed an SSD multi-level parallel optimization method. This method
optimizes the internal channel, chip, target, and LUN of the SSD in parallel, thereby improving
the performance of the SSD. At present, there are two main methods for reducing data writing:
data deduplication and data compression. Data deduplication is mainly to eliminate redundant data
in the written data, thereby reducing data writing. Data compression is to compress the written data,
thereby reducing data writing.

According to the compression model, compression algorithms can be divided into two types:
lossless compression and lossy compression. Compared to lossy compression, the compression ratio of
lossless compression is not high, but it completely saves the original information without any data
loss, and gradually alleviates the disadvantages of lossless compression, which makes the lossless
compression format have broad application prospects [10]. As a data storage medium, the SSD must
guarantee the absolute integrity of the stored data. Therefore, this paper conducts research and
optimization based on the uncompressed algorithm.

Lossless compression technology is to achieve the purpose of compressing data by encoding
a large amount of data on the premise that data cannot be lost. The compressed data can be restored to
the original data state by decompression. Lossless compression can be divided into statistical model
based compression [11] and dictionary based compression [12].

The dictionary based compression has two advantages. First, the algorithm only includes
string-based search and matching, and there is no calculation processing on numerical values.
Second, the algorithm is very simple and fast in the decompression process. In statistical model
based compression, its decompression is usually as complex as the inverse process of compression.
Abraham Lempel and Jacob Ziv proposed the LZ77 algorithm jointly. This compression algorithm is
based on a dictionary model, using a dictionary to encode each string into an identifier. When the
string appears again in the compressed data, the identifier is used to replace the string to achieve the
purpose of compression [13]. Benini et al. investigated a hardware-assisted data compression method
for memory. This method is similar to the LZ algorithm. They describe in detail how the method is
implemented in hardware and use this method for data compression with almost no performance
loss [14]. Kjelso et al. proposed the X-Match compression algorithm for main memory, which is easy
to implement in hardware. X-Match is another variant of LZ77, differing in that phrases matching
works in four byte units [15]. The LZW algorithm is an optimization algorithm based on the LZ78
algorithm proposed by Welch. The algorithm has good compression performance, fast speed, and easy
implementation, and it is one of the most commonly used and most effective lossless compression
methods. The LZW algorithm completes the conversion from input to output by managing a dictionary.
The LZW compression algorithm uses a greedy analysis method. Each analysis always serially checks
the data in the forward buffer, analyzes the longest string appearing in the current dictionary, outputs its
corresponding code, and then adds the next input character after the string forms a new string and
is added to the dictionary [16]. Compared with other algorithms optimized on the FPGA platform,
the performance of the LZW algorithm is much better [17].

Therefore, this article mainly discusses data compression technology. Based on the improvement
of the existing LZW data compression algorithm, a data compression method is designed in accordance

Symmetry 2020, 12, 623 3 of 11

with the characteristics of SSD. This method can reduce the P/E cycle of the SSD. At the same time,
this study is optimized for Flash Translation Layer (FTL) to ensure that the performance of SSD is
basically not affected after the data compression is introduced.

The rest of the article is organized as follows. The second section describes the principle and
implementation of the SSD data compression method based on block division. The third section
carried out relevant tests on the method, and obtained the data deduplication efficiency and read/write
performance of the method under different workloads. The last section summarizes this article and
gives relevant conclusions.

2. Materials and Methods

In order to improve the SSD data compression performance, this study proposes an SSD data
compression method based on the zone of flash memory (ZDC). This method is based on the
LZW compression algorithm. By optimizing the LZW algorithm and the address mapping table,
fast compression of the internal data partition of the SSD is realized.

The data compression method designed in this study has two characteristics. First, this study uses
an Intel SoC chip as the controller of the SSD. The chip includes a dual-core ARM CPU and a set of
field programmable logic arrays (FPGAs). Second, ZDC is an offline solid state disk data compression
method. ZDC will first judge the type of input quantity instead of immediately compressing the input
data. If the data is hot and updated frequently, ZDC will not immediately compress the hot data.
On the contrary, ZDC will immediately compress cold data with low update frequency.

2.1. System Summary Architecture

This research is mainly to improve the performance and reliability of SSDs by introducing data
compression method in the SSD. First, this study divides an SSD into multiple zones according to
capacity. Each zone uses page-level address mapping. Second, this study divides the data in each
zone into hot data and cold data according to P/E cycles. Third, choose the right time for data
compression according to different data types (hot data or cold data). Fourth, this study designed
a new garbage collection method. This method can meet the new requirements for garbage collection
after data compression.

Figure 1 shows the overall structure of the study. This research uses a SoC as the controller of the
SSD. The controller mainly includes interface module, CPU module, FPGA module, and NAND Flash
controller module.

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 12

Figure 1. System summary architecture.

The Interface module is mainly used for the analysis of interface protocols. After the
protocol analysis is completed, the data sent by the host are divided into types. The data of
command and address will be sent to the CPU in the controller for further processing. User
data is sent to the FPGA for compression.

The CPU in the SoC mainly performs FTL management. Functions in FTL include
address mapping, static wear-leveling, garbage collection and bad block management. In
addition, since the cache is set outside the SSD controller, the functions of the CPU also
include management of the cache. Through the address mapping function in FTL, the zone
division of NAND Flash memory space is realized. The specific division is introduced in
Section 2.3.

The FPGA mainly implements data compression. When the host sends a write request,
the SSD first transmits the write request information to the FTL. This information includes the
write command, the starting logical address, and the file capacity. Then, calculate the physical
address through the address mapping table in the FTL. Finally, it is determined whether the
data are compressed immediately by judging whether the data corresponding to the physical
address is hot or cold.

2.2. Data compression

In this study, the optimized LZW compression algorithm is used inside the SSD to
achieve data compression. Although the original LZW algorithm has high data compression
efficiency, it also has certain limitations when it is introduced into the embedded SSD
controller. First, the LZW compression algorithm requires a dictionary to record the most
recently entered string entries. When new string data arrive, it needs to try to scan the
dictionary for the corresponding dictionary entry. Second, when a new string entry is
recorded in the dictionary, the entire string is recorded into the dictionary entry. This causes
the dictionary to be too large, and the search needs to be repeatedly compared and repeated
many times, resulting in time and waste of space. Third, as the compressed data increases,
more and more strings are entered into the dictionary. When the dictionary has no capacity to
record new entries, the old string is not replaced with a suitable replacement strategy.
Generally, the LZW algorithm uses all the dictionary to be cleared, and the method is
re-established. This strategy implicitly assumes that new data is more favorable to subsequent
characters than old data. Aiming at the limitations of the LZW algorithm, this study optimized
the LZW algorithm based on the characteristics of the embedded SSD controller.

Figure 1. System summary architecture.

Symmetry 2020, 12, 623 4 of 11

The Interface module is mainly used for the analysis of interface protocols. After the protocol
analysis is completed, the data sent by the host are divided into types. The data of command and
address will be sent to the CPU in the controller for further processing. User data is sent to the FPGA
for compression.

The CPU in the SoC mainly performs FTL management. Functions in FTL include address
mapping, static wear-leveling, garbage collection and bad block management. In addition, since the
cache is set outside the SSD controller, the functions of the CPU also include management of the cache.
Through the address mapping function in FTL, the zone division of NAND Flash memory space is
realized. The specific division is introduced in Section 2.3.

The FPGA mainly implements data compression. When the host sends a write request, the SSD
first transmits the write request information to the FTL. This information includes the write command,
the starting logical address, and the file capacity. Then, calculate the physical address through
the address mapping table in the FTL. Finally, it is determined whether the data are compressed
immediately by judging whether the data corresponding to the physical address is hot or cold.

2.2. Data Compression

In this study, the optimized LZW compression algorithm is used inside the SSD to achieve data
compression. Although the original LZW algorithm has high data compression efficiency, it also
has certain limitations when it is introduced into the embedded SSD controller. First, the LZW
compression algorithm requires a dictionary to record the most recently entered string entries. When
new string data arrive, it needs to try to scan the dictionary for the corresponding dictionary entry.
Second, when a new string entry is recorded in the dictionary, the entire string is recorded into the
dictionary entry. This causes the dictionary to be too large, and the search needs to be repeatedly
compared and repeated many times, resulting in time and waste of space. Third, as the compressed
data increases, more and more strings are entered into the dictionary. When the dictionary has no
capacity to record new entries, the old string is not replaced with a suitable replacement strategy.
Generally, the LZW algorithm uses all the dictionary to be cleared, and the method is re-established.
This strategy implicitly assumes that new data is more favorable to subsequent characters than old
data. Aiming at the limitations of the LZW algorithm, this study optimized the LZW algorithm based
on the characteristics of the embedded SSD controller.

First, because the SoC is used as the SSD controller platform in this study, the internal FPGA has
good parallel characteristics. Therefore, this study will implement multiple dictionaries inside the FPGA.
In data compression, multiple dictionaries work in parallel to match input strings. Finally, the dictionary
with the most matches is selected as the output. The parallel compression process of the LZW algorithm
is shown in Figure 2. In this research, eight dictionaries work in parallel in FPGA. At the same time,
this study is based on the partitioning of flash memory. The specific partitioning method will be
described in Section 2.3. Each zone will correspond to a set of dictionaries.

Secondly, since the compression method is implemented in an embedded system, and the
hardware resources of the embedded system are very limited, a suitable dictionary capacity must be
determined. Burrows et al. [18] and Yim et al. [19] have shown that there is no significant difference
in the compression ratio for 2 KB to 8 KB compression unit sizes. At the same time, the capacity of
the storage device increases at any time. At present, the file system is basically 4 KB in block capacity.
The read and write requests are based on 4 KB as the basic unit. Most flash memory page sizes are also
4 KB. Therefore, selecting 4 KB for the dictionary capacity can improve SSD performance.

Symmetry 2020, 12, 623 5 of 11

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 12

First, because the SoC is used as the SSD controller platform in this study, the internal
FPGA has good parallel characteristics. Therefore, this study will implement multiple
dictionaries inside the FPGA. In data compression, multiple dictionaries work in parallel to
match input strings. Finally, the dictionary with the most matches is selected as the output.
The parallel compression process of the LZW algorithm is shown in Figure 2. In this research,
eight dictionaries work in parallel in FPGA. At the same time, this study is based on the
partitioning of flash memory. The specific partitioning method will be described in Section 2.3.
Each zone will correspond to a set of dictionaries.

Figure 2. Parallel compression process of the LZW algorithm.

Secondly, since the compression method is implemented in an embedded system, and the
hardware resources of the embedded system are very limited, a suitable dictionary capacity
must be determined. Burrows et al. [18] and Yim et al. [19] have shown that there is no
significant difference in the compression ratio for 2 KB to 8 KB compression unit sizes. At the
same time, the capacity of the storage device increases at any time. At present, the file system
is basically 4 KB in block capacity. The read and write requests are based on 4 KB as the basic
unit. Most flash memory page sizes are also 4 KB. Therefore, selecting 4 KB for the dictionary
capacity can improve SSD performance.

Finally, the storage space of the dictionary is limited. As the compressed data increase,
more and more strings are entered into the dictionary. Once the dictionary has no capacity to
record new entries, it generally deletes all the contents of the dictionary and re-creates the
dictionary. However, SSD is a kind of data storage device and the data stored in SSD has a
certain locality in time [20, 21]. This means that, although the current data may not be
matched, after a period of time, new data may be matched. Therefore, the entire contents of
the dictionary are deleted, and a new dictionary is rebuilt. This will not only improve the hit
rate but also lead to a reduction in the overall SSD performance. This research uses a
replacement strategy, which sorts the contents of each dictionary according to the frequency of
hit ratio. When there is no hit, the system automatically deletes the dictionary with the lowest
hit rate and re-creates an entry. In order to sort the entry hit ratios, this study defines a variable
Ki (i = 0 ... 7). Ki indicates the number of times the i-th entry has not been hit. In extreme cases,
the K value of one or more terms is out of bounds. When K values are out of bounds, all K
values corresponding to all terms are cleared to 0 and re-counted.

2.3. Mapping Table Optimization

Due to the spatial locality of the data, this study did not directly adopt the page-level
address mapping method, but divided the SSD storage space into multiple zones, and each
zone used page-level address mapping. Each zone that is divided consists of three parts. These

Figure 2. Parallel compression process of the LZW algorithm.

Finally, the storage space of the dictionary is limited. As the compressed data increase, more
and more strings are entered into the dictionary. Once the dictionary has no capacity to record new
entries, it generally deletes all the contents of the dictionary and re-creates the dictionary. However,
SSD is a kind of data storage device and the data stored in SSD has a certain locality in time [20,21].
This means that, although the current data may not be matched, after a period of time, new data may
be matched. Therefore, the entire contents of the dictionary are deleted, and a new dictionary is rebuilt.
This will not only improve the hit rate but also lead to a reduction in the overall SSD performance.
This research uses a replacement strategy, which sorts the contents of each dictionary according to the
frequency of hit ratio. When there is no hit, the system automatically deletes the dictionary with the
lowest hit rate and re-creates an entry. In order to sort the entry hit ratios, this study defines a variable
Ki (i = 0 ... 7). Ki indicates the number of times the i-th entry has not been hit. In extreme cases,
the K value of one or more terms is out of bounds. When K values are out of bounds, all K values
corresponding to all terms are cleared to 0 and re-counted.

2.3. Mapping Table Optimization

Due to the spatial locality of the data, this study did not directly adopt the page-level address
mapping method, but divided the SSD storage space into multiple zones, and each zone used page-level
address mapping. Each zone that is divided consists of three parts. These three parts store user data,
address mapping table and dictionary data, respectively. Figure 3 is a flash memory array divided into
four zones.

Symmetry 2020, 12, x FOR PEER REVIEW 6 of 12

three parts store user data, address mapping table and dictionary data, respectively. Figure 3
is a flash m

Figure 3. Flash memory divided into four zones.

Under normal circumstances, only one zone's address mapping table (ZAM) will be
loaded into the cache. The structure of the ZAM is shown in Table 1.

Table 1. Structure of the ZAM

Field Names in the Table Description

LPA Logical page address

PPA User data physics page address

DPN Dictionary physical address

EraseNB Number of block erasures

Sate Page status

Ki The number of times an entry has not been hit.

When SSD obtains a write request, SSD controller processes the request as follows. 1. The
SSD judges whether the logical address of the write request matches the address mapping
table in the cache. 2. If the logical address matches the address mapping table in the cache, the
SSD then determines whether the physical address corresponding to the logical address is a
hot block according to the value of EraseNB. 3. If the block corresponding to the physical
address is a hot block, the SSD caches the written data in the cache and does not compress it. If
it is a cold block, the SSD compresses the data and writes it directly to the corresponding
physical page. 4. If the cache does not contain the logical address, the SSD searches for the
corresponding zone based on the logical address. 5. The SSD loads the address mapping table
corresponding to the searched zone into the cache and repeats step 3. The data write process of
SSD is shown in Figure 4.

Figure 3. Flash memory divided into four zones.

Symmetry 2020, 12, 623 6 of 11

Under normal circumstances, only one zone’s address mapping table (ZAM) will be loaded into
the cache. The structure of the ZAM is shown in Table 1.

Table 1. Structure of the ZAM.

Field Names in the Table Description

LPA Logical page address

PPA User data physics page address

DPN Dictionary physical address

EraseNB Number of block erasures

Sate Page status

Ki The number of times an entry has not been hit.

When SSD obtains a write request, SSD controller processes the request as follows. 1. The SSD
judges whether the logical address of the write request matches the address mapping table in the cache.
2. If the logical address matches the address mapping table in the cache, the SSD then determines
whether the physical address corresponding to the logical address is a hot block according to the
value of EraseNB. 3. If the block corresponding to the physical address is a hot block, the SSD caches
the written data in the cache and does not compress it. If it is a cold block, the SSD compresses the
data and writes it directly to the corresponding physical page. 4. If the cache does not contain the
logical address, the SSD searches for the corresponding zone based on the logical address. 5. The SSD
loads the address mapping table corresponding to the searched zone into the cache and repeats step 3.
The data write process of SSD is shown in Figure 4.

Symmetry 2020, 12, x FOR PEER REVIEW 7 of 12

Due to the limitation of cache capacity, this study only loads the address mapping table of
a zone into the cache. When a logical address cannot match the address mapping table in the
cache, the SSD needs to search for a zone to which the logical address belongs and load the
address mapping table of the zone into the cache. For this research, a zone search directory
table (ZDT) is designed. Through this directory, the SSD can search for each logical address
corresponding to the zone. The structure of ZDT is shown in Table 2.

Table 2. The ZDT structure

Field names in the table Description

ZNB the number of the zone

SZPAN The starting physical address of each zone

ZMatch The number of zone hits for write requests in cache

ZAM_PA The physical address of a ZAM

ZNB indicates the number of the zone. For each zone, the number is unique.
SZPAN indicates the starting physical address of each zone. After the SSD receives the

logical address sent by the host, it calculates the physical address corresponding to the logical
address. SSD judges which zone the logical address belongs to base on the calculated physical
address.

ZMatch indicates the number of times each zone was requested to be hit in the cache. The
more times a zone is hit, the more easily the data stored in the zone can be updated. When the
SSD starts, load the zone corresponding to the maximum ZMatch into the cache.

ZAM_PA represents the physical address of each ZAM stored in NAND Flash. When the
SSD needs to load a new ZAM into the cache, the SSD first searches the ZAM's position in the
NAND Flash through ZAM_PA, and then the SSD can read the ZAM into the cache through
ZAM and offset.

For example, as shown in Figure 5, the host sends three write requests. The LPAs for
these three write requests are: 0010, 1001, and 0101. After address mapping, the SZPBA
corresponding to the three requests are 0000, 100, and 0100. By querying the ZDT, the zones

Figure 4. SSD data writing process.

Due to the limitation of cache capacity, this study only loads the address mapping table of a zone
into the cache. When a logical address cannot match the address mapping table in the cache, the SSD
needs to search for a zone to which the logical address belongs and load the address mapping table of
the zone into the cache. For this research, a zone search directory table (ZDT) is designed. Through this
directory, the SSD can search for each logical address corresponding to the zone. The structure of ZDT
is shown in Table 2.

Symmetry 2020, 12, 623 7 of 11

Table 2. The ZDT structure.

Field Names in the Table Description

ZNB the number of the zone

SZPAN The starting physical address of each zone

ZMatch The number of zone hits for write requests in cache

ZAM_PA The physical address of a ZAM

ZNB indicates the number of the zone. For each zone, the number is unique.
SZPAN indicates the starting physical address of each zone. After the SSD receives the logical

address sent by the host, it calculates the physical address corresponding to the logical address.
SSD judges which zone the logical address belongs to base on the calculated physical address.

ZMatch indicates the number of times each zone was requested to be hit in the cache. The more
times a zone is hit, the more easily the data stored in the zone can be updated. When the SSD starts,
load the zone corresponding to the maximum ZMatch into the cache.

ZAM_PA represents the physical address of each ZAM stored in NAND Flash. When the SSD
needs to load a new ZAM into the cache, the SSD first searches the ZAM’s position in the NAND Flash
through ZAM_PA, and then the SSD can read the ZAM into the cache through ZAM and offset.

For example, as shown in Figure 5, the host sends three write requests. The LPAs for these three
write requests are: 0010, 1001, and 0101. After address mapping, the SZPBA corresponding to the
three requests are 0000, 100, and 0100. By querying the ZDT, the zones corresponding to the three
write requests are zone_0, zone_2, and zone_1. Since the ZMatch value corresponding to zone_1 is the
largest, the ZAM corresponding to zone_1 is loaded into the cache and the ZAM corresponding to the
remaining zones is stored in the NAND Flash. After determining the specific physical address of each
LBA, the process shown in Figure 4 performs data compression and storage.

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 12

corresponding to the three write requests are zone_0, zone_2, and zone_1. Since the ZMatch
value corresponding to zone_1 is the largest, the ZAM corresponding to zone_1 is loaded into
the cache and the ZAM corresponding to the remaining zones is stored in the NAND Flash.
After determining the specific physical address of each LBA, the process shown in Figure 4
performs data compression and storage.

Figure 5. LBA translation.

2.4. Garbage Collection

In order to reduce the impact on the performance of SSD during garbage collection, based
on the zone division method of flash memory space, a local SSD garbage collection method
was designed. This method performs garbage collection only on the area of the ZAM table in
the cache. When the number of invalid blocks in the ZAM reaches 80% of the total number of
blocks in the region, the SSD starts a garbage collection mechanism, modifies the ZAM, and
erases the invalid blocks in the region. The area where the ZAM is stored in the NAND Flash
is not included in garbage collection. Only when the area ZAM is loaded into the cache will
the SSD controller first determine whether the area needs to be included in garbage collection.
If garbage collection is required, the data written by the host is cached in the cache first, and,
after the garbage collection is completed, compression and writing are performed. If garbage
collection is not required, follow the procedure shown in Figure 5.

Using local garbage collection measurement has the following advantages: 1. Because the
local garbage collection is performed, fewer data blocks are erased, which improves the
garbage collection efficiency and reduces the impact of garbage collection on the performance
of the solid state disk. 2. The amount of data that needs to be moved during garbage collection
is smaller than the amount of data moved during full garbage collection, which can also speed
up garbage collection efficiency and improve performance.

3. Results and Discussion

Flash-DBSim [22] is a simulation tool for flash technology research. Flash-DBSim can
simulate various experimental environments appearing in flash technology research as
accurately as possible. It is a unified flash experiment simulation platform. Flash-DBSim was
developed using Microsoft Visual Studio 2008 and uses C ++ language to achieve different
levels of solid state disk encapsulation.

Flash-DBSim uses a three-tier structure and each module uses interfaces to interact. The
function of each module is divided into VFD module and FTL module.

Figure 5. LBA translation.

2.4. Garbage Collection

In order to reduce the impact on the performance of SSD during garbage collection, based on the
zone division method of flash memory space, a local SSD garbage collection method was designed.
This method performs garbage collection only on the area of the ZAM table in the cache. When the
number of invalid blocks in the ZAM reaches 80% of the total number of blocks in the region, the SSD
starts a garbage collection mechanism, modifies the ZAM, and erases the invalid blocks in the region.

Symmetry 2020, 12, 623 8 of 11

The area where the ZAM is stored in the NAND Flash is not included in garbage collection. Only when
the area ZAM is loaded into the cache will the SSD controller first determine whether the area needs
to be included in garbage collection. If garbage collection is required, the data written by the host is
cached in the cache first, and, after the garbage collection is completed, compression and writing are
performed. If garbage collection is not required, follow the procedure shown in Figure 5.

Using local garbage collection measurement has the following advantages: 1. Because the local
garbage collection is performed, fewer data blocks are erased, which improves the garbage collection
efficiency and reduces the impact of garbage collection on the performance of the solid state disk.
2. The amount of data that needs to be moved during garbage collection is smaller than the amount of
data moved during full garbage collection, which can also speed up garbage collection efficiency and
improve performance.

3. Results and Discussion

Flash-DBSim [22] is a simulation tool for flash technology research. Flash-DBSim can simulate
various experimental environments appearing in flash technology research as accurately as possible.
It is a unified flash experiment simulation platform. Flash-DBSim was developed using Microsoft
Visual Studio 2008 and uses C ++ language to achieve different levels of solid state disk encapsulation.

Flash-DBSim uses a three-tier structure and each module uses interfaces to interact. The function
of each module is divided into VFD module and FTL module.

VFD module: This module is used to simulate the characteristics of NAND/NOR flash devices,
such as: data page, block size, number, read and write latency, erase limit, I/O count, and concurrency
control of flash devices.

FTL module: This module provides address translation and access interfaces to the underlying
flash device. This module can use the FTL/NFTL algorithm to control the underlying module. At the
same time, upper-level users can access Flash-DBSim by interacting with this module.

Public access interface: The public access interface is open to users. This interface layer hides all
implementation details in the Flash-DBSim system. Users use these interfaces to control the operation
of the Flash-DBSim system.

This study uses Flash-DBSim to simulate a 128 GB flash memory. The SSD is divided into four
zones. The capacity of each zone is 32 GB. At the same time, the traditional page-level mapping
algorithm is implemented in Flash-DBSim, and the same data environment is used for testing.

In order to verify the storage management algorithm designed in this paper and evaluate its
performance, this paper implements demand-based mapping algorithm (DFTL) based on Flashsim
and the compression mapping algorithm designed in this paper—Run DFTL and this method on the
Flash-DBSim simulation tool, respectively. This experiment uses a random write method and the test
data is shown in Table 3.

Table 3. Details of three trace categories.

Trace Number Trace Type Trace Quantity Trace Size

Trace1 WinXP install 1 1.6 GB

Trace 2 Documents 68 132 MB

Trace 3 Mail 108 3.9 GB

Trace 4 Compressed files 20 5.5 GB

3.1. Write Amplification

Write amplification is an important indicator for testing SSDs. On the one hand, write amplification
cannot be avoided due to the difference between the flash storage media used by SSDs and the storage
media of traditional disks. On the other hand, the write amplification can be significantly reduced
by optimizing the FTL algorithm. The write amplification largely determines the write speed of the

Symmetry 2020, 12, 623 9 of 11

SSD, and, at the same time, it is related to the service life of the SSD. Through the above test results,
the write amplification test results can be obtained by simple processing (see Figure 6).

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 12

VFD module: This module is used to simulate the characteristics of NAND/NOR flash
devices, such as: data page, block size, number, read and write latency, erase limit, I/O count,
and concurrency control of flash devices.

FTL module: This module provides address translation and access interfaces to the
underlying flash device. This module can use the FTL/NFTL algorithm to control the
underlying module. At the same time, upper-level users can access Flash-DBSim by
interacting with this module.

Public access interface: The public access interface is open to users. This interface layer
hides all implementation details in the Flash-DBSim system. Users use these interfaces to
control the operation of the Flash-DBSim system.

This study uses Flash-DBSim to simulate a 128 GB flash memory. The SSD is divided into
four zones. The capacity of each zone is 32 GB. At the same time, the traditional page-level
mapping algorithm is implemented in Flash-DBSim, and the same data environment is used
for testing.

In order to verify the storage management algorithm designed in this paper and evaluate
its performance, this paper implements demand-based mapping algorithm (DFTL) based on
Flashsim and the compression mapping algorithm designed in this paper—Run DFTL and this
method on the Flash-DBSim simulation tool, respectively. This experiment uses a random
write method and the test data is shown in Table 3.

Table 3. Details of three trace categories

Trace Number Trace Type
Trace
Quantity

Trace Size

Trace1 WinXP install 1 1.6GB
Trace 2 Documents 68 132MB
Trace 3 Mail 108 3.9GB
Trace 4 Compressed files 20 5.5GB

3.1. Write Amplification

Write amplification is an important indicator for testing SSDs. On the one hand, write
amplification cannot be avoided due to the difference between the flash storage media used by
SSDs and the storage media of traditional disks. On the other hand, the write amplification can
be significantly reduced by optimizing the FTL algorithm. The write amplification largely
determines the write speed of the SSD, and, at the same time, it is related to the service life of
the SSD. Through the above test results, the write amplification test results can be obtained by
simple processing. (see figure 6)

Figure 6. Write amplification test results. Figure 6. Write amplification test results.

From, the following conclusions can be drawn. After introducing a data compression method
inside the SSD, the write amplification level of the SSD can be significantly reduced. However, when
testing the write amplification of compressed files, the compressed file is already compressed on the
host side, so the method proposed in this study is the same as that of DFLT when writing amplification
of compressed files.

3.2. Read and Write Latency Test

In this test, we will perform DFTL and this study on page read and write performance. The selected
test data is shown in Table 3.

Random read test method: write a page to flash memory every 1 second, which can be any
segment of data in any type of file to test burst write delay. The experimental results are the average of
the test results on each page.

Random write test method: Read data from any page in flash memory every one second. In order
to prevent the effects of caching and other factors, this test reads in the order of LPN increasing by
eight pages at a time.

Sequential read and write test method: As long as the flash memory is idle, a read (or write)
operation request is issued to the Flash, the address is random, and the amount of data is an indefinite
number of pages.

The test results are shown in Figure 7.

Symmetry 2020, 12, x FOR PEER REVIEW 10 of 12

From, the following conclusions can be drawn. After introducing a data compression
method inside the SSD, the write amplification level of the SSD can be significantly reduced.
However, when testing the write amplification of compressed files, the compressed file is
already compressed on the host side, so the method proposed in this study is the same as that
of DFLT when writing amplification of compressed files.

3.2. Read and Write Latency Test

In this test, we will perform DFTL and this study on page read and write performance.
The selected test data is shown in Table 3.

Random read test method: write a page to flash memory every 1 second, which can be
any segment of data in any type of file to test burst write delay. The experimental results are
the average of the test results on each page.

Random write test method: Read data from any page in flash memory every one second.
In order to prevent the effects of caching and other factors, this test reads in the order of LPN
increasing by eight pages at a time.

Sequential read and write test method: As long as the flash memory is idle, a read (or
write) operation request is issued to the Flash, the address is random, and the amount of data
is an indefinite number of pages.

The test results are shown in Figure 7.

Figure 7. Read and write latency test results.

Since the data is already compressed at the time of writing, the data actually written into
the flash memory will decrease. SSD performance, especially random read and write
performance, has been greatly improved.

4. Conclusions

In order to reduce SSD data writing, reduce SSD write amplification, and improve SSD
reliability, this study designed a method of SSD data compression based on block partition.
The party divides the SSD into multiple zones, establishes a set of dictionaries for each zone,
and compresses or decompresses the data written to the zone. At the same time, due to the
zone division, the SSD does not need to perform full garbage collection. It only needs to
perform garbage collection according to the zone according to demand, thereby improving the
garbage collection efficiency. The following conclusions are obtained through simulation tests:
1. This method belongs to zone division based on flash memory. By dividing zones, you

can make full use of the temporal locality and spatial locality of data, and improve the
efficiency of data compression.

2. This method not only greatly improves the read and write performance compared with
the traditional SSD, but also reduces the write amplification of the SSD and improves the
reliability of the SSD.

Figure 7. Read and write latency test results.

Since the data is already compressed at the time of writing, the data actually written into the flash
memory will decrease. SSD performance, especially random read and write performance, has been
greatly improved.

Symmetry 2020, 12, 623 10 of 11

4. Conclusions

In order to reduce SSD data writing, reduce SSD write amplification, and improve SSD reliability,
this study designed a method of SSD data compression based on block partition. The party divides the
SSD into multiple zones, establishes a set of dictionaries for each zone, and compresses or decompresses
the data written to the zone. At the same time, due to the zone division, the SSD does not need to
perform full garbage collection. It only needs to perform garbage collection according to the zone
according to demand, thereby improving the garbage collection efficiency. The following conclusions
are obtained through simulation tests:

1. This method belongs to zone division based on flash memory. By dividing zones, you can
make full use of the temporal locality and spatial locality of data, and improve the efficiency of
data compression.

2. This method not only greatly improves the read and write performance compared with the
traditional SSD, but also reduces the write amplification of the SSD and improves the reliability
of the SSD.

Author Contributions: Conceptualization, X.Y. and Z.Z.; methodology, X.Y.; software, X.Y. and X.L.; validation,
X.Y. and X.L.; writing—original draft preparation, X.Y.; writing—review and editing, X.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Advance Research Project on Information System Equipment for the
PLA during the 13th five-year plan period (No. 31511030103).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Matsui, C.; Arakawa, A.; Takeuchi, K. Write Order-Based Garbage Collection Scheme for an LBA Scrambler
Integrated SSD. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 510–519. [CrossRef]

2. Chae, S.J.; Mativenga, R.; Paik, J.Y.; Attique, M.; Chung, T.S. DSFTL: An Efficient FTL for Flash Memory
Based Storage Systems. Electronics 2020, 9, 145. [CrossRef]

3. Cai, Y.; Ghose, S.; Haratsch, E.F.; Luo, Y.; Mutlu, O. Error Characterization, Mitigation, and Recovery in
Flash-Memory-Based Solid-State Drives. Proc. IEEE 2017, 105, 1666–1704. [CrossRef]

4. Lee, J.; Ganesh, K.; Lee, H.J.; Kim, Y. FeSSD: A Fast Encrypted SSD Employing On-Chip Access-Control
Memory. IEEE Comput. Archit. Lett. 2017, 16, 115–118. [CrossRef]

5. Kim, J.; Lee, E.; Choi, J.; Lee, D.; Noh, S.H. Chip-Level RAID with Flexible Stripe Size and Parity Placement
for Enhanced SSD Reliability. IEEE Trans. Comput. 2016, 65, 1116–1130. [CrossRef]

6. Lee, S.; Park, J.; Fleming, K.; Kim, J. Improving Performance and Lifetime of Solid-State Drives Using
Hardware-Accelerated Compression. IEEE Trans. Consum. Electron. 2011, 57, 1732–1739. [CrossRef]

7. Yuan-Hao, C.; Jen-Wei, H.; Tei-Wei, K. Endurance Enhancement of Flash-Memory Storage Systems:
An Efficient Static Wear Leveling Design. IEEE Des. Autom. Conf. 2007. [CrossRef]

8. Lee, J.; Kim, Y.; Shipman, G.M.; Oral, S.; Kim, J. Preemptible I/O Scheduling of Garbage Collection for Solid
State Drives. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 247–260. [CrossRef]

9. Hu, Y.; Jiang, H.; Feng, D.; Tian, L.; Luo, H.; Ren, C. Exploring an Exploiting the Multi-Level Parallelism
inside SSDs for Improved Performance and Endurance. IEEE Trans. Comput. 2012, 6, 1141–1155. [CrossRef]

10. Chen, L. Research on Data Compression for SSD Controller. Master’s Thesis, Northwestern Polytechnical
University, Xi’an, China, 2015.

11. Huffman, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 1952, 40, 1098–1102.
[CrossRef]

12. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23,
337–343. [CrossRef]

13. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory
1978, 24, 530–536. [CrossRef]

http://dx.doi.org/10.1109/TVLSI.2016.2594200
http://dx.doi.org/10.3390/electronics9010145
http://dx.doi.org/10.1109/JPROC.2017.2713127
http://dx.doi.org/10.1109/LCA.2017.2667639
http://dx.doi.org/10.1109/TC.2014.2375179
http://dx.doi.org/10.1109/TCE.2011.6131148
http://dx.doi.org/10.1145/1278480.1278533
http://dx.doi.org/10.1109/TCAD.2012.2227479
http://dx.doi.org/10.1109/TC.2012.60
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934

Symmetry 2020, 12, 623 11 of 11

14. Benini, L.; Bruni, D.; Macii, A.; Macii, E. Hardware-assisted data compression for energy minimization
in systems with embedded processors. In Proceedings of the 2002 Design, Automation and Test in
Europe Conference and Exhibition, Paris, France, 4–8 March 2002; Academic Press: Cambridge, MA, USA;
pp. 449–453.

15. Benveniste, C.D.; Franaszek, P.A.; Robinson, J.T. Cache-memory interfaces in compressed memory systems.
IEEE Trans. Comput. 2001, 50, 1106–1116. [CrossRef]

16. Wenshen, W.Z. LZW Algorithm Optimizing and the Application in Radar Data Compression. Comput. Digit.
Eng. 2009, 1, 125–136.

17. Tian, Y. The Research and Implementation of The FPGA-based Compression Algorithm. Master’s Thesis,
Xidian University, Xi’an, China, 2010.

18. Burrows, M.; Jerian, C.; Lampson, B.; Mann, T. On-Line Data Compression in a Log-Structured File System.
In Proceedings of the Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, Boston, MA, USA, 12–15 October 1992; Academic Press: Association for Computing
Machinery: Cambridge, MA, USA; pp. 2–9. [CrossRef]

19. Yim, K.S.; Bahn, H.; Koh, K. A flash compression layer for Smart Media card systems. IEEE Trans. Consum.
Electron. 2004, 50, 192–197. [CrossRef]

20. Kim, J.; Lee, C.; Lee, S. Deduplication in SSDs: Model and Quantitative Analysis. In Proceedings of the 28th
Symposium on Mass Storage Systems and Technologies, San Diego, CA, USA, 16–20 April 2012; Academic
Press: Cambridge, MA, USA. [CrossRef]

21. Shin, D.; Cho, K.; Bahn, H. File Type and Access Pattern Aware Buffer Cache Management for Rendering
Systems. Electronics 2010, 9, 164. [CrossRef]

22. Su, X.; Jin, P.; Xiang, X. Flash-DBSim: A simulation tool for evaluating Flash-based database algorithms.
In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information
Technology, Beijing, China, 8–11 August 2009; pp. 185–189.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/12.966489
http://dx.doi.org/10.1145/143371.143376
http://dx.doi.org/10.1109/TCE.2004.1277861
http://dx.doi.org/10.1109/MSST.2012.6232379
http://dx.doi.org/10.3390/electronics9010164
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	System Summary Architecture
	Data Compression
	Mapping Table Optimization
	Garbage Collection

	Results and Discussion
	Write Amplification
	Read and Write Latency Test

	Conclusions
	References

