Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness
Abstract
:1. Introduction
2. Linear (LV) and Quasi-Linear (QLV) Viscoelasticity of Materials
2.1. Mathematical Modeling of LV
2.2. Mathematical Modeling of QLV
3. Fractional Hereditary Materials (FHM) and Quasi-Fractional Hereditary Materials (Q-FHM)
3.1. Mathematical Modeling of FHM
3.2. Mathematical Modeling of Q-FHM
4. Exact Mechanical Description of Fractional-Order Quasi-Linear Hereditariness
4.1. The Rheological Model of Fractional-Order Quasi-Linear Hereditary Materials (FQHM)
4.2. Numerical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997; pp. 291–348. [Google Scholar]
- Bagley, R.L.; Torvik, P.J. A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Nutting, P.G. A new general law of deformation. J. Frankl. Inst. 1921, 191, 679–685. [Google Scholar] [CrossRef]
- Gemant, A. A Method of Analyzing Experimental Results Obtained from Elasto-Viscous Bodies. Physics 1936, 7, 311–317. [Google Scholar] [CrossRef]
- Schmidt, A.; Gaul, L. FE implementation of viscoelastic constitutive stress-strain relations involving fractional time derivatives. Const. Model. Rubber 2001, 2, 79–92. [Google Scholar]
- Scott Blair, G.W.; Caffyn, J.E. VI. An application of the theory of quasi-properties to the treatment of anomalous strain-stress relations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1949, 40, 80–94. [Google Scholar] [CrossRef]
- Shawn, M.T.; Macknight, W.J. Itroduction to Polymer Viscoelasticity; Wiley-InterScience: Hoboken, NJ, USA, 2005. [Google Scholar]
- Schiessel, H.; Metzeler, R.; Bluemen, A.; Nonnenmacher, T.F. Generalized Viscoelastic Models: Their Fractional Equations with Solutions. J. Phys. A Math. Gen. 1995, 28, 6567–6584. [Google Scholar] [CrossRef]
- Deseri, L.; Di Paola, M.; Zingales, M.; Pollaci, P. Power-law hereditariness of hierarchical fractal bones. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 1338–1360. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, M.; Pinnola, F.P.; Zingales, M. A discrete mechanical model of fractional hereditary materials. Meccanica 2013, 48, 1573–1586. [Google Scholar] [CrossRef] [Green Version]
- Schiessel, H.; Bluemen, A. Hierarchical Analogues to Fractional Relaxation Equations. J. Phys. A Math. Gen. 1993, 6, 5057–5069. [Google Scholar] [CrossRef]
- Cottone, G.; Di Paola, M.; Zingales, M. Elastic waves propagation in 1D fractional non-local continuum. Phys. E Low-Dimens. Syst. Nanostructures 2009, 42, 95–103. [Google Scholar] [CrossRef]
- Cottone, G.; Di Paola, M.; Zingales, M. Fractional mechanical model for the dynamics of non-local continuum. In Advances in Numerical Methods; Springer: Boston, MA, USA, 2009; pp. 389–423. [Google Scholar]
- Di Paola, M.; Zingales, M. Fractional differential calculus for 3D mechanically based non-local elasticity. Int. J. Multiscale Comput. Eng. 2011, 9, 579–597. [Google Scholar] [CrossRef]
- Mongioví, M.S.; Zingales, M. A non-local model of thermal energy transport: The fractional temperature equation. Int. J. Heat Mass Transf. 2013, 67, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Alotta, G.; Di Paola, M.; Pirrotta, A. Fractional Tajimi–Kanai model for simulating earthquake ground motion. Bull. Earthq. Eng. 2014, 12, 2495–2506. [Google Scholar] [CrossRef]
- Alotta, G.; Barrera, O.; Pegg, E.C. Viscoelastic material models for more accurate polyethylene wear estimation. J. Strain Anal. Eng. Des. 2018, 53, 302–312. [Google Scholar] [CrossRef]
- Di Mino, G.; Airey, G.; Di Paola, M.; Pinnola, F.P.; D’Angelo, G.; Lo Presti, D. Linear and non linear fractional hereditary constitutive laws of asphalt mixture. J. Civ. Eng. Manag. 2013. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Kato, A.; Watanabe, H.; Hoshi, T.; Kawamura, K.; Fujie, M.G. Modeling of viscoelastic and nonlinear material properties of liver tissue using fractional calculations. J. Biomech. Sci. Eng. 2012, 7, 117–187. [Google Scholar] [CrossRef] [Green Version]
- Purslow, P.P.; Wess, T.J.; Hukins, D.W. Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J. Exp. Biol. 1998, 201, 135–142. [Google Scholar]
- Bologna, E.; Graziano, F.; Deseri, L.; Zingales, M. Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery. Int. J. Non-Linear Mech. 2019, 115, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Dayal, K.; Bhattacharya, K. Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 2006, 54, 1811–1842. [Google Scholar] [CrossRef] [Green Version]
- Gurtin, M.E.; Hrusa, W.J. On energies for nonlinear viscoelastic materials of single-integral type. Q. Appl. Math. 1988, 46, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Suckochi, C. A Quasi-Linear Viscoelastic Rehological Model for Thermoplastics and Resins. J. Theor. Appl. Mech. 2013, 51, 117–129. [Google Scholar]
- Pipkin, A.C.; Rogers, T.G. A non-linear integral representation for viscoelastic behaviour. J. Mech. Phys. Solids 1968, 16, 59–72. [Google Scholar] [CrossRef]
- Fung, Y.C.; Skalak, R. Biomechanics: Mechanical Properties of Living Tissues; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Provenzano, P.; Lakes, R.; Keenan, T.; Vanderby, R. Nonlinear Ligament Viscoelasticity. Ann. Biomed. Eng. 2001, 29, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Vena, P.; Gastaldi, D.; Contro, R. A Constituent-Based Model for the Nonlinear Viscoelastic Behavior of Ligaments. J. Biomech. Eng. 2005, 128, 449–457. [Google Scholar] [CrossRef]
- Abramowitch, S.D.; Zhang, X.; Curran, M.; Kilger, R. A Comparison of the Quasi-static Mechanical and Nonlinear Viscoelastic Properties of the Human Semitendinosus and Gracilis Tendons. Clin. Biomech. 2010, 25, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Abramowitch, S.D.; Steven, D.; Woo, S.L.-Y. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J. Biomech. Eng. 2004, 126, 92–97. [Google Scholar] [CrossRef]
- Findley, W.N.; Davis, F.A. Creep and Relaxation of Nonlinear Viscoelastic Materials; Courier Corporation: Chelmsford, MA, USA, 2013. [Google Scholar]
- Drapaca, C.S.; Sivaloganathan, S.; Tenti, G. Nonlinear constitutive laws in viscoelasticity. Math. Mech. Solids 2007, 12, 475–501. [Google Scholar] [CrossRef]
- Muliana, A.; Rajagopal, K.R.; Wineman, A.S. A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta Mech. 2013, 224, 2169–2183. [Google Scholar] [CrossRef]
- Pinnola, F.P.; Zavarise, G.; Del Prete, A.; Franchi, R. On the appearance of fractional operators in non-linear stress–strain relation of metals. Int. J. Non-Linear Mech. 2018, 105, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bologna, E.; Lopomo, N.; Marchiori, G.; Zingales, M. A non-linear stochastic approach of ligaments and tendons fractional-order hereditariness. Probabilistic Eng. Mech. 2020, 60, 103034. [Google Scholar] [CrossRef]
- Bologna, E.; Di Paola, M.; Dayal, K.; Deseri, L.; Zingales, M. Fractional Order Non-Linear Hereditariness of Tendons and Ligaments of the Human Knee. 2020; in press. [Google Scholar]
- Grzesikiewic, W.; Wakulicz, A.; Zbiciak, A. Non-linear problems of fractional calculus in modeling of mechanical systems. Int. J. Mech. Sci. 2013, 70, 90–98. [Google Scholar] [CrossRef]
- He, X.Q.; Rafiee, M.; Mareishia, S.; Liewa, K.M. Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Compos. Struct. 2015, 131, 1111–1123. [Google Scholar] [CrossRef]
- Nutting, P.G. Deformation in relation to time, pressure and temperature. J. Frankl. Inst. 1946, 242, 449–458. [Google Scholar] [CrossRef]
- Volterra, V.; Peres, J. Théorie générale des fonctionnelles; Gauthier-Villars: Paris, France, 1936. [Google Scholar]
- Park, S.W.; Schapery, R.A. Methods of interconversion between linear viscoelastic material functions. Part I—A numerical method based on Prony series. Int. J. Solids Struct. 1999, 36, 1653–1675. [Google Scholar] [CrossRef]
- Lakes, R.S.; Vanderby, R. Interrelation of creep and relaxation: A modeling approach for ligaments. J. Biomech. Eng. 1999, 121, 612–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paola, M.D.; Zingales, M. Exact mechanical models of fractional hereditary materials. J. Rheol. 2012, 56, 983–1004. [Google Scholar] [CrossRef] [Green Version]
- Bagley, R.L.; Torvik, J. Fractional calculus—A different approach to the analysis of viscoelastically damped structures. AIAA J. 1983, 21, 741–748. [Google Scholar] [CrossRef]
- Ronny, B.; Dal, H.; Kaliske, M. An extended tube model for thermo-viscoelasticity of rubberlike materials: Parameter identification and examples. PAMM 2011, 11, 353–354. [Google Scholar]
- Zingales, M. An exact thermodynamical model of power-law temperature time scaling. Ann. Phys. 2016, 365, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Alaimo, G.; Zingales, M. Laminar flow through fractal porous materials: The fractional-order transport equation. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Deseri, L.; Zingales, M. A mechanical picture of fractional-order Darcy equation. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 940–949. [Google Scholar] [CrossRef] [Green Version]
- Zingales, M. Wave propagation in 1D elastic solids in presence of long-range central interactions. J. Sound Vib. 2011, 330, 3973–3989. [Google Scholar] [CrossRef]
- Di Paola, M.; Zingales, M. Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 2008, 45, 5642–5659. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, M.; Pinnola, F.P.; Zingales, M. Fractional differential equations and related exact mechanical models. Comput. Math. Appl. 2013, 66, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Alotta, G.; Di Paola, M.; Failla, G.; Pinnola, F.P. On the dynamics of non-local fractional viscoelastic beams under stochastic agencies. Compos. Part B Eng. 2018, 137, 102–110. [Google Scholar] [CrossRef]
- Alotta, G.; Failla, G.; Zingales, M. Finite-element formulation of a nonlocal hereditary fractional-order Timoshenko beam. J. Eng. Mech. 2017, 143, D4015001. [Google Scholar] [CrossRef]
- Bologna, E.; Zingales, M. Stability analysis of Beck’s column over a fractional-order hereditary foundation. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180315. [Google Scholar] [CrossRef] [Green Version]
- Bologna, E.; Paola, M.D.; Zingales, M. Routh-Hurwitz method for the analysis of Beck’s Column over fractional-order foundations. In Proceedings of the Aimeta 2019: XXIV Congresso-Associazione Italiana Di Meccanica Teorica E Applicata, Rome, Italy, 15–19 September 2019. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Fabrizio, M.; Morro, A. Thermodynamic restrictions on relaxation functions in linear viscoelasticity. Mech. Res. Commun. 1985, 12, 101–105. [Google Scholar] [CrossRef]
- Fabrizio, M.; Morro, A. Viscoelastic relaxation functions compatible with thermodynamics. J. Elast. 1988, 19, 63–75. [Google Scholar] [CrossRef]
- Fabrizio, M.; Morro, A. Mathematical Problems in Linear Viscoelasticity; SIAM Studies in Applied and Numerical Mathematics; SIAM: Philadelphia, PA, USA, 1992; Volume 12. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotta, G.; Bologna, E.; Zingales, M. Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness. Symmetry 2020, 12, 673. https://doi.org/10.3390/sym12040673
Alotta G, Bologna E, Zingales M. Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness. Symmetry. 2020; 12(4):673. https://doi.org/10.3390/sym12040673
Chicago/Turabian StyleAlotta, Gioacchino, Emanuela Bologna, and Massimiliano Zingales. 2020. "Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness" Symmetry 12, no. 4: 673. https://doi.org/10.3390/sym12040673
APA StyleAlotta, G., Bologna, E., & Zingales, M. (2020). Exact Mechanical Hierarchy of Non-Linear Fractional-Order Hereditariness. Symmetry, 12(4), 673. https://doi.org/10.3390/sym12040673