Similarities of Flow and Heat Transfer around a Circular Cylinder
Abstract
:1. Introduction
2. Literature Review
3. Results and Discussion
3.1. Drag Force-Velocity Diagram
3.2. The Concept of Appropriate Drag Coefficient and Its Physical Meaning
3.3. General Drag Model over the Entire Range of Reynolds Numbers
3.4. Relationship between the Drag and Heat Transfer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | cross-sectional area, m2 |
Bm | constants |
CD | drag coefficient |
D | cylinder, sphere diameter, m |
DC | appropriate drag coefficient |
F | drag force, N |
Im, Km | modified Bessel function |
Nu | surface-average Nusselt number |
Pr | Prandtl number |
Re | Reynolds number, |
S | constant |
Sh | Sherwood number |
free stream velocity, m/s | |
Euler’s constant | |
coefficient is a function of the Reynolds number | |
μ | dynamic viscosity, N·s/m2 |
ν | kinematic viscosity, m2/s |
ρ | density, kg/m3 |
D | drag |
∞ | for fluid at free stream conditions |
References
- Floryan, D.; Van Buren, T.; Smits, A.J. Efficient cruising for swimming and flying animals is dictated by fluid drag. Proc. Natl. Acad. Sci. USA 2018, 115, 8116–8118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmentier, J.; Lejeune, S.; Maréchal, M.; Bourges, F.; Genty, D.; Terrapon, V.; Maréchal, J.-C.; Gilet, T. A drop does not fall in a straight line: A rationale for the width of stalagmites. Proc. R. Soc. A 2019, 475, 20190556. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.K.; Chueh, C.C. A numerical study on the ventilation coefficients of falling lobed hailstones. Atmos. Res. 2020, 234, 104737. [Google Scholar] [CrossRef]
- Churbanov, A.G.; Iliev, O.; Strizhov, V.F.; Vabishchevich, P.N. Numerical simulation of oxidation processes in a cross-flow around tube bundles. Appl. Math. Model. 2018, 59, 251–271. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Sun, L.; Yang, J.; Li, P.; Xi, Z.; Gao, L.; He, C. Experimental and numerical analyses on flow-induced vibration of a nuclear engineering test reactor internal. Nucl. Eng. Des. 2018, 340, 335–346. [Google Scholar] [CrossRef]
- Rashad, A.M.; Khan, W.A.; EL-Kabeir, S.M.; EL-Hakiem, A. Mixed convective flow of micropolar nanofluid across a horizontal cylinder in saturated porous medium. Appl. Sci. 2019, 9, 5241. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.P.; He, B.S.; Duan, Y.Y. Sphere drag and heat transfer. Sci. Rep. 2015, 5, 12304. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Z.; Wang, C.; Qi, M.; Ren, W. Particle image velocimetry analysis of plane flow field induced by drill string planetary motion based on superposition principle. J. Pet. Sci. Eng. 2018, 170, 121–129. [Google Scholar] [CrossRef]
- Yao, J.; Lou, W.; Shen, G.; Guo, Y.; Xing, Y. Influence of inflow turbulence on the flow characteristics around a circular cylinder. Appl. Sci. 2019, 9, 3595. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Pérez, J.M.; Yu, P.; Li, L.K. Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect. Aerosp. Sci. Technol. 2019, 92, 269–279. [Google Scholar] [CrossRef]
- Fan, Y.; Bao, Y.; Ling, C.; Chu, Y.; Tan, X.; Yang, S. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl. Therm. Eng. 2019, 155, 96–109. [Google Scholar] [CrossRef]
- Liang, H.; Duan, R.Q. Effect of lateral end plates on flow crossing a yawed circular cylinder. Appl. Sci. 2019, 9, 1590. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Wang, C.Y. Annular axisymmetric stagnation flow on a moving cylinder. Int. J. Eng. Sci. 2009, 47, 141–152. [Google Scholar] [CrossRef]
- Ticoş, C.M.; Ticoş, D.; Williams, J.D. Pushing microscopic matter in plasma with an electron beam. Plasma Phys. Control. Fusion 2019, 62, 025003. [Google Scholar] [CrossRef]
- Subiantoro, A.; Ooi, K.T. Investigation of electroosmotically induced pressure gradient in rectangular capillaries. Int. J. Eng. Sci. 2019, 145, 103172. [Google Scholar] [CrossRef]
- Alben, S.; Shelley, M.; Zhang, J. Drag reduction through self-similar bending of a flexible body. Nature 2002, 420, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, R.; Khalid, A.; Khan, I.; Baleanu, D.; Nisar, K.S. Numerical simulation of drag reduction on a square rod detached with two control rods at various gap spacing via lattice Boltzmann method. Symmetry 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Sarıoğlu, M.; Akansu, Y.E.; Yavuz, T. Control of flow around square cylinders at incidence by using a rod. AIAA J. 2015, 43, 1419–1426. [Google Scholar] [CrossRef]
- Samad, A.; Garrett, S.J. On the stability of boundary-layer flows over rotating spheroids. Int. J. Eng. Sci. 2014, 82, 28–45. [Google Scholar] [CrossRef]
- Goldstein, S. Modern Developments in Fluid Dynamics: An Account of Theory and Experiment Relating to Boundary Layers, Turbulent Motion and Wakes; Clarendon Press: Oxford, UK, 1938. [Google Scholar]
- Lin, Y.J.; Miau, J.J.; Tu, J.K.; Tsai, H.W. Nonstationary, three-dimensional aspects of flow around circular cylinder at critical Reynolds numbers. AIAA J. 2011, 49, 1857–1870. [Google Scholar] [CrossRef]
- Rai, M.M. Detached shear-layer instability and entrainment in the wake of a flat plate with turbulent separating boundary layers. J. Fluid Mech. 2015, 774, 5–36. [Google Scholar] [CrossRef]
- Wang, X.D.; Liu, Y.N.; Wang, L.Y.; Ding, L.; Hu, H. Numerical study of nacelle wind speed characteristics of a horizontal axis wind turbine under time-varying flow. Energies 2019, 12, 3993. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Chhabra, R.P. Combined effects of fluid shear-thinning and yield stress on heat transfer from an isothermal spheroid. Int. J. Heat Mass Transf. 2016, 93, 803–826. [Google Scholar] [CrossRef]
- Will, J.B.; Kruyt, N.P.; Venner, C.H. An experimental study of forced convective heat transfer from smooth, solid spheres. Int. J. Heat Mass Transf. 2017, 109, 1059–1067. [Google Scholar] [CrossRef]
- Ellendt, N.; Lumanglas, A.M.; Moqadam, S.I.; Mädler, L. A model for the drag and heat transfer of spheres in the laminar regime at high temperature differences. Int. J. Therm. Sci. 2018, 133, 98–105. [Google Scholar] [CrossRef]
- Williamson, C.H. Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 1996, 28, 477–539. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Wagner, D.J. Vortex shedding and transition frequencies associated with flow around a circular cylinder. AIAA J. 2003, 41, 542–544. [Google Scholar] [CrossRef]
- Jethani, Y.; Kumar, K.; Sameen, A.; Mathur, M. Local origin of mode-B secondary instability in the flow past a circular cylinder. Phys. Rev. Fluids 2018, 3, 103902. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Tang, T.; Li, J.; Yu, P. Effect of Prandtl number on mixed convective heat transfer from a porous cylinder in the steady flow regime. Entropy 2020, 22, 184. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tuo, H.; Li, L.; Zhao, Y.; Qin, H.; An, C. Dynamic simulation of installation of the subsea cluster manifold by drilling pipe in deep water based on OrcaFlex. J. Pet. Sci. Eng. 2018, 163, 67–78. [Google Scholar] [CrossRef]
- Heshamudin, N.S.; Katende, A.; Rashid, H.A.; Ismail, I.; Sagala, F.; Samsuri, A. Experimental investigation of the effect of drill pipe rotation on improving hole cleaning using water-based mud enriched with polypropylene beads in vertical and horizontal wellbores. J. Pet. Sci. Eng. 2019, 179, 1173–1185. [Google Scholar] [CrossRef]
- Agwu, O.E.; Akpabio, J.U.; Alabi, S.B.; Dosunmu, A. Settling velocity of drill cuttings in drilling fluids: A review of experimental, numerical simulations and artificial intelligence studies. Powder Technol. 2018, 339, 728–746. [Google Scholar] [CrossRef]
- Movahedi, H.; Shad, S.; Mokhtari-Hosseini, Z.B. Modeling and simulation of barite deposition in an annulus space of a well using CFD. J. Pet. Sci. Eng. 2018, 161, 476–496. [Google Scholar] [CrossRef]
- Leth-Espensen, A.; Li, T.; Glarborg, P.; Løvås, T.; Jensen, P.A. The influence of size and morphology on devolatilization of biomass particles. Fuel 2020, 264, 116755. [Google Scholar] [CrossRef]
- Kuethe, A.M.; Chow, C.Y. Foundations of Aerodynamics: Bases of Aerodynamic Design; John Wiley and Sons Inc.: New York, NY, USA, 1998. [Google Scholar]
- Li, D.; Li, S.; Xue, Y.; Yang, Y.; Su, W.; Xia, Z.; Shi, Y.; Lin, H.; Duan, H. The effect of slip distribution on flow past a circular cylinder. J. Fluids Struct. 2014, 51, 211–224. [Google Scholar] [CrossRef]
- Duan, Z.P.; He, B.S. Extended Reynolds analogy for slip and transition flow heat transfer in microchannels and nanochannels. Int. Commun. Heat Mass Transf. 2014, 56, 25–30. [Google Scholar] [CrossRef]
- Antonia, R.A.; Rajagopalan, S. Determination of drag of a circular cylinder. AIAA J. 1990, 28, 1833–1834. [Google Scholar] [CrossRef]
- Stokes, G.G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums; Pitt Press: Cambridge, UK, 1851. [Google Scholar]
- Oseen, C.W. Uber die Stokes’ sche Formel und Uber eine verwandte Aufgabe in der Hydrodynamik. Arkiv Mat. Astron. Och Fysik 1910, 6, 1. [Google Scholar]
- Lamb, H. XV. On the uniform motion of a sphere through a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1911, 21, 112–121. [Google Scholar] [CrossRef]
- Van Dyke, M. Perturbation Methods in Fluid Mechanics; Parabolic Press: Stanford, CA, USA, 1975. [Google Scholar]
- Tomotika, S.; Aoi, T. An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds numbers. Q. J. Mech. Appl. Math. 1951, 4, 401–406. [Google Scholar] [CrossRef]
- Proudman, I.; Pearson, J.R.A. Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 1957, 2, 237–262. [Google Scholar] [CrossRef]
- Kaplun, S. Low Reynolds number flow past a circular cylinder. J. Math. Mech. 1957, 595–603. [Google Scholar] [CrossRef]
- Tamada, K.O.; Miura, H.; Miyagi, T. Low-Reynolds-number flow past a cylindrical body. J. Fluid Mech. 1983, 132, 445–455. [Google Scholar] [CrossRef]
- Schlichting, H. Boundary-Layer Theory, 7th ed.; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Dryden, H.L.; Hill, G.C. Wind Pressure on Circular Cylinders and Chimneys; US Government Printing Office: Washington, DC, USA, 1930. [Google Scholar]
- Delany, N.K.; Sorensen, N.E. Low-speed drag of cylinders of various shapes. NACA Tech. 1953. [Google Scholar]
- Tritton, D.J. Experiments on the flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 1959, 6, 547–567. [Google Scholar] [CrossRef]
- Roshko, A. Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 1961, 10, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Achenbach, E. Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106. J. Fluid Mech. 1968, 34, 625–639. [Google Scholar] [CrossRef]
- Schewe, G. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 1983, 133, 265–285. [Google Scholar] [CrossRef]
- Achenbach, E. Influence of surface roughness on the cross-flow around a circular cylinder. J. Fluid Mech. 1971, 46, 321–335. [Google Scholar] [CrossRef]
- Drag Coefficient—Wikipedia. Available online: https://en.wikipedia.org/wiki/Drag_coefficient (accessed on 16 January 2020).
- Barati, R.; Neyshabouri, S.A.A.S. Comment on “Summary of frictional drag coefficient relationships for spheres: Evolving solution strategies applied to an old problem”. Chem. Eng. Sci. 2018, 181, 90–91. [Google Scholar] [CrossRef]
- White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Khan, W.A.; Culham, J.R.; Yovanovich, M.M. Fluid flow around and heat transfer from an infinite circular cylinder. Trans. ASME J. Heat Transf. 2005, 127, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Kramers, H. Heat transfer from spheres to flowing media. Physica 1946, 12, 61–80. [Google Scholar] [CrossRef]
- Fand, R.M. Heat transfer by forced convection from a cylinder to water in crossflow. Int. J. Heat Mass Transf. 1965, 8, 995–1010. [Google Scholar] [CrossRef]
- Siddiqui, O.K.; Shuja, S.Z.; Zubair, S.M. Assessment of thermo-fluid analogies for different flow configurations: The effect of Prandtl number, and laminar-to-turbulent flow regimes. Int. J. Therm. Sci. 2018, 129, 145–170. [Google Scholar] [CrossRef]
- Gupta, A.S.; Thodos, G. Direct analogy between mass and heat transfer to beds of spheres. AIChE J. 1963, 9, 751–754. [Google Scholar] [CrossRef]
- Friend, W.L.; Metzner, A.B. Turbulent heat transfer inside tubes and the analogy among heat, mass, and momentum transfer. AIChE J. 1958, 4, 393–402. [Google Scholar] [CrossRef]
- Hughmark, G.A. Momentum, heat, and mass transfer analogy for turbulent flow in circular pipes. Ind. Eng. Chem. Fundam. 1969, 8, 31–35. [Google Scholar] [CrossRef]
- Krantz, W.B.; Wasan, D.T. Heat, mass, and momentum transfer analogies for the fully developed turbulent flow of power law fluids in circular tubes. AIChE J. 1971, 17, 1360–1367. [Google Scholar] [CrossRef]
- Sureshkumar, R. Effects of polymer stresses on analogy between momentum and heat transfer in drag-reduced turbulent channel flow. Phys. Fluids 2018, 30, 035106. [Google Scholar]
- Dong, Q.; Wang, C.; Xiong, C.; Li, X.; Wang, H.; Ling, T. Investigation on the cooling and evaporation behavior of Semi-Flexible Water Retaining Pavement based on laboratory test and thermal-mass coupling analysis. Materials 2019, 12, 2546. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.S.; Lee, J.B.; Seo, J.H.; Park, H.S. Characteristics for flow and heat transfer around a circular cylinder near a moving wall in wide range of low Reynolds number. Int. J. Heat Mass Transf. 2010, 53, 5111–5120. [Google Scholar] [CrossRef]
- Whitaker, S. Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J. 1972, 18, 361–371. [Google Scholar] [CrossRef]
- Sanitjai, S.; Goldstein, R.J. Heat transfer from a circular cylinder to mixtures of water and ethylene glycol. Int. J. Heat Mass Transf. 2004, 47, 4785–4794. [Google Scholar] [CrossRef]
- Perkins, H.C., Jr.; Leppert, G. Forced convection heat transfer from a uniformly heated cylinder. Trans. ASME J. Heat Transf. 1962, 84, 257–261. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Duan, Z. Similarities of Flow and Heat Transfer around a Circular Cylinder. Symmetry 2020, 12, 658. https://doi.org/10.3390/sym12040658
Ma H, Duan Z. Similarities of Flow and Heat Transfer around a Circular Cylinder. Symmetry. 2020; 12(4):658. https://doi.org/10.3390/sym12040658
Chicago/Turabian StyleMa, Hao, and Zhipeng Duan. 2020. "Similarities of Flow and Heat Transfer around a Circular Cylinder" Symmetry 12, no. 4: 658. https://doi.org/10.3390/sym12040658
APA StyleMa, H., & Duan, Z. (2020). Similarities of Flow and Heat Transfer around a Circular Cylinder. Symmetry, 12(4), 658. https://doi.org/10.3390/sym12040658