Classical Variational Theory of the Cosmological Constant and Its Consistency with Quantum Prescription
Abstract
:1. Introduction: Current Status of Hamiltonian Theories
- Manifestly covariant, i.e., frame-symmetric. This means that the canonical variables, the Hamiltonian density and related functionals are necessarily set in 4-tensor form. As a consequence, the resulting Hamiltonian representation holds in arbitrary coordinate systems (i.e., GR-frames), which are mutually connected by local point transformations, i.e., diffeomorphisms of the type with and denoting two arbitrary GR-frames.
- Variational, namely, as shown below (and as typical of classical Hamiltonian systems occurring in classical mechanics) the new Hamiltonian representation is prescribed via a suitable synchronous path-integral variational principle, expressed as a line-integral performed along a geodesic trajectory in terms of an invariant proper-time parameter, and for this reason referred to here as Hamilton variational principle.
- Unconstrained, i.e., the same Hamiltonian system can always be expressed in terms of an arbitrary independent set of canonical variables.
- Gauge-dependent, namely, such that both the Hamiltonian density and the corresponding Lagrangian density display definite gauge properties. However, the corresponding Euler–Lagrange equations (i.e., both the Hamilton and Lagrange equations) can be shown to be generally gauge-symmetric, namely, independent of the gauge itself. Nevertheless, by adopting a suitably-constrained variational principle the same Euler–Lagrange equations can also be equivalently modified in a way that they become gauge-dependent, namely to include an explicit additive gauge term which depends linearly on the CC. Accordingly, the same CC acquires the connotation of a 4-scalar gauge function which at the classical level remains undetermined.
1.1. Background on the Cosmological Constant
1.2. Statement of the Problem and Goals
2. The Cosmological Constant in Asynchronous Variational Principles
3. Manifestly-Covariant Hamiltonian Structure of SF-GR
4. New Hamiltonian Representation: Constraint-Free Hamilton Variational Principle
5. Constrained Hamilton Variational Principle
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Landau, L.D.; Lifschitz, E.M. Field Theory, Theoretical Physics; Addison-Wesley: New York, NY, USA, 1957; Volume 2. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 2004. [Google Scholar]
- Dirac, P.A.M. Lectures on Quantum Mechanics; Belfer Graduate School of Sciences, Yeshiva University: New York, NY, USA, 1964. [Google Scholar]
- Cremaschini, C.; Tessarotto, M. Hamiltonian approach to GR—Part 2: Covariant theory of quantum gravity. Eur. Phys. J. C 2017, 77, 330. [Google Scholar] [CrossRef] [Green Version]
- Cremaschini, C.; Tessarotto, M. Quantum-wave equation and Heisenberg inequalities of covariant quantum gravity. Entropy 2017, 19, 339. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. In Cosmological Considerations in the General Theory of Relativity; Koniglich Preußische Akademie der Wissenschaften, Sitzungsberichte: Berlin, Gerany, 1917; Volume 142. [Google Scholar]
- Cremaschini, C.; Tessarotto, M. Space-time second-quantization effects and the quantum origin of cosmological constant in covariant quantum gravity. Symmetry 2018, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. General Relativity, 1st ed.; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Pirani, F.A.E.; Schild, A. On the Quantization of Einstein’s Gravitational Field Equations. Phys. Rev. 1950, 79, 986. [Google Scholar] [CrossRef]
- Bergmann, P.G.; Penfield, R.; Schiller, R.; Zatzkis, H. The Hamiltonian of the General Theory of Relativity with Electromagnetic Field. Phys. Rev. 1950, 80, 81. [Google Scholar] [CrossRef]
- Pirani, F.A.E.; Schild, A.; Skinner, R. Quantization of Einstein’s Gravitational Field Equations. Phys. Rev. 1952, 87, 452. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The theory of gravitation in Hamiltonian form. Proc. R. Soc. (London) 1958, A246, 333. [Google Scholar]
- Dirac, P.A.M. Fixation of coordinates in the Hamiltonian theory of gravitation. Phys. Rev. 1959, 114, 924. [Google Scholar] [CrossRef]
- Cremaschini, C.; Tessarotto, M. Hamiltonian approach to GR—Part 1: Covariant theory of classical gravity. Eur. Phys. J. C 2017, 77, 329. [Google Scholar] [CrossRef] [Green Version]
- Arnowitt, R.; Deser, S.; Misner, C.W. Gravitation: An Introduction to Current Research; Witten, L., Ed.; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Ashtekar, A. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 1986, 57, 2244. [Google Scholar] [CrossRef]
- Ashtekar, A. New Hamiltonian Formulation of General Relativity. Phys. Rev. D 1987, 36, 1587. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.; Smolin, L. Nonperturbative Quantum Geometries. Nucl. Phys. B 1988, 299, 295. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Knot Theory and Quantum Gravity. Phys. Rev. Lett. 1988, 61, 1155. [Google Scholar] [CrossRef] [PubMed]
- Rovelli, C.; Smolin, L. Loop Space Representation of Quantum General Relativity. Nucl. Phys. B 1990, 331, 80. [Google Scholar] [CrossRef]
- Rovelli, C. Ashtekar formulation of general relativity and loop space nonperturbative quantum gravity: A Report. Class. Quant. Grav. 1991, 8, 1613. [Google Scholar] [CrossRef]
- Hawking, S.W.; Hawking, I.S.W.; Israel, W. (Eds.) General Relativity. An Einstein Centenary Survey; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Sundermeyer, K. Constrained Dynamics; Lecture Notes in Physics; Springer: Berlin, Germany, 1982. [Google Scholar]
- Tessarotto, M.; Mond, M.; Batic, D. Hamiltonian Structure of the Schrödinger Classical Dynamical System. Found. Phys. 2016, 46, 1127. [Google Scholar] [CrossRef]
- Cremaschini, C.; Tessarotto, M. Synchronous Lagrangian variational principles in General Relativity. Eur. Phys. J. Plus 2015, 130, 123. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar]
- Finazzi, S.; Liberati, S.; Sindoni, L. Cosmological Constant: A Lesson from Bose-Einstein Condensates. Phys. Rev. Lett. 2012, 108, 071101. [Google Scholar] [CrossRef] [Green Version]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing general relativity with present and future astrophysical observations. Class. Quant. Grav. 2015, 32, 243001. [Google Scholar] [CrossRef]
- Ketov, S.V.; Watanabe, N. Cosmological constant in F(R) supergravity. Phys. Lett. B 2011, 705, 410. [Google Scholar] [CrossRef]
- Ketov, S.V.; Watanabe, N. Dark Energy in Modified Supergravity. Mod. Phys. Lett. A 2012, 27, 1250225. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.N.; Wellenzohn, M. Standard electroweak interactions in gravitational theory with chameleon field and torsion. Phys. Rev. D 2015, 91, 085025. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Ma, L.; Liu, M.; Wu, Y. Time variable cosmological constant of holographic origin with interaction in Brans-Dicke theory. Int. J. Mod. Phys. D 2012, 21, 1250005. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. The cosmological term as a source of mass. Class. Quant. Grav. 2002, 19, 725. [Google Scholar] [CrossRef] [Green Version]
- Azri, H.; Bounames, A. Cosmological consequences of a variable cosmological constant model. Int. J. Mod. Phys. D 2017, 26, 1750060. [Google Scholar] [CrossRef] [Green Version]
- Hrycyna, O.; Szydlowski, M. Brans–Dicke theory and the emergence of ΛCDM model. Phys. Rev. D 2013, 88, 064018. [Google Scholar] [CrossRef] [Green Version]
- Pakravan, J.; Takook, M.V. Thermodynamics of nonlinearly charged black holes in the Brans–Dicke modified gravity theory. J. Theor. Appl. Phys. 2018, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Messiah, A. Quantum Mechanics; Dover Pubs: New York, NY, USA, 1999. [Google Scholar]
- Rugh, S.; Zinkernagel, H. The Quantum Vacuum and the Cosmological Constant Problem. Stud. Hist. Philos. Mod. Phys. 2001, 33, 663. [Google Scholar] [CrossRef] [Green Version]
- Garriga, J.; Vilenkin, A. Solutions to the cosmological constant problems. Phys. Rev. D 2001, 64, 023517. [Google Scholar] [CrossRef] [Green Version]
- Husain, V.; Qureshi, B. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis. Phys. Rev. Lett. 2016, 116, 061302. [Google Scholar] [CrossRef] [Green Version]
- Tajron, J.; Timothé, P.; Wallet, J.C. Vacuum energy and the cosmological constant problem in κ-Poincaré invariant field theories. Phys. Rev. D 2019, 99, 045004. [Google Scholar]
- Crittenden, R.; Majerotto, E.; Piazza, F. Measuring Deviations from a Cosmological Constant: A Field-Space Parametrization. Phys. Rev. Lett. 2007, 98, 251301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, J.D.; Shaw, D.J. New Solution of the Cosmological Constant Problems. Phys. Rev. Lett. 2011, 106, 101302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Wang, P. Dark energy: Vacuum fluctuations, the effective phantom phase, and holography. Phys. Rev. D 2005, 71, 103504. [Google Scholar] [CrossRef] [Green Version]
- González, M.C.; Trodden, M. Field theories and fluids for an interacting dark sector. Phys. Rev. D 2018, 97, 043508. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef] [Green Version]
- Cicciarella, F.; Pieroni, M. Universality for quintessence. J. Cosmol. Astropart. Phys. 2017, 8, 010. [Google Scholar] [CrossRef] [Green Version]
- Asenjo, F.A.; Hojman, S.A. Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields. Found. Phys. 2017, 47, 887. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; Pietroni, M. Scalar-tensor gravity and quintessence. Phys. Rev. D 2000, 61, 023518. [Google Scholar] [CrossRef] [Green Version]
- Boisseau, B.; Esposito-Farèse, G.; Polarski, D.; Starobinsky, A.A. Reconstruction of a Scalar-Tensor Theory of Gravity in an Accelerating Universe. Phys. Rev. Lett. 2000, 85, 2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubakov, V.A. Relaxation of the cosmological constant at inflation? Phys. Rev. D 2000, 61, 061501. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R.; Mazumdar, A. Dynamical relaxation of the cosmological constant and matter creation in the Universe. J. Cosmol. Astropart. Phys. 2004, 8, 015. [Google Scholar] [CrossRef] [Green Version]
- Graham, P.W.; Kaplan, D.E.; Rajendran, S. Cosmological Relaxation of the Electroweak Scale. Phys. Rev. Lett. 2015, 115, 221801. [Google Scholar] [CrossRef] [Green Version]
- Alberte, L.; Creminelli, P.; Khmelnitsky, A.; Pirtskhalava, D.; Trincherini, E. Relaxing the cosmological constant: A proof of concept. J. High Energy Phys. 2016, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- David Marsh, M.C. Exacerbating the cosmological constant problem with interacting dark energy. Phys. Rev. Lett. 2017, 118, 011302. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G. Nobel Lecture: My path to the accelerating Universe. Rev. Mod. Phys. 2012, 84, 1165. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. The Supernova Cosmology Project. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astron. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, E.; Krajewski, T.; Rovelli, C.; Vidotto, F. Cosmological constant in spinfoam cosmology. Phys. Rev. D 2011, 83, 104015. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Odintsov, S.D.; Sebastiani, L.; Myrzakulov, R. Beyond-one-loop quantum gravity action yielding both inflation and late-time acceleration. Nuclear Phys. B 2017, 921, 411. [Google Scholar] [CrossRef]
- Garattini, R. Vacuum energy, variational methods, and the Casimir energy. Phys. Rev. D 1999, 59, 104019. [Google Scholar] [CrossRef] [Green Version]
- Garattini, R. Casimir energy and variational methods in AdS spacetime. Class. Quant. Grav. 2000, 17, 3335. [Google Scholar] [CrossRef] [Green Version]
- Garattini, R. Casimir energy and black hole pair creation in Schwarzschild-de Sitter spacetime. Class. Quant. Grav. 2001, 18, 571. [Google Scholar] [CrossRef] [Green Version]
- Garattini, R.; Nicolini, P. Noncommutative approach to the cosmological constant problem. Phys. Rev. D 2011, 83, 064021. [Google Scholar] [CrossRef] [Green Version]
- Marcolli, M.; Pierpaoli, E. Early universe models from noncommutative geometry. Adv. Theor. Math. Phys. 2010, 14, 1373. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X. Cosmological constant and noncommutative spacetime. Eur. Lett. 2007, 77, 19002. [Google Scholar]
- Guendelman, E.I.; Kaganovich, A.B. The Principle of Non-Gravitating Vacuum Energy and some of its consequences. Phys. Rev. D 1996, 53, 7020. [Google Scholar] [CrossRef] [Green Version]
- Guendelman, E.I. Scale Invariance, New Inflation and Decaying Λ-Terms. Mod. Phys. Lett. A 1999, 14, 1043. [Google Scholar] [CrossRef] [Green Version]
- Benisty, D.; Guendelman, E.I.; Nissimov, E.; Pacheva, S. Dynamically Generated Inflation from Non-Riemannian Volume Forms. Eur. Phys. J. C 2019, 79, 806. [Google Scholar] [CrossRef] [Green Version]
- De Donder, T. Théorie Invariantive Du Calcul des Variations; Gaultier-Villars & Cia.: Paris, France, 1930. [Google Scholar]
- Weyl, H. Geodesic fields in the calculus of variation for multiple integrals. Ann. Math. 1935, 36, 607. [Google Scholar] [CrossRef]
- Struckmeier, J.; Redelbach, A. Covariant Hamiltonian Field Theory. Int. J. Mod. Phys. E 2008, 17, 435. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: Reading, MA, USA, 1980. [Google Scholar]
- Tessarotto, M.; Cremaschini, C. Generalized Lagrangian path approach to manifestly-covariant quantum gravity theory. Entropy 2018, 20, 205. [Google Scholar] [CrossRef] [Green Version]
- Cremaschini, C.; Tessarotto, M. Quantum-gravity screening effect of the cosmological constant in the deSitter space-time. Symmetry 2020, 12, 531. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cremaschini, C.; Tessarotto, M. Classical Variational Theory of the Cosmological Constant and Its Consistency with Quantum Prescription. Symmetry 2020, 12, 633. https://doi.org/10.3390/sym12040633
Cremaschini C, Tessarotto M. Classical Variational Theory of the Cosmological Constant and Its Consistency with Quantum Prescription. Symmetry. 2020; 12(4):633. https://doi.org/10.3390/sym12040633
Chicago/Turabian StyleCremaschini, Claudio, and Massimo Tessarotto. 2020. "Classical Variational Theory of the Cosmological Constant and Its Consistency with Quantum Prescription" Symmetry 12, no. 4: 633. https://doi.org/10.3390/sym12040633
APA StyleCremaschini, C., & Tessarotto, M. (2020). Classical Variational Theory of the Cosmological Constant and Its Consistency with Quantum Prescription. Symmetry, 12(4), 633. https://doi.org/10.3390/sym12040633