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Abstract: In this paper, we propose two new two-dimensional chaotic maps with closed curve fixed
points. The chaotic behavior of the two maps is analyzed by the 0-1 test, and explored numerically
using Lyapunov exponents and bifurcation diagrams. It has been found that chaos exists in both
fractional maps. In addition, result shows that the proposed fractional maps shows the property of
coexisting attractors.
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1. Introduction

In the nineteenth century, fractional calculus had its origin in the generalization of integer order
differentiation and integration to non-integer order (fractional order) ones [1-5]. The first treatise
concerning fractional calculus was conducted by K.B Oldham and J. Spanier (1974) [6]. In the early
stages of fractional calculus, the focus was on continuous time fractional dynamical systems [7]. A few
decades later, interest shifted to discrete fractional calculus. Diaz and Olser (1974) gave the first
definition of a discrete fractional operator. It was introduced by discretization of the continuous time
fractional operator, and this led to representations by recurrence relations. The first definition of
fractional order operators was pioneered by Miler and Ross [8]. Following these definitions, and in
a series of papers, Atici and Eloe [1,9-11] defined and proved many properties of these operators.
Balanu et al. provided significant contributions for the subject concerning stability, and chaos of some
discrete fractional systems [4,12-14]. Discrete fractional calculus is a sub-discipline of dynamical
system that has been of significant importance since its first emergence. It first appeared in relation
to real-world phenomena, and in a broad range of disciplines such as biology, economics, physics,
engineering [15], nonlinear optics [16], finance [17], demography [18], medicine [19], and so on. It has
become an interesting field of research in the last decades.

The concept of chaos in dynamical systems has attracted researchers due to the unpredictability
of the dynamic behaviors of dynamical systems. This means that two systems may start very close,
but they move very far for apart. In fact, Li and York [20] were the first researchers who gave a
mathematical definition of chaos. More studies and investigations for a variety of chaotic maps have
been presented in [21]. In addition, many considerable results have been proposed in [14,21-24]. Those
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maps possess sensitivity to initial conditions and random-like trajectories. One of the characteristics
of chaos is the existence of at least one positive Lyapunov exponent. Another efficient method for
detecting chaos is the 0-1 test. That is, if the output is zero, this means that the dynamic is regular; it is
chaotic if the test yields one [25]. The fact that research in discrete fractional chaotic systems is still in
development [26-34], and very few difference equations have been considered, was the motivation of
our work.

The aim of this paper is to study two new chaotic maps with specific types of fixed points by
the application of a new test approach (0-1 test) in order to find out whether or not these systems
are chaotic. The dynamic behaviors of the considered chaotic systems are investigated numerically
using bifurcation diagrams and Lyapunov exponents. These systems possess an interesting property:
symmetry. The rest of the paper is organized as follows. In Section 2, we present certain essential
definitions and results from difference fractional calculus. Then, chaotic dynamics of the two systems
will be discussed in Section 3. Section 4 is about the chaotic analysis based on the 0-1 test approach.
Finally, we conclude with a summary.

2. Preliminaries

We give in this section some basic definitions, and one major theorem from discrete fractional
calculus. Let X : N, - R, with N, = {a,a+1,a+2,...}, the general nt" order difference can be
written as:

n
A'x(t) = A"IX(t+1) — A"TIX(t) = Y CH(—=1)fX(t +n — k). 1)
k=0
Prolonging this concept for fractional-order difference, the fractional sum of order v, using the
fact that t() is defined by () = 1”5(4?{1)0) , is given in the following definition.

Definition 1 ([35]). The vth fractional sum of X can be defined as:

AFUX(D) = s -0 () VXG), @

=a

where v ¢ N, with v > 0 is a fractional order, t € Ngpy—p, n=[v]+ 1, 0(t) =t+ 1.
Definition 2 ([35]). The v-Caputo-like difference, denoted by CAYX(t), of X (t) is defined as:
1 t—(n—v)
CAYX () = A, "TYATX () = O Y. (t—o(s)" VAT (). ®)

s=a

Theorem 1 ([35]). The corresponding discrete integral equation of the delta fractional difference equation:

{CAgu(t) = ft+v—1u(t+v—1)) @
CAfu(a) =uy, n=[]+1, k=0,...,n—1,
is given by:
W) =)+ iy T @) oo La o), (€ )
where:
up(t) = ”f MAku(a). (6)
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3. Fractional-Order Maps with Closed Curve Fixed Points

In this section, we study the chaotic behavior of two new two-dimensional fractional systems
with closed curve fixed points. In [36], a new class of two-dimensional chaotic maps with different
types of closed curve fixed points are constructed. Examples of these systems are given by:

{xk+1 = X+ af (Xp, Vi), @)

Vi1 = Vi + f (e yk) (Bxk + vy + 6x2 + ey2 + exyy + 6),

where xy, vy are system states, {«,B,7,0,€,¢, 0} are system parameters and f(x,y) is a nonlinear
function which can be written as

flay) = G+ () =1, ®)

wherem > 0,n > 0,r > 0, and p is an integer order such that p < 2. The authors showed that the fixed
points of these systems are nonhyperbolic for different values of m, n, p, and r, and they presented
the phase-basin portrait of the chaotic attractors. Also, they explored them numerically by Lyapunov
exponents and Kaplan—Yorke dimension.

3.1. Fractional-Order Map with Square-Shaped Fixed Points

Here we consider the system (7) whenm =1,n =1, p = 12, and r = 1. In this case, the map is
described by the following equation:

{xk+1 =x —a(xZ +y? - 1), ©)

Vet =Yk + Bxyk(x? +yi2 — 1),

where « and f§ are bifurcation parameters. Based on the above equation, we construct a new
fractional-order map by introducing the v-Caputo like difference operator as follows:

{CAzlx(t) —a(x(t—140v1) +y2(t—1+0v1) - 1),
CAPy(t) =pBx(t—1+v)y(t—1+0v2)(x2(t—14v2) +y2(t—1+1v2) — 1),

(10)

where v = (v1, v) is the fractional order. The vector field F(x, y) associated to the system (10) possesses
a symmetry with respect to the x-axis. That is, if we let G(x,y) = (x, —y), then F(G(x,y)) = G(F(x,y)).
This property will be reflected in the fixed points and attractors of system (10). The fixed points of the
new fractional-order system (10) are obtained by taking €A, x = CA}?y = 0, as follows:

_ 12 12 1 =0,
a(x'*+y ) 1)
Bry(x12 +y2—1) =o.
From Equation (11) we must have
2 py2—1=0. (12)

Consequently, the system (10) has square-shaped fixed points. By choosing suitable system
parameters the fractional-order map (10), we can generate hidden attractors with square-shaped
fixed points.
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In order to further investigate the dynamical behavior of the new fractional-order map (10),
we need to determine the corresponding numerical formula. Using Theorem 1, the equivalent discrete
integral equation of the fractional-order map (10) can be written as:

t—vq
x(t) = x(a) — r(il) Y, (t—s-— D@D (x2(s =14 0vy) +y2(s —1+0v1) — 1),
s=a+1—vq
& (13)
Y =y@+rly L (t-s-1

s=a+1—v2
x(s—=1+wv)y(s—1+ vz)(xlz(s —14wvy) + ylz(s —14wv)—1),

in which t € N,11_, and a is the starting point. Replacing the discrete kernel function %3}))(071) by
I(t—s)

T (=5 —oFT) and assuming that a = 0, the above equation is converted to:

x(n) = x(0) wzr’; i) (12( 1) 4 12— 1) ~ 1),
(14)
" ””2) x(j—-1y(G—-1) (2 -1)+y2(G-1))).

where x(0) and y(0) are the initial condition. This numerical formula will allow us to examine the
sensitivity of the fractional-order map throughout the next subsection.

Bifurcation Diagrams and Largest Lyapunov Exponents

In this section, we will study the dynamical behavior of the novel fractional-order map (10)
for some specific parameters and initial values. Figure 1 shows the chaotic attractor along with its
bifurcation plots with respect to « and j, and the time evolution of states x for v = 1. The chaotic
attractor of the fractional-order map (10) under system parameters « = 0.2, f = 2.4 and initial value
(x(0),y(0)) = (0.26, —0.14) is shown in Figure 1a, where the black points represent the square-shaped
fixed points. Figure 1b gives the time evolutions of the variables x and y which illustrates that the
system (10) has two symmetrical states. Figure 1c,d shows the bifurcation plots produced when fixing
one of the parameters and varying the second. These bifurcation diagrams are constructed for 50 initial
points. We see that the maximum chaotic range is observed for a« ~ 0.35 and 8 ~ 2.455. Also, we notice
that the range of B for which we obtain a chaotic behavior is very short. Hence, it is more interesting to
visualize the effect of « on the map’s dynamics.
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Figure 1. Numerical analysis of the fractional-order map (10) for v = 1. (a) Square-shaped fixed
point of the fractional-order map are illustrated with black dots and the hidden chaotic attractor in
red. (b) Evolution states of the fractional-order map (10) of x and y. (c) Bifurcation diagram of the
fractional-order map (10) versus « for f = 2.4. (d) Bifurcation diagram of the fractional-order map (10)
versus f3 for a = 0.2.

To investigate the sensitivity of the fractional-order map (10) with respect to the bifurcation
parameter «, we fix § = 2.4 and we vary « in the range [0, 0.35]. The bifurcation diagrams and largest
Lyapunov exponents under the fractional order vy = v, = 0.95 and v; = v, = 0.9 are given in
Figure 2. By comparing Figure 2a,b with Figure 2c,d, we find that the interval where chaos exists
shrinks as v decreases. In particular, when the value of v = (v, v3) changes from 0.95 to 0.9, the areas
of chaotic motion shrinks from [1.022,1.116] U [1.164, 1.216] to [0.2405,0.2429] U [0.3126,0.3423]. Also,
the transient states region increases.
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Figure 2. (a) Bifurcation diagram of the fractional-order map (10) versus a for v; = v, = 0.95.

(b) Largest Lyapunov exponents corresponding to (a). (c) Bifurcation diagram of the fractional-order
map (10) versus a for v = vy = 0.9. (d) Largest Lyapunov exponents corresponding to (c).

Now, reset the parameter § = 2.2 and keep the parameter « as « = 0.2, Figure 3 shows the
bifurcation diagram of the fractional-order map (10) with the decreasing of v, where vy = 1. When v,
decreases from 1, the fractional-order map (10) presents a periodic state until it enters into chaos at
0.9035. It is noticed that the periodic state of the integer order map becomes chaotic as vy decreases.
Another interesting dynamic is observed if we increase the value of a to 0.23 and decrease the value of
B to 0.5. In this case, two chaotic attractors are observed in the fractional-order map with respect to the
fractional orders v; = 1 and v = 0.01, as shown in Figure 4, where the red color attractor is yielded
from initial value (0.1,0.3) and blue color attractor is yielded from initial value (0.1, —0.3). Therefore,
we conclude that the fractional order improves the complexity of the chaotic motion of the original
system (7) with square-shaped fixed points.
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Figure 3. Bifurcation diagram for system (10) in the x — v, plane for « = 0.2 and g = 2.2.
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Figure 4. Coexisting chaotic attractor of the fractional-order map (16) fora = 0.2 and = 2.2.

3.2. A New Fractional Map with Rectangle-Shaped Fixed Points

Now, we consider system (7) whenm = 5,n =1, p = 12, r = 1. In this case we have the
following system:

{xk+l =x+ (F)P+y - 1), (15)

Vi1 =y +ay(() 2 +y2 - 1),

where x and y are the system variables. Using the same argument as with the previous system,
we obtain the following fractional-order map:

12
Cagx(t) = () T4y 2 (=14 0r) - 1,

(16)
CARY(H) = ay(t — 1+ vp) (U212 4 y12(p 1 4 0y) — 1),
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where v € (0,1) is the fractional order. The fixed points of the new fractional-order map (16) are
obtained by solving the following system of equation:

(H)P+y2 -1 =0, )
ay(($)?+y2-1) =0

Thus, we must have

(2)2+y2-1=0. (18)

Therefore, the novel fractional-order map (16) has rectangle-shaped fixed points.
To study the dynamic behavior of the novel fractional-order map (16), we define the numerical
formula as:

5T (njtv x(j—1)\ 12 i—1)\ 12
) = 2(0) + iy LA ((92) o+ (2) " 1),
]:

n i . - 12 .
y(n) =y(0) + F(‘fzz) 1;"((,1,]]11]12)) (y(] -1 ((X(]5 U) +y2(G-1) - 1)) .

(19)

where x(0) and y(0) are the initial conditions.

Bifurcation and Largest Lyapunov Exponents

In this section we investigate the dynamic behavior of the new fractional-order map (16) using
numerical simulations. When o« = 2.2 the fractional-order map (16) shows the hidden chaotic attractor
as depicted in Figure 5. It can be shown that it also has a symmetry with respect to the x-axis. Figure 6
shows the bifurcation diagrams and largest Lyapunov exponents of the fractional-order map (16).
According to Figure 6, it is very clear that the dynamic behavior of system (16) goes from periodic
state to chaotic state with the increase of the control parameter «. Obviously, as the fractional order
v = (v, vp) decreases from 0.998 to 0.995, the bifurcation diagram gradually shrinks to the left.

1

0.8

0.6

0.4r

Figure 5. Chaotic attractor of the fractional-order map (16) for & = 2.2.
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Figure 6. (a) Bifurcation diagram of the fractional-order map (16) versus « for vy = v, = 0.988.

(b) Largest Lyapunov exponents corresponding to (a). (c) Bifurcation diagram of the fractional-order

map (16) versus a for vy = vy = 0.995. (d) Largest Lyapunov exponents corresponding to (c).

3.3. 0—1 Test

In order to further confirm the influence of the fractional order v = (v1,v;) on the properties of
the fractional-order maps, we apply a new approach proposed by Gottwald and Melbourne called
the 0-1 test method [25]. Unlike other methods, the test does not involve phase space reconstruction,
and we can applied it directly to the series data x(n). The output is either 0 or 1 depending on whether
the nature of the system is regular or chaotic. Naturally, we do not obtain the values 1 and 0 exactly,

so the test remains valid when K is close enough to these values.

Here, we applied the 0-1 test method directly to the state x(n) that was obtained from the
numerical formulas (14) and (19), respectively. For an arbitrary constant ¢ in (0, 7r), we calculate the

translation variables

pe(n) = Z

n
x(
=1

]

n

j)cos(jc), gec(n) = Z;x(j) sin(jc), n=1,2,.,N.
j=

(20)
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The dynamics of the translation components (p., qc) provide a visual test. Basically, if the dynamic
is regular then the behavior of trajectories in the (p. — g.) plane is bounded, whereas if the dynamic is
chaotic then the (p. — q) trajectories depict Brownian like behavior. In order to examine the diffusive
behavior of p. and gq., we define the mean square displacement as:

1N

Melm) = fim, 3 ((pei+m) = e + @eli+m) —ac)P) L < 15, @)

with the asymptotic growth rate of
K. — lim 28 Mc01)

n—s00 ]og n (22)

In practice, the final result K can be determined numerically by computing the median of K..
When K =1, the behavior is classified as chaotic and when K is close to 0 the behavior is regular.

In Figure 7, we present the 0-1 test of the fractional-order map (10), whenv = 0.95and « = 0.2. Itis
clear that the output K converges to the values 1, which implies that system (10) is chaotic. Moreover,
when 0.98 < v < 0.998 the fractional-order map (10) has a transient state as shown in Figure 8. As it
can be seen that the state first converges into a bounded attractor and then it becomes divergent.

Similarly, for the second fractional-order map (16), we use Equation (19). The 0-1 test method
is applied for v = 0.998, and v = 0.995, and the resulting diagrams are plotted in Figure 9. It shows
that the asymptotic growth rate K approaches 1 as a increases, which confirms very well the results
in Figure 6.

0.9
0.8
0.7
i 0.6
0.5
0.4
0.3

0.2

0.1 1 1 1 1 1 1 1 1 1 1 1

Figure 7. The 0-1 test method of the fractional-order map (10).
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Figure 8. Transient state of the fractional-order map for v = 0.98 (a) when n = 570, (b) when n = 578.
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Figure 9. The 0-1 test of the fractional-order map (16). (a) The asymptotic growth rate versus « for
vy = vy = 0.998. (b) The asymptotic growth rate versus « for v; = vy = 0.995.

4. Conclusions

In this article, we investigated the chaotic behavior of new two-dimensional fractional chaotic
maps with closed curve fixed points. Numerical methods, including computations of Lyapunov
exponents, bifurcation diagrams, and the 0-1 test have been used to illustrate the complex dynamics
of these systems. Through this paper, we have shown that chaos exists in these fractional-order maps
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and that the type and range of chaotic behavior is dependent on the fractional order. Results shows
that the fractional-order maps are more complex then their integer order counterparts. Also, numerical
experiments have shown that the system exhibits the property of coexisting attractors. Future studies
will explore more dynamic behaviors of those systems, such as, control and synchronization.
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