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Abstract: In many stochastic dynamical systems, ordinary chaotic behavior is preceded by
a full-dimensional phase that exhibits 1/ f -type power spectra and/or scale-free statistics of
(anti)instantons such as neuroavalanches, earthquakes, etc. In contrast with the phenomenological
concept of self-organized criticality, the recently found approximation-free supersymmetric theory of
stochastics (STS) identifies this phase as the noise-induced chaos (N-phase), i.e., the phase where the
topological supersymmetry pertaining to all stochastic dynamical systems is broken spontaneously
by the condensation of the noise-induced (anti)instantons. Here, we support this picture in the
context of neurodynamics. We study a 1D chain of neuron-like elements and find that the dynamics
in the N-phase is indeed featured by positive stochastic Lyapunov exponents and dominated by
(anti)instantonic processes of (creation) annihilation of kinks and antikinks, which can be viewed as
predecessors of boundaries of neuroavalanches. We also construct the phase diagram of emulated
stochastic neurodynamics on Spikey neuromorphic hardware and demonstrate that the width of the
N-phase vanishes in the deterministic limit in accordance with STS. As a first result of the application
of STS to neurodynamics comes the conclusion that a conscious brain can reside only in the N-phase.

Keywords: supersymmetry; stochastic dynamics; nonlinear dynamics; chaos; 1/ f noise; neuronal dynamics

1. Introduction

It is well established by now that many stochastic dynamical systems close to the “edge of chaos”
spontaneously exhibit features of long-range dynamical behavior such as 1/ f power spectra or the
scale-free statistics of instantonic or avalanche-like processes, a phenomenon that can be found in
all branches of modern science, including astrophysics [1], finance [2], geophysics [3], evolutionary
biology [4], collective human and animal behavior [5,6], and many others, including neurodynamics
(ND) [7–11].

Such a spontaneous long-range dynamical behavior, which we loosely call dynamical complexity
(DC), is a rather peculiar feature that calls for an explanation. One of the potential explanations of DC
is “criticality”. Namely, the very fact that DC is typically found on the border of chaos points to the
possibility that the long-range features associated with DC may be attributed to the phase transition
into chaos.
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The phase transition picture of DC has one insoluble problem. On phase diagrams, which are
spaces of externally controllable parameters that dynamical systems cannot change in real time all by
themselves, power-law correlators are manifested in the long-wavelength limit only by models that
flow to unstable fixed points of the renormalization group flow. Such models occupy lower dimensional
boundaries between full-dimensional phases. On the contrary, DC occupies full-dimensional phases.
Any model within a full-dimensional phase eventually flows to a stable fixed point (or other attractor),
and such a point represents a state with finite correlation length/time; consequently, it cannot exhibit
power-laws. Thus, DC occupying full-dimensional phases cannot in principle be explained within the
paradigm of the traditional critical phenomena picture.

To circumvent this problem with the criticality scenario for DC, it was proposed to believe that
some stochastic dynamical systems have a mysterious tendency to fine-tune themselves into the
phase transition into chaos, the approach known as self-organized criticality (SOC) [1,12–20], which is
particularly popular in the neurodynamics (ND) community (for a review, see, e.g., [21–24] and the
references therein). After 25 years of the history of SOC, it is still unclear what SOC is exactly from a
theoretical point of view (see [15] for a review on various interpretations of SOC) and whether ND in a
healthy brain can be characterized as SOC (see, e.g., [25–29] and the references therein).

It was understood [30,31] that a more rigorous theoretical picture of DC could be based on the
Goldstone theorem stating that a spontaneous breakdown of a global continuous symmetry must
lead to the long-range behavior in full-dimensional phases. The ubiquitous character of DC suggests
that the Goldstone scenario for DC can work only if all (or at least most of) stochastic dynamical
systems possess a common global continuous symmetry. The existence of such symmetry and the idea
that its spontaneous breakdown is the theoretical essence of DC was proposed in [32], and further
work in this direction resulted in the supersymmetric theory of stochastics (STS) [33] viewing DC as
the spontaneous breakdown of topological supersymmetry (TS) (see, e.g., [34–40]) that all stochastic
differential equations (SDEs) possess.

The presence of TS in all SDEs is the algebraic representation of the fact that any infinitesimally
close points in phase space remain close during the (finite-time) evolution even in the presence
of discontinuous noise [41]. In other words, TS is the preservation of the proximity of points in
phase space during evolution. This interpretation makes it particularly clear that the spontaneous
breakdown of TS must be viewed as the stochastic generalization of dynamical chaos [42,43]. Indeed,
the spontaneous breakdown of TS must imply that initially close points may not be close anymore
after an infinitely long evolution, when the system is described by a non-supersymmetric ground state.
In the deterministic limit, this is nothing other than the famous “butterfly effect” [44].

On a more technical level, TS in the deterministic limit can be spontaneously broken only by the
non-integrability of the flow vector field (FVF) (There are different types of integrability in mathematics.
The integrability in the sense of dynamical systems means that the FVF has well-defined global unstable
manifolds of all dimensions. When this is not true, the deterministic dynamical system is said to be
non-integrable in the sense of dynamical systems.), which is one of the definitions of deterministic
dynamical chaos [45]. In the presence of noise, yet another mechanism of spontaneous breakdown
of TS exists. This mechanism is known in high-energy physics as dynamical supersymmetry
breaking [46], and in the context of stochastic dynamics, it can be explained as the condensation
of noise-induced tunneling processes. Earthquakes, solar flares, neuroavalanches, etc., are examples of
such noise-induced tunneling processes, and that phase with the (anti)instanton-induced breakdown
of TS must be associated with DC. Furthermore, the noise-induced character of the tunneling processes
requires that this phase disappear in the deterministic limit. As a result, the phase of thermal
equilibrium (unbroken TS, T-phase) and the phase of ordinary chaos (non-integrability, C-phase)
can be separated (at weak noises) by the noise-induced chaos (TS broken by (anti)instantons, N-phase),
as presented in Figure 1a.
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Figure 1. (a) The “border of chaos” as predicted by the supersymmetric theory of stochastics (STS).
The thick black curve separates systems with unbroken (symmetric) and spontaneously broken
(ordered) topological supersymmetry (TS). The vertical straight line separates models with integrable
and non-integrable flow vector field (FVF) (laws of deterministic evolution). Accordingly, there are
three phases in the weak noise limit: the phase of ordinary chaos (C, red) where TS is broken by the
non-integrability of the FVF; the phase of noise-induced chaotic behavior (N, green) where TS is broken
by condensation of noise-induced (anti)instantons; and the phase of ergodic dynamics or thermal
equilibrium (T, white) with unbroken TS. In the deterministic limit, noise-induced antiinstantons
disappear, and the N-phase collapses into the T-C boundary. The termination of the N-C boundary by
a cross at a certain noise intensity indicates that this boundary is transition-like only at weaker noises,
and at stronger noises, it must be smeared out into a crossover. (b–d) Three qualitatively different types
of stochastic evolution operator (SEO) spectra with unbroken (b) and broken (c,d) TS. Black dots are the
ground states, which are the fastest growing eigenstates. Grey dots at the origin are supersymmetric
states that are ground states only when TS is unbroken. In (d), there are two equally good candidates
for the status of the ground state, and the ground state is chosen between them by convention, similarly
as is done in quantum theory. Γ is the real part of the ground state’s eigenvalue providing a lower
bound to the topological entropy of the model (see the text).

In this paper, we support this picture in two ways. First, we numerically investigate an
overdamped stochastic 1D sine-Gordon model, which can be thought of as a coarse-grained version
of a 1D chain of neuron-like elements, and demonstrate that the stochastic Lyapunov exponents are
positive in the N-phase. This confirms that TS is indeed spontaneously broken and the N-phase can
indeed be identified as the noise-induced chaos. We also demonstrate that dynamics in the N-phase is
dominated by the (anti)instantonic processes of the creation/annihilation of solitonic configurations
(kink-antikink pairs). Second, using 1/f noise as the experimental signature of the spontaneous
breakdown of TS, we construct the rudimentary phase diagram of ND using emulation on Spikey
neuromorphic hardware [47,48]. Our emulation results reconfirm that the width of the N-phase



Symmetry 2020, 12, 805 4 of 22

vanishes in the deterministic limit. As a first non-trivial result from the application of STS to ND, we
present arguments supporting the conclusion that a healthy brain can only reside in the N-phase.

The structure of the paper is as follows. In Section 2, we support the basic phase diagram from STS
by considering two models: in Section 2.1, we introduce an overdamped stochastic 1D sine-Gordon
model and numerical results proving that the N-phase must indeed be recognized as the noise-induced
chaos with instanton-induced TS breaking, and in Section 2.2, we give the results on the emulation
of stochastic ND using Spikey neuromorphic hardware reconfirming that the width on the N-phase
vanishes in the deterministic limit. Section 3 is devoted to the discussion of the neurological meaning
of the three major stochastic phases. In Section 4, we conclude with a brief discussion of potentially
fruitful directions for further investigation. Appendix A summarizes the key elements of STS.

2. Basic Phase Diagram

The basic phase diagram of stochastic dynamics in Figure 1a is the focus of this paper. It is based
on STS, which is briefly discussed in Appendix A, whereas more details can be found in, e.g., in [33].
In short, STS predicts that at low noise intensity, the phase of ordinary chaos must be preceded by a
noise-induced chaotic phase, the dynamics that is dominated by instantons and the “width” of which
vanishes as one reduces noise intensity.

Our main goal is to support this picture both numerically and with emulations. If successful, our
results will indicate in particular that STS is a promising theoretical description of stochastic dynamics
because, to the best of our knowledge, there is no other available theory that would explain such a
phase diagram. To this end, in this section, we study a numerical model of a 1D chain of neuron-like
elements and present the results of the emulation of neurodynamics on neuromorphic hardware.

2.1. 1D Chain of Stochastic Neuron-Like Elements

The goal in this section is twofold. First, we would like to demonstrate numerically that the
N-phase can indeed be identified as noise-induced chaotic dynamics. This goal will be achieved
by revealing the positiveness of the stochastic Lyapunov exponents in the N-phase. Second,
we would also like to demonstrate that the dynamics in the N-phase is indeed dominated by
(anti)instantons. Instantons are easily recognizable when they have a well-defined spatio-temporal
structure (creation/annihilation of kink-antikink pairs; see below), which is realized in spatially
extended models on lattices. Guided by this understanding and by the additional intention to make
a connection to ND in the next section, here we study neuron-like elements on the simplest lattice:
a 1D chain.

Each neuron-like element is described by a dynamical variable x ∈ S1. In isolation and in the
absence of noise, its dynamics is governed by the following ordinary differential equation,

ẋ(t) = α− sin(x(t) + x0). (1)

Here, constant x0 = sin−1 α is introduced for convenience so that x = xs = 0 is the stable critical
point (for α < 1, see below). There is also an unstable critical point at x = xu = π − 2x0. Locally,
the FVF can be viewed as a gradient of the potential function,

α− sin(x + x0) = −∂U(x)/∂x, U(x) = −αx− cos(x + x0), (2)

as displayed in Figure 2a. This figure also depicts the fundamental tunneling process of the model.
This process has two stages called antiinstanton (xs → xu) and instanton (xu → xs = 2π ∼ xs).
In general, antiinstantons are processes of going against the FVF, i.e., the r.h.s of Equation (1). Therefore,
antiinstantons can only happen as a result of the influence of noise, unlike instantons that exist even in
the deterministic limit.
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Figure 2. (a) Local potential function in Equation (2) and the process of tunneling from x = 0 to
x = 2π ∼ 0, which is a combination of an antiinstanton, Ī, leading from x = 0 to the unstable
critical point x = π − 2x0, and an instanton, I, leading further to x = 2π. (b) In certain coordinates,
the noise-induced tunneling process is spike-like, similar to that in real neurons. (c) In 1D chain of
neuron-like elements, the noise-induced antiinstanton becomes a process of the creation of a pair of
solitons, a kink (K) and antikink (K̄). Free solitons travel with constant velocity in opposite directions.
The process of the creation of the K − K̄ pair with subsequent propagation of solitons in different
directions is this model’s counterpart of neuroavalanches. (d) Qualitative representation (a contour plot
for x(tr)) of the dynamics in the N-phase under the condition of the condensation of Ī’s and instantons
(I) and the processes of creation and annihilation of the K-K̄ pairs.

The above neuron-like elements are now arranged into a 1D chain with the coupling between
nearest neighbors. The resulting model can be coarse-grained into a continuous-space model defined
by the following SDE,

∂tx(rt) = α− δVsG
δx

(rt) + (2Θ)1/2ξ(rt), (3)

where r is a spatial dimension, the noise ξ is Gaussian white,

〈ξ(rt)〉 = 0, 〈ξ(rt)ξ(r′t′)〉 = δ(t− t′)δ(r− r′), (4)

and Θ is the noise intensity. The sine-Gordon potential in Equation (3) is defined as,

δVsG
δx

(rt) = −∂2
r x(rt) + sin(x(rt) + x0), (5)

VsG(x) =
∫

dr
(
(∂rx)2/2− cos(x− x0)

)
. (6)



Symmetry 2020, 12, 805 6 of 22

In addition to being a coarse-grained version of the 1D chain of neuron-like elements, the above
model can also be viewed as the overdamped limit of a stochastic sine-Gordon equation [49–51] or
Frenkel–Kontorova equation [52]. Furthermore, in the theory of 1D chains of Josephson junctions,
the model describes the temporal evolution of the voltage [53].

At α > 1, the vacuum, x(rt) = 0, looses its stability. This is the onset of the C-phase. We note
that in the general case, the loss of stability of a stable vacuum does not necessarily suggest the onset
of chaotic behavior. Instability may as well mean a bifurcation. It does, however, indicate the onset
of chaotic behavior in our case, as can be seen from positive Lyapunov exponents for α > 1 at zero
temperature (Figure 3).

At the end of the previous section, the relation between topological entropy and spontaneous TS
breaking was discussed. It is also known that topological entropy is related to the Lyapunov exponents
via, e.g., the Pesin formula [54] saying that S is a sum of positive Lyapunov exponents. This is actually
the very reason why we use the stochastic Lyapunov exponents (see, e.g., [55,56]) as an indication
of the spontaneous breakdown of TS. It is likely that more analytical work has to be done before an
exact relation between stochastic Lyapunov exponents and spontaneous TS breaking is rigorously
established. Nevertheless, as can be seen in Figure 3, stochastic Lyapunov exponents do reproduce the
weak-noise regime of the STS phase diagram in Figure 1. Thus, stochastic Lyapunov exponents in our
case support the idea that the N-phase must be identified as noise-induced chaos.

Yet another important result in this section is the demonstration of the instantonic character
of stochastic dynamics in the N-phase. As can be seen in Figure 4, the dynamics in the N-phase
is qualitatively different from that in the other two major phases (T- and C-) and just as expected
(see Figure 2d) is clearly dominated by (anti)instantonic processes of creation and annihilation of
solitonic configurations, the kink and antikinks.

Θ

α

Figure 3. Maximal stochastic Lyapunov exponent of the 1D chain of neuron-like elements. Crosses
and open circles denote positive and negative values, respectively. The noise level range corresponds
to the weak-noise regime in Figure 1. Positive Lyapunov exponents and their vanishing width in the
deterministic limit confirm that the N-phase can indeed be identified as noise-induced chaos.
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Figure 4. (Top row) Filled contour plots with the horizontal and vertical axes being respectively the
time, t, and the spatial coordinate, r, of simulated x(rt) at a low noise level (Θ = 0.05) and three
values of α = (0.95, 0.99, 1.05) from the three dynamical phases as seen from Figure 3. Dynamics in
the N-phase (middle) is clearly dominated by anti-instantonic processes (cf., Figure 2d). The middle
and bottom rows are respectively f (t) = sin x(r0t) at some position r0 as a function of time and
the corresponding power spectrum. The data reveal the qualitative difference between dynamics in
the three major phases and have the same features as the data from the emulated dynamics using
neuromorphic hardware in Figure 5b.

2.2. Stochastic Neurodynamics on Neuromorphic Hardware

In this section, we make one more step toward ND, one of the most interesting and promising
potential applications for STS in the future. More specifically, we construct the STS phase diagram using
emulation of stochastic ND on neuromorphic hardware [47,48]. In a certain sense, the neuromorphic
hardware bridges numerical models and real brains, and it offers a few advantages over both. Indeed,
unlike experiments on the real brain, neuromorphic hardware provides control over many parameters
including the intensity of the noise, which is crucial for our purposes as the noise intensity is one of the
key parameters of stochastic dynamics. In addition, as compared to the model in the previous section,
the neuromorphic hardware allows for any topology of the network as compared to the oversimplified
1D lattice.
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As we already stated before, the reason why the simplest possible network topology was used
in the previous section is the spatio-temporal structure of instantonic processes (the predecessors
of neuroavalanches) that revealed the instantonic character of the dynamics in the N-phase. In real
neuronal networks, due to the intricate pattern of interneuronal connections, neuronal avalanches do
not have a clear spatial structure of a propagating boundary separating postfired from prefired neurons.
(To be more accurate, this spatial structure of neuronal avalanches can be revealed by embedding the
neuronal network into a lattice of sufficiently high dimensionality such that all the directly-connected
neurons are neighbors on this lattice. For a square lattice, the number of neighbors is 2D with D
being the dimensionality of the embedding space. Thus, any given network can be embedded into
a square lattice with sufficiently high D). This lack of a clear spatial structure of neuroavalanches
makes it difficult to study them experimentally. Therefore, in this section, we will use the 1/ f noise
characteristic to differentiate between the fundamental dynamical phases. We note that in the literature,
avalanche statistics is used more often for this particular purpose (see, e.g., [11]). There is no conflict
here. Both the 1/ f noise and the scale-free avalanche statistics can be viewed as signatures of the
spontaneous TS breaking. In fact, the very concept of SOC and the associated scale-free statistics were
originally introduced as an explanation for 1/ f noise [12].

Before we proceed with our emulation results, a few words are in order about the feasibility of
the concept of an ND phase diagram. Anesthesiologists use drugs to render the brain transiently
unconscious during surgical procedures. From a physicist’s point of view, this means that the blood
concentration of the anesthetic is an externally controllable parameter that is being used to draw the
brain out of the dynamical phase consistent with consciousness. This physical picture of brain activity
is supported by experiments under anesthesia showing that the collective neuronal behavior changes
suddenly at certain transition points as one changes, via the gradual change of the concentration
of a pharmacological agent such as isoflurane, the single-neuron parameters such as the resting
potential [57,58]. This experimentally demonstrates the existence of qualitatively different dynamical
phases in the real brain with sharp transitions separating them, which clearly validates the concept of
the ND phase diagram.

Emulation Results

In this section, we present our results of emulation of ND using the Spikey neuromorphic
hardware [47,48]. The chip is a configurable mixed-signal CMOS implementation of 384
leaky-integrate-and-fire (LIF) neurons with a maximum of 256 synapses each. It features short-
and long-term synaptic plasticity and operates in an accelerated mode approximately 10,000 times
faster than real time. Each neuron was configured to have a fixed number of pre-synaptic partners that
were randomly selected from the set of available neurons. The intensity of the noise was controlled by
a parameter representing the average time interval between two consecutive noise stimuli uniformly
distributed within the time interval of the emulation (1000 ms). In other words, this parameter was the
reciprocal of the noise intensity Θ introduced in Equation (A1).

In Figure 5, the power spectra of a membrane potential of one neuron are given for different firing
threshold potentials and noise intensities, and in Figure 6, we plot the characteristic representing the
overall “intensity” of dynamics,

∫
| f (ω)|2dω; here, f (ω) is the Fourier component of the membrane

potential. As can be seen, the results clearly reproduced the three-part phase diagram: the subthreshold
T-phase with no conspicuous dynamics, the N-phase, featured by a 1/ f power spectrum, and the
C-phase with the 1/ f power spectrum superimposed with equidistant peaks reflecting the approximate
time-periodicity of permanent firing above the threshold.
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Figure 5. (a)The phase diagram of emulated neurodynamics (ND) using the Spikey neuromorphic
chip on the plane of the noise intensity and the firing threshold. The insets present the power
spectra of the membrane potential of a neuron and are centered at the points in the phase diagram
corresponding to the parameters used for the emulation. The scale of the insets is the same
everywhere. The results show that in the deterministic limit, the N-phase collapses onto a sharp
transition between the T-phase and C-phase (vertical dashed line at around −60.0 mV), as predicted
by the STS picture of the N-phase dynamics. (b) Three typical power-spectra (top) with their
corresponding membrane potential recordings (bottom). The thermal equilibrium phase (“coma”-like),
the noise-induced chaotic phase (“conscious”-like), and the regular chaotic phase (“seizure”-like) are
featured, respectively, by no membrane potential dynamics with a sharp decrease at low frequency
on the power spectra (left column), an avalanche-like membrane potential with 1/ f noise-like spectra
(middle column), and a non-stop firing pertinent to the seizure-like collective neuronal behavior
with 1/ f noise-like spectra superimposed by equidistant peaks (right column) representing periodic
dynamics. This power-spectrum is also compared to the one generated by an isolated neuron (lower
red curve). As can be seen, the spectrum of the isolated neuron exhibits 1/ f noise, which is thus a
signature of the collective neuronal dynamical behavior in the network.
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Figure 6. The integral intensity of dynamics defined as
∫
| f (ω)|2dω, where f (ω) is the Fourier

component of the membrane potential of a neuron. Even though this characteristic cannot be viewed
as the “chaotic” order parameter, it does experience a relatively sudden jump and a smeared plateau at,
respectively, the T-N and the N-C transition lines of Figure 5.

It must be noted that, just like in the real brain, the topology of the neuronal network was random,
and neuroavalanches did not have a well-defined spatial structure similar to the spatial propagation
of solitons discussed in the previous section. Therefore, revealing this structure was not among our
goals in this section. Our main objective here was to reveal that the N-phase collapsed onto the border
of the C-phase in the deterministic limit. This objective was the reason why the ND emulation was
conducted over a broad range of noise intensity.

We would also like to point out that it was known previously that the presence of noise often
leads to the emergence of power-laws in dynamical systems near the border of chaotic activity, and
this fact was proposed to be viewed as the reason behind power-laws in ND [59]. The STS picture of
the N-phase dynamics provides a solid theoretical explanation of why this happens.

In the real brain, however, the intensity of the noise is not an externally controllable parameter
unless, of course, one views the sensory input also as a part of the noise. We found it more physically
appealing, however, to view stimuli as a perturbation of the ground state of the brain, and the
response to this perturbation is the essence of information processing within ND. Thus, the noise in our
approach represented the (intractable) bio-chemo-electric influence from the host body only. Therefore,
the intensity of the noise is not an externally controllable parameter of the ND in the real brain.

At the same time, there are many other externally controllable single-neuron parameters relevant
to the ND in the brain. One of the parameters is the neuron repolarization time. In fact, we believe that,
to a good approximation, the firing threshold and the repolarization time are the two major externally
controllable parameters of the collective ND in the real brain. For this reason, we also constructed the
phase diagram of the emulated ND on the plane of these two parameters. As was expected and seen
in Figure 7, at fixed noise intensity, the N-phase was sandwiched between the T- and the C-phases.
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Figure 7. The phase diagram of emulated ND using the Spikey chip at a fixed noise intensity of
10 arb. units in Figure 5 and for various values of the firing threshold and repolarization time.
As in Figure 5, the insets show the power spectra at the corresponding values of the parameters.
As expected, the N-phase, featured by the 1/ f -type spectra, is sandwiched between the T- and the
C-phases. The results show that the position of the N-phase shifts to the right with the increase of the
repolarization time, thus indicating that the effect of the increase of the repolarization time is similar to
the increase of the firing threshold.

3. Neurodynamic Meaning of the Three Phases

The TS breaking picture of chaotic dynamics puts the phenomenon of chaotic dynamics in the
brain into a new and promising perspective. The point is that the spontaneous breakdown of various
symmetries is known in physics as “ordering” (crystalline order, ferromagnetic order, etc.). Therefore,
the true essence of chaotic dynamics is quite opposite to the semantics of the word “chaos” and the
common perception of this phenomenon. Unlike “chaos”, this new understanding, which can be
dubbed the dynamical long-range order (DLRO), has a positive rather than negative connotation in
the context of information processing in the brain, and it allows one to make a first step in what seems
to be a new view on the functionality of brain activity.

Namely, in behavioral sciences and psychology, there is a concept of a short-term memory
operating on the order of seconds. We find it natural to believe that the short-term memory must be
directly connected to or rather based on the spontaneous ND memory associated with the spontaneous
TS breaking. After all, why should nature not take advantage of the fact that DLRO provides effortless
long-range dynamical information storage within the brain for short-term memory purposes? This
argument is especially convincing in light of the fact that this advantage comes at no extra cost from
the bio-chemical point of view, i.e., there is no need to invoke some specialized bio-chemical process(es)
that would be responsible for it.

The reasoning in the previous paragraph suggests that a conscious brain can reside only in either
the N- or C-phases, where the TS is spontaneously broken and/or the DLRO is present. Given that the
non-stop firing of neurons in the C-phase is very reminiscent of the ND phenomenon of an epileptic
seizure [60], therefore, the possibility that a conscious brain is in the C-phase can be ruled out. As a
result, one is left with the conclusion that a conscious brain can reside only in the N-phase, which thus
can be identified as a “conscious-like” phase. Accordingly, the T- and the C-phases can be dubbed
as the “coma-like” (Note that a coma is a behavioral state of unresponsiveness, not a brain state,
like seizure. That is, one can have localized seizures in the brain that result in a coma. Therefore,
“quiescent”-like may be a better identifier for the T-phase of ND. Nevertheless, we will use “coma-like”
phase as in the everyday language; “coma” reflects better the characteristics of the T-phase.) and the
“seizure-like” phases, respectively.



Symmetry 2020, 12, 805 12 of 22

We find it likely that somewhere on the right-hand side of the ND phase diagram, i.e., on the side
of the high resting potentials well above the firing threshold, there may exist a phase of synchronized
persistent neuronal oscillations. The transition from this phase to the C-phase would correspond
to what is known in the literature as the period doubling route to chaos. This transition may be an
interesting object of future studies.

We would like to point out that the importance of noise for healthy brain operation has been
discussed previously [61–63]. In our case, this importance is taken to the extreme: the “conscious-like”
phase does not even exist without the noise.

Fine Structure

The phase diagram in this paper is very rudimentary, which is a fair price for its generality.
It is understood that the ND phase diagram of a real brain must have a fine-structure on top of the
three phase picture discussed here (see Figure 8). This fine-structure must resolve various types of
interactions between different parts of a real inhomogeneous brain (For example, the “real conscious”
phase and the “sleeping phase” may as well be two different neighboring subphases of the N-phase; the
subphases that are separated by a phase-transition-like boundary.). Even though our understanding
of the fine-structure of the ND phase diagram is qualitative, it may be already possible to use this
concept for visualization of the effect of a pharmacological agent on the collective ND during a typical
anesthesiological cycle. As the blood concentration of the agent gradually changes, the ND moves on
the phase diagram and changes qualitatively as it occasionally crosses the critical boundaries between
subphases [57].

Resting potential

Repolarization time

CNT

Figure 8. A hypothetical phase diagram of the ND with the rudimentary structure as displayed in
Figure 7 and with an additional fine-structure that resolves the larger scale collective dynamical
phenomena (see the discussion in the text). The boundaries between the qualitatively different
subphases are presented as dashed curves. The “awakeness” phase (the thicker green filled
rectangle-like area) must be a subphase of the N-phase. The two closed red arrows qualitatively
represent the phase space trajectory during an anesthesiological cycle.

4. Conclusions

The recently proposed approximation-free supersymmetric theory of stochastics, the spontaneous
breakdown of topological supersymmetry that all stochastic differential equations possess, is the
stochastic generalization of the concept of dynamical chaos. The theory also offered an explanation for
the pre-chaotic phase known previously as self-organized criticality. As it turns out, at non-zero noises,
ordinary chaos is preceded by a noise-induced chaotic phase where the topological supersymmetry
is broken by the condensation of noise-induced (anti)instantonic configurations. In this paper, we
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supported this picture by numerical studies of a 1D chain of neuron-like elements and experimental
emulation of stochastic neurodynamics using neuromorphic hardware. We demonstrated that the
stochastic Lyapunov exponents were positive in the N-phase; the dynamics was indeed dominated by
the (anti)instantonic processes; and the “width” of the N-phase vanished in the deterministic limit.

The novel supersymmetry breaking understanding of chaotic dynamics suggests that studies of
the corresponding spontaneous dynamical order in neurodynamics can be the right venue toward
understanding the high level functionalities and the fundamental principles of information processing
in the brain. More specifically, one of the most fruitful directions for further research could be the
development of low-energy effective theories for N-phases. Unlike in the Wilson–Cowan [64] and
other approaches to neurodynamics (for a review, see, e.g., [65]), the low-energy effective theories
for the spontaneous dynamical order must be written for a fermionic field, which must be the order
parameter for the spontaneously broken fermionic symmetry. Although at this moment, we do not
know much about the details of such an LEET, we find it reasonable to believe that if a computational
paradigm at least remotely related to the principles of the information processing/encoding by
neurodynamics already exists, it is most likely topological or fault-tolerant quantum computing [66].
After all, the supersymmetric theory of stochastics is a rightful member of the family of the Witten-type
topological field theories.

We would like to conclude our discussion by pointing out that the application of the supersymmetric
theory of stochastics to neurodynamics bridges mathematical physics and anesthesiology, and further
work in this direction may result in fruitful cross-fertilization between science and medicine.
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Abbreviations

The following abbreviations are used in this manuscript:

DC dynamical complexity
FVF flow vector field
ND neurodynamics
SDE stochastic differential equation
SOC self-organized criticality
STS supersymmetric theory of stochastics
TS topological supersymmetry

Appendix A. Key Elements of Sts

Appendix A.1. The Model

The main object of interest is the general form of an SDE that can be given as,

ẋ(t) = F(x(t)) + (2Θ)1/2ea(x(t))ξa(t) ≡ F̃(t). (A1)

Here and in the following, summation is assumed over repeated indices; x ∈ X is a point in
the phase space, X, which is a smooth topological manifold; F ∈ TX is the FVF representing the
deterministic equations of motion on the tangent space TX; ea ∈ TX is a set of vector fields describing
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how noise is coupled to the system; Θ is the intensity or the temperature of the noise; F̃ is introduced
for later convenience; and ξa ∈ RDimX is a set of noise variables that are assumed Gaussian white with
the probability of configurations given by,

P(ξ) ∝ e−
∫ t

t′ dτξ2(τ)/2. (A2)

Appendix A.2. From SDE to Topological Field Theory

The Parisi–Sourlas approach [67,68] provides a path integral representation to Langevin SDEs,
which are almost exclusively studied in the context of supersymmetry and stochastics (see, e.g., [69]).
STS can be looked upon as the generalization of the Parisi–Sourlas approach to the SDEs of arbitrary
form. More specifically, one can construct the following functional,

W =

〈∫
p.b.c.

Dx ∏
τ

δ(ẋ(τ)− F̃(τ))Det
δ(ẋ− F̃)

δx

〉
. (A3)

The path integral here is over closed paths in X as indicated by the subscript p.b.c. denoting
periodic boundary conditions, x(t) = x(t′); the infinite-dimensional determinant is the Jacobian of
the preceding δ-functional, which in turn, limits the functional integration to summation over the
solutions of the SDE. The angled brackets denote stochastic averaging over the noise configurations,

〈A(ξ)〉 =
(∫

DξP(ξ)
)−1 ∫

Dξ A(ξ)P(ξ), (A4)

with A(ξ) being an arbitrary functional of ξ(τ) and the probability P given in Equation (A2).
To exponentiate the bosonic δ-functional and its determinant in Equation (A3), one can use

the standard technique of introducing additional fields: the Lagrange multiplier, Bi, and the pair of
Faddeev–Popov ghosts, χi and χ̄i, with 1 ≤ i ≤ DimX. This procedure leads from Equation (A3) to,

W =

〈∫
p.b.c.

DΦe{Q,i
∫ t

t′ dτχ̄(τ)(ẋ(τ)−F̃(τ))}
〉

, (A5)

and after integrating out the noise:

W =
∫

p.b.c.
DΦ e{Q,Ψ}. (A6)

Here, Φ = (x, B, χ, χ̄) denotes the collection of all the fields; periodic boundary conditions are
assumed, Φ(t) = Φ(t′); and the operator of the Becchi–Rouet–Stora–Tyutin (BRST) symmetry is
defined as:

{Q, A} =
∫ t

t′
dτ

(
χi(τ)

δ

δxi(τ)
+ Bi(τ)

δ

δχ̄i(τ)

)
A, (A7)

with A being an arbitrary functional of Φ and Ψ =
∫ t

t′
(
iχ̄j(τ)ẋj(τ)− d̄(Φ(τ))

)
dτ being the so-called

gauge fermion with:

d̄(Φ) = iχ̄j

(
Fj −Θej

a{Q, iχ̄kek
a}
)

, (A8)

which can be loosely identified as a probability current operator. The Gaussian integration over ξ in
Equation (A5) leads to a term in the Lagrangian ∝ {Q, iχ̄je

j
a}{Q, iχ̄kek

a}, which is Q-exact, due to the
nilpotency of BRST symmetry. Namely, {Q, {Q, A}} = 0, ∀A implies:
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{Q, iχ̄je
j
a}{Q, iχ̄kek

a} = {Q, iχ̄je
j
a{Q, iχ̄kek

a}}. (A9)

This is the reason why integrating out the noise in Equation (A6) leaves the action of the model
Q-exact.

In gauge theories, Q-exact pieces in actions are essentially gauge fixing tools. It is typically
said that BRST symmetry, as a symmetry transformation, generates (fermionic versions of) gauge
transformations, and its overall effect on the path integral representation of the theory is to fix the
gauge. This interpretation applies to Equation (A6), as well: the BRST generates all possible (fermionic)
deformations of the path, δx(τ) = χ(τ), and out of all the possible closed paths in X, it leaves only the
solutions of SDE (A1), as can be best seen from Equation (A3).

Identification of the stochastic quantization procedure as gauge fixing has a hidden danger.
Indeed, in gauge theories, Q-exact pieces, as the one in Equation (A6), appear in generating functionals
(or partition functions) that can be used to calculate various observables including responses of the
model to external perturbations. Therefore, it may be tempting to believe that Equation (A6) is the
generating functional of the SDE. This assumption is a common mistake. The point is that Equation (A6)
is not a generating functional. It is actually a topological invariant, which is not responsive to external
perturbations. Any response correlator calculated within it vanishes.

This brings us to the topological field theory [34] side of the story of STS. Namely, the BRST
symmetry in Equation (A7) can be also rightfully identified as a TS; the integrand in Equation (A6)
as a member of the mathematical construction called the Mathai–Quillen class [38]; and the model
itself as a member of the Witten-type topological or cohomological field theories [36,37]; the models
whose actions look like gauge fixing of an empty theory and that have intrinsic connection to Morse
theory [35,70].

Appendix A.3. Operator Representation

Object W in Equation (A6) is the famous Witten index. It is of a topological character, which can
be established using the operator representation of the theory. The latter is achieved in a standard
matter. First, one rewrites:

W =
∫

p.b.c.
DΦ e

∫ t
t′ dτ(iẋjBj+iχ̇jχ̄j−H(Φ(τ)), (A10)

where:

H(Φ) =
{

Q, d̄(Φ)
}

, (A11)

with d̄(Φ) defined in Equation (A8). It is clear from Equation (A10) that B and χ̄ are momenta fields
that must (anti)commute with x and χ in the operator representation,

[iB̂j, x̂k] = [i ˆ̄χj, χ̂k] = δk
j , (A12)

where square brackets denote the bi-graded commutator, which is an anticommutator when both
operators are fermionic and a commutator otherwise.

Now, working in the representation where operators x̂i and χ̂i are diagonal (x̂i ≡ xi, χ̂i ≡ χi)
so that iB̂j = ∂/∂xj and i ˆ̄χj = ∂/∂χj and using the Wick symmetrization rule in order to bypass the
operator ordering ambiguity, (It can be shown [33] that the Wick symmetrization rule is equivalent
to the Stratonovich interpretation of SDEs. It can also be shown that the most natural mathematical
interpretation of the finite-time stochastic evolution operator, e−(t−t′)Ĥ , is the stochastically averaged
pullback induced by the SDE-defined diffeomorphisms of the phase space. This interpretation
unambiguously resolves the Ito–Stratonovich dilemma [71–73] in favor of the Stratonovich approach.)
one finds the following operator version of Equation (A10),
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W = Tr(−1)k̂e−(t−t′)Ĥ , (A13)

with,

k̂ = χj ∂

∂χj , (A14)

being the fermion number operator and the (infinitesimal) stochastic evolution operator (SEO)
defined as,

Ĥ = L̂F −ΘL̂ea L̂ea , (A15)

where L’s are the Lie derivatives along the subscript vector fields. The number of fermions commutes
with the SEO,

[k̂, Ĥ] = 0, (A16)

which implies that stochastic evolution preserves the number of fermions.
Recalling the Cartan formula,

L̂F = [d̂,
∂

∂χj Fj], (A17)

where:

d̂ = χj ∂

∂xj , (A18)

is the exterior derivative, one can recast the SEO into the explicitly supersymmetric form,

Ĥ = [d̂, ˆ̄d], (A19)

where:

ˆ̄d =
∂

∂χj

(
Fj −Θej

a L̂ea

)
. (A20)

Equations (A19) and (A20) are the operator versions of Equations (A11) and (A8), respectively.
This understanding also suggests that the (bi-graded) commutation with d̂ is the operator version of
the TS: {Q, A(Φ)} → [d̂, A(Φ̂)]. The exterior derivative is indeed a (super)symmetry of the model
because it is commutative with SEO,

[d̂, Ĥ] = 0. (A21)

This follows from the d̂-exactness of Ĥ in Equation (A19) and the nilpotency of the exterior
derivative, d̂2 = 0, which implies, in particular, that [d̂, [d̂, Â]] = 0, ∀Â (cf. Equation (A9)).

Appendix A.4. Eigensystem

The SEO is a real operator. Therefore, it is pseudo-Hermitian [74]. As a pseudo-Hermitian
operator, SEO has a complete bi-orthogonal eigensystem with the left (bras) and right (kets) eigenstates
such that,

〈n|Ĥ = 〈n|En, Ĥ|n〉 = En|n〉, (A22)

〈n|k〉 = δnk, ∑n |n〉〈n| = 1̂Ω, (A23)
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Here, Ω is the Hilbert space of the model, which is the exterior algebra of X. Namely, in the
representation where x̂ and χ̂ are diagonal, a wavefunction is a function of the position on the phase
space, x ∈ X, and a Grassmann variable, χ. The latter can be viewed [70] as differentials of differential
forms, χlχm = −χmχl ∼ −dxm ∧ dxl = dxl ∧ dxm. A general wavefunction can then be given as,

ψ(xχ) = ∑k ψ(k)(xχ), (A24)

where:

ψ(k)(x) = k!−1ψi1..ik (x)χi...χk

≡ k!−1ψ
(k)
i1...ik

(x)dxi1 ∧ ...∧ dxik ∈ Ωk(x), (A25)

are differential forms on X of degree k.
It must be stressed that unlike in quantum mechanics with the Hermitian evolution operator,

the relation between bras and kets in Equation (A22) is not trivial due to the pseudo-Hermiticity of SEO.
The presence of TS divides all eigenstates into two groups. The majority of states belong to the

first group of non-supersymmetric doublets or pairs of eigenstates,

|α〉 and |α′〉 = d̂|α〉. (A26)

Eigenstates within each doublet have the same eigenvalue. Indeed,

Eα|α〉 = Ĥ|α〉 → Eαd̂|α〉 = d̂Ĥ|α〉 = Ĥ(d̂|α〉). (A27)

Note that Equation (A16) implies that the operator k̂ can be diagonalized together with the SEO,

k̂|n〉 = kn|n〉. (A28)

In other words, each eigenstate has a well-defined number of fermions, kn. Further, since
the exterior derivative raises the number of fermions by one, the following is true, kα′ = kα + 1
for supersymmetric doublets in Equation (A26). This implies that the contribution from pairs
of non-supersymmetric states cancel out in Equation (A13). W receives a contribution only from
supersymmetric singlets, the eigenstates that obey,

d̂|θ〉 = 0, |θ〉 6= d̂|x〉, ∀|x〉. (A29)

The key property of supersymmetric eigenstates is the vanishing expectation values for all d̂-exact
operators, 〈θ|[d̂, Â]|θ〉, ∀Â. The SEO is a d̂-exact operator. Therefore, the θ’s have a strictly zero
eigenvalue. As a result,

W = ∑θ
(−1)kθ . (A30)

It must be pointed out that Condition (A29) is essentially the requirement for a state to be
non-trivial in de Rham cohomology. For compact X, each de Rham cohomology must provide
one supersymmetric eigenstate; otherwise, the eigensystem of Ĥ would be incomplete. Therefore,
Equation (A30) equals the Euler characteristic of X. This completes the demonstration of the topological
character of the Witten index, W.

Appendix A.5. Dynamical Partition Function, Supersymmetry Breaking, and Chaos

The alternating sign factor in Equations (A13) and (A30) appears due to the unconventional
periodic boundary conditions for fermionic fields in Equation (A6); normally, one would expect
antiperiodic boundary conditions for fermionic fields. As we already said before, W is a not a
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generating functional and/or dynamical partition function (DPF) of the model. The latter can be
obtained from Equation (A6) by switching to the anti-periodic boundary conditions (a.p.b.c.) for the
fermionic fields. This removes the alternating sign factor in the operator representation of the DPF,

Z =
∫

a.p.b.c.
DΦ e{Q,Ψ} = Tre−(t−t′)Ĥ . (A31)

In the long time limit, t− t′ → ∞, only eigenstates, p, with the lowest real part of their eigenvalues,
ReEp = −Γg,

Γg = −min
n

ReEn ≥ 0, (A32)

contribute to the DPF,

Z|t−t′→∞ ∝ e(t−t′)Γg cos(t− t′)ImEg. (A33)

These eigenstates can be identified as physical states, whereas one of the physical states can
be declared the ground state of the model. Among the three possible types of SEO spectra given
in Figure 1b–d, the two spectra with non-zero Γg > 0 have TS broken spontaneously because the
corresponding ground state has a non-zero eigenvalue, and thus, it is non-supersymmetric.

We would also like to note that both types of supersymmetry broken SEO spectra are realizable.
This follows from the recently established relation [75] between STS and the astrophysical phenomenon
of the kinematic dynamo [76–80] and the fact that the evolution operator in the theory of the kinematic
dynamo is known to have both kinds of spectra with the real and the complex ground states.

Unlike the Witten index, the DPF contains vital information about the dynamical properties of the
model. In particular, it can also be shown that for a wide class of models and in the long time limit,
DPF provides a lower bound for the stochastically averaged number of periodic solutions of SDE,

Z|t−t′→∞ ≤ 〈#(periodic solutions)〉 = e(t−t′)S, (A34)

where S is the stochastic generalization of the topological entropy of the dynamical system [81]; the
measure of the “complexity” of dynamics. The positiveness of S is considered the key feature of
dynamical chaos. From Equations (A34) and (A33), it follows that Γg provides the lower bound for S,

Γg ≤ S. (A35)

Therefore, when TS is broken spontaneously, Γg together with S are positive, and it immediately
follows that the phenomenon of the spontaneous breakdown of TS must be associated with the
stochastic generalization of dynamical chaos [42].

Yet another proof that spontaneous TS symmetry breaking must be indeed identified as the
stochastic generalization of dynamical chaos is the Goldstone theorem stating that a model with
spontaneously broken TS must exhibit a long-range dynamical behavior, which can be interpreted as
the emergent dynamical memory of initial conditions widely known as the “butterfly effect” of chaos.

In numerical experiments, this infinitely long memory can be characterized by positive Lyapunov
exponents, and we will use this well-established approach in Section 2.1. In real experiments,
the spontaneous TS breaking can reveal itself via emergent 1/ f -type power-spectra that we will
use in Section 2.2 as the signature of the TS breaking in emulated ND.

Appendix A.6. The Phase Diagram

The phase diagram in Figure 1 can now be understood as follows. In the deterministic limit,
the spontaneous TS breaking is equivalent to the concept of deterministic chaos. Further, in the limit of
strong noise, Θ → ∞, the SEO is dominated by the diffusion Laplacian, L̂ea L̂ea , and diffusion alone
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should not break TS. (This is certainly true for those models where the diffusion Laplacian equals the
Hodge–Laplacian that has real non-negative eigenvalues.) In other words, the TS will be eventually
restored as one increases the intensity of the noise. The above two observations leave only two possible
forms of the “border of chaos”. One is that the TS broken phase monotonously shrinks with the
increase of Θ until it disappears completely. The other, more interesting possibility is presented in
Figure 1a, where the TS broken phase first grows with Θ, giving rise to the N-phase with integrable
FVF and spontaneously broken TS.

An important question is the mechanism of spontaneous TS breaking in the N-phase. In the
deterministic limit, the TS is broken by the non-integrability of the FVF, which is one of the definitions
of deterministic chaos [45]. In the N-phase, the FVF is integrable so that some other mechanism must
be responsible for the TS breakdown. There are two known candidates. The first is the anomaly
or perturbative corrections that in the context of stochastic dynamics represent fluctuations due to
noise. This mechanism of TS breaking is very unlikely due to what is known as non-renormalization
theorems. Therefore, it must be the other remaining known mechanism that must be responsible for
the TS breaking in the N-phase. This mechanism is the condensation of (anti)instantonic processes.
This mechanism is known in high-energy physics as dynamical supersymmetry breaking [46]. In the
case of stochastic dynamics, the antiinstantonic processes are essentially the noise-induced tunneling
processes between, e.g., different attractors of the FVF. The noise-induced character of the tunneling
processes explains why the N-phase disappears in the deterministic limit.

Yet another important issue is the N-C boundary. At low temperatures, when an external observer
can tell one tunneling process from another, the N-C boundary must behave as a phase transition or,
rather, as the sharp onset of ordinary chaotic behavior. At higher temperatures, the N-C boundary must
be smeared into a crossover because the tunneling processes must overlap in time (and space), and an
external observer will not be able to tell one tunneling process from the other. The disappearance of the
sharp N-C boundary does not contradict any symmetry-based argument because the N-C boundary is
not the TS symmetry breaking in the first place.
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