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Abstract: Neural systems are composed of many local processors that generate an output given
their many inputs as specified by a transfer function. This paper studies a transfer function that is
fundamentally asymmetric and builds on multi-site intracellular recordings indicating that some
neocortical pyramidal cells can function as context-sensitive two-point processors in which some
inputs modulate the strength with which they transmit information about other inputs. Learning
and processing at the level of the local processor can then be guided by the context of activity in
the system as a whole without corrupting the message that the local processor transmits. We use a
recent advance in the foundations of information theory to compare the properties of this modulatory
transfer function with that of the simple arithmetic operators. This advance enables the information
transmitted by processors with two distinct inputs to be decomposed into those components unique
to each input, that shared between the two inputs, and that which depends on both though it is in
neither, i.e., synergy. We show that contextual modulation is fundamentally asymmetric, contrasts
with all four simple arithmetic operators, can take various forms, and can occur together with the
anatomical asymmetry that defines pyramidal neurons in mammalian neocortex.

Keywords: asymmetry; multivariate mutual information; information decomposition; contextual
modulation; synergy; neural systems

1. Introduction

Biological and artificial neural systems are composed of many local processors, such as neurons or
microcircuits, that are interconnected to form various network architectures in which the connections
are adaptable via various learning algorithms. The architectures of mammalian neocortex, and of the
artificial nets trained by deep learning, have several hierarchical levels of abstraction. In mammalian
neocortex there are also feedback and lateral connections within and between different levels of
abstraction. The information processing capabilities of neural systems do not depend only on their
learning algorithms and architectures, however. They also depend upon the transfer functions that
relate each local processor’s outputs to its inputs. These transfer functions are often described in terms
of the simple arithmetic operators, e.g., [1,2]. Distinguishing them on that basis can be misleading,
however, because real physiological operations are rarely, if ever, that simple.

In biological systems feedback and lateral connections can modulate transmission of feedforward
information in various ways. There is ample evidence that modulatory interactions are widespread in
mammalian neocortex [3—-6]. Many very different forms of interaction have been called ‘modulatory’,
however, and our concern here is with a particular kind of context-dependent form of modulation for
which there is direct evidence at the intracellular level. This evidence calls into question the common
assumption that, from a computational point of view, neurons in general can be adequately thought
of as being leaky integrate-and-fire point neurons [7]. They are called point neurons because it is
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assumed that all their inputs are integrated at the soma to compute the value of a single variable about
which information is then transmitted to downstream cells. Though that assumption may indeed be
adequate for many kinds of neuron it is not adequate for some principal pyramidal neurons in the
cerebral cortex. There is now clear evidence from multi-site intracellular recordings for the existence of
a second site of integration near the top of the apical trunk of some neocortical pyramidal cells, such as
those in layer 5B. We refer to this second point of integration as the apical integration zone, but it is
also sometimes referred to as the ‘nexus’. This second point of integration may be of crucial relevance
to our understanding of contextual modulation in the neocortex because anatomical and physiological
evidence suggests that activation of the apical integration zone serves as a context that modulates
transmission of information about the integrated basal input. The analyses reported here add to our
understanding of that theoretical possibility.

We have reviewed the anatomical, physiological, and computational evidence for context-sensitive
two-point processors at length elsewhere, as noted below [6] but give a summary here. Evidence for
an intracellular mechanism that uses apical input to modulate neuronal output was first reported
several years ago [8-11], though much remains to be learned about the far-reaching implications of
such mechanisms. In vitro studies of rat somatosensory cortex show that in addition to the somatic
sodium spike initiation zone that triggers axonal action potentials, layer 5 pyramidal cells have a zone
of integration just below the main bifurcation point near the top of the apical trunk. If it receives
adequate depolarization from the tuft dendrites and a backpropagated spike from the somatic sodium
spike initiation zone it triggers calcium spikes that propagate to the soma [8], where it has a strong
modulatory effect on the cell’s response to weak basal inputs by converting a single axonal spike into
a brief burst of from two to four spikes. Distal apical dendrites are well positioned to implement
contextual modulation because they receive their inputs from a wide variety of sources, including
non-specific thalamic nuclei, long-range descending pathways, and lateral pathways [9]. Being so
remote from the soma, however, input to the apical tuft of layer 5 cells has little effect on output
unless propagated to the soma by active dendritic currents. A consequence of this is that input to the
tuft alone usually has little or no effect on axonal action potentials, which we assume to be a crucial
distinctive property of contextual modulation.

Contextual modulation is of fundamental importance to basic cognitive functions such
as perceptual organization, contextual disambiguation, and background suppression [6,12-19].
Many reviews show that selective attention also has modulatory effects (e.g., [20]). There are several
hypotheses concerning the neuronal mechanisms by which such modulation may be achieved [21].
Some make use of the distinct anatomy and physiological functions of apical and basal inputs outlined
above [22-24], and our focus is on the basic information processing properties of such context-sensitive
two-point processors.

The central goal of the work reported here is to use advanced forms of multivariate mutual
information decomposition to analyze the information processing properties of such context-sensitive
two-point processors and compare them with additive, subtractive, multiplicative and divisive
interactions. It has been shown that artificial neural systems composed of such context-sensitive
two-point neurons can learn to amplify or attenuate feedforward transmission within hierarchical
architectures [25-27], but the full computational potential of such systems has not yet been adequately
explored. Though the primary concern of this paper is biological, we frequently relate it to machine
learning using artificial neural nets because that provides clear evidence on the computational
capabilities of the biological processes inferred.

To explore the fundamental information processing capabilities of this form of asymmetric
contextual modulation this paper compares it with the arithmetic transfer functions that have
previously been used to interpret data on ‘neuronal arithmetic’ [1]. To this end we build upon
recent extensions to the foundations of information theory that are called ‘partial information
decomposition” [28,29]. These recent advances enrich conceptions of ‘information processing’ by
showing how the mutual information between two inputs and a local processor’s output can be
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decomposed into that unique to each of the two inputs, that shared with the two inputs, and that which
depends upon both inputs, i.e., synergy [29-32]. Though decomposition is possible in principle when
there are more than two inputs, the number of components rises more rapidly than exponentially as
the number of inputs increase, limiting its applicability to cases where the contributions of only a few
different input variables needs to be distinguished. This is not necessarily a severe limitation, however,
because each input variable whose contribution to output is to be assessed can itself be computed
from indefinitely many elementary input variables by either linear or non-linear functions. Here we
show that decomposition in the case of only two integrated input variables is adequate to distinguish
contextual modulation from the arithmetic operators.

As the term ‘modulation’ has been used to mean various different things it is important to note
that the current paper is concerned with a well-defined conception of contextual modulation [6,25-27].
Though explicitly formulated in information-theoretic terms, this conception is close to that used in
neurophysiology, e.g., [12], and computational neuroscience, e.g., [33]. The present paper further
develops that conception by using multivariate mutual information decomposition to contrast the
effects of contextual modulation with those of the simple arithmetic operators. Thus, when in the
ensuing we refer simply to ‘modulation” we mean contextual modulation. A simple example of our
notion of contextual modulation is shown in Figure 1. The driving information with which we are
concerned here is that provided by the symbol that can be seen as either a B or a 13. Each of these
possible interpretations is at less than full strength because of the ambiguity. The two rows in the left
column show that the probabilities of making each of the possible interpretations can be influenced
by the context in which the ambiguous figure is seen. The central column shows that drive alone
is sufficient for some input information to be transmitted, and that context is not necessary because
in its absence we can still see that a symbol that could be a B or a 13 is present. The right column
shows that drive is necessary and that context is not sufficient, because when the information that is
disambiguating in the left column is present in the absence of the driving information we do not see
the B or 13 as being present. Though simple, and but one of indefinitely many, this demonstration
shows that human neocortex uses context to interpret input in a way that is essentially asymmetric.

Therefore, contextual modulation cannot be implemented by purely multiplicative interactions,
as often implied. Multiplication may indeed be involved in a more complex expression describing
contextual modulation, as indeed it is for forms of contextual modulation advocated here. The crucial
asymmetry does not arise by virtue of that multiplication, however, but by virtue of other things, such
as asymmetric limitations on the interacting terms, or by adding one term but not the other to the
result of the multiplication.

Though the information used for disambiguation in the example of Figure 1 comes from nearby
locations in space, contextual modulation is not identified with any particular location in space because
modulatory signals can in principle come from anywhere, including other points in time as well
as other locations in space. Furthermore, though the example given here is contrived to make the
ambiguity to be resolved obvious to introspection, the ambiguities that we assume to be resolvable
by context are more general, and include those due to weak signal to noise ratios, as well as those
due to ambiguities of dynamic grouping and of task relevance. In short, we assume that contextual
modulation uses other available information to amplify the transmission of ‘relevant’ signals without
corrupting their semantic content, i.e., what they transmit information about. Here we use partial
information decomposition to show how that is possible.

The information whose transmission is amplified or attenuated has been referred to as the ‘driving’
input, the ‘receptive field (RF)" input, or the input that specifies the neuron’s ‘selective sensitivity’.
Though none of these terms is wholly satisfactory, here we refer to the input about which information
transmission is to be modulated as the driving receptive field (RF) input, and the modulatory input as
the contextual field (CF) input.

One major contrast between hierarchies of abstraction in neocortex and those in deep learning
systems is that intermediate levels of abstraction in neocortex typically have their own intrinsic utility,
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in addition to being on a path to even higher abstractions. There are outputs to subcortical sites
from all levels of neocortical hierarchies, not only from a ‘top” level. Furthermore, the functional and
anatomical asymmetries that we emphasize are most clear for the class of pyramidal cells that provide
those outputs from neocortex. Another major contrast is that contextual modulation in neocortex
is provided by lateral and feedback connections, and it guides the current processing of all inputs;
whereas in nets trained by deep learning back-propagation from higher levels is used only for training
the system how to respond to later inputs. The work reported here contrasts with the simplifying
assumption that neural systems are composed of leaky integrate-and-fire point neurons. Instead
we emphasize functional capabilities that can arise in a local processor, or neuron, with two distinct
sites of processing, i.e., two-point processors, as shown by partial information decomposition [29,32].
An anatomical asymmetry that may be associated with this functional asymmetry is obvious and
long known. Pyramidal cells in mammalian neocortex have two distinct dendritic trees. One, the basal
tree, feeds directly into the soma, from where the output signals are generated. The other is the apical
dendritic tree, or tuft, which is much further from the soma and connected to it via the apical trunk.
Inputs to these two trees come from very different sources, with the basal tree receiving the narrowly
specified inputs about which the cell transmits information, while the apical tree receives information
from a much broader context. Wide-ranging, but informal, reviews of evidence on this division of
labor between driving and modulatory inputs within neocortical pyramidal cells indicate that it has
fundamental implications for consciousness and cognition [13,34]

Context Context Context
dis-ambiguates | not necessary, | not sufficient,
ambiguous drive | drive sufficient | drive necessary

ABC A C

2B 14 2 14

Figure 1. An illustration of contextual modulation.

To further study these issues rigorously we use multivariate mutual information decomposition [28]
to analyze the information transmitted by one binary output variable, e.g., an output action potential
or brief burst of action potentials, given two input variables, and we consider five different types of
partial information decomposition. The partial information decompositions of four different forms of
contextual modulation are studied. Those decompositions are compared with decompositions of purely
additive, subtractive, multiplicative, or divisive transfer functions. Here we consider continuous inputs
that are generated from multimodal and unimodal Gaussian probability models. The eight different
forms of interaction are considered for each of four scenarios in which the signal strengths given to
the two inputs are different. These strength scenarios are chosen to show the distinctive information
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processing properties of contextual modulation. These properties are as follows. First, information
uniquely about the drive can be transmitted when contextual modulation is absent or very weak, and
all of it is transmitted if the drive is strong enough. Second, little or no information or misinformation
is transmitted uniquely about the modulatory input when drive is absent or very weak whatever the
strength of the modulation. Third, modulatory inputs can amplify or attenuate the transmission of
driving information that is weak or ambiguous. We show that this modulation is characterized by a
synergistic component of the output that is present at intermediate levels of drive strength, but not
at either very high or very low levels. Finally, we provide evidence that contextual modulation is
asymmetric at the cellular level in neocortex by applying partial information decomposition to a highly
detailed multi-compartmental model of a layer 5 pyramidal cell and showing that it functions in a way
that approximates contextual modulation as defined above.

The work reported here builds on some long-established principles of cognition and neuroscience,
but also offers a clear advance beyond them. Our conception of contextual modulation builds upon
the view, long held by philosophers such as Immanuel Kant, that basic perception and other cognitive
functions are in effect ‘unconscious inference’ [35]. There is now ample evidence from psychophysics
to neurophysiology to support and extend that view [12,36]. Though proposed by us more than
25 years ago, the conception of local processors as having two points of integration is not yet widely
shared by those who work on systems neuroscience, many of whom remain fully committed to the
assumption that, from the functional point of view, neurons in general can be adequately conceived
of as leaky integrate-and-fire point neurons [37]. That is beginning to change, however, because
evidence from intracellular recordings at well-separated points on a single neuron is now becoming
too strong to ignore [9,13]. Partial information decomposition is a very recent extension to the
foundations of information theory. It has great potential for use in the cognitive and neurosciences,
as well as in artificial intelligence and neuromorphic computing. Its application to such issues has
just begun [28], but it has far to go. Use of two-point processors in artificial neural nets is also
beginning [38], but not yet in the form of the context-sensitive two-point processors analyzed here.
When context-sensitive two-point processors are used in such applications new light may be cast
on well-established difficulties in the use of context, such as getting stuck in "local minima’” within
the contextual landscape, and interference between competing contexts. This is the first paper in
which partial information decomposition is used to explicitly distinguish the information processing
properties of context-sensitive two-point processors from those of the simple arithmetic operators.

2. Methods

2.1. Notation and Definitions

A nomenclature of mathematical terms and acronyms is provided at the end of the paper.

In [29], a local processor with two binary inputs and a binary output was discussed. Here, the
inputs are instead continuous and have an absolutely continuous probability density function (p.d.f.),
defined on R2. We denote the inputs to the processor by the continuous random variables R and
C (where R stands for the receptive field drive and C for the contextual input), and the output by the
binary random variable, Y, taking values in the set {—1,1}. The conditional distribution of Y, given
that R = 7, C = c is Bernoulli with conditional probability of the logistic form

Pr(Y=1R=r,C=c¢)=1/(1+exp(—T(r,c)), 1)

where T(r,c) is a continuous function defined on R?.
We now define the standard information-theoretic terms that are required in this work and based
on results in [39,40]. We denote by the function H the usual Shannon entropy, and note that any term



Symmetry 2020, 12, 815 6 of 26

with zero probabilities makes no contribution to the sums involved. The joint mutual information that
is shared by Y and the pair (R, C) is given by,

I(Y;R,C)=H(Y)+ H(R,C) — H(Y,R,C). (2)
The information that is shared between Y and R but not with C is
I(Y;R|C) = H(Y,C)+ H(R,C) — H(C) — H(Y,R,C), 3)
and the information that is shared between Y and C but not with R is
I(Y;C|R) = H(Y,R)+ H(R,C) — H(R) — H(Y,R,C). 4)
The information shared between Y and R is
I(Y;R) = H(Y) + H(R) — H(Y, R) )

and between Y and C is
I(Y;C)=H(Y)+H(C) — H(Y,C) 6)

The interaction information [41] is a measure of information involving all three variables, Y, R, C
and is defined by
II(Y;R;C) =I(Y;R,C) = I(Y;R) — I(Y;C) ?)

It has been employed as a measure of synergy [42,43].

2.2. Partial Information Decompositions

Partial Information Decomposition (PID) was introduced by Williams and Beer [30]. It provides
a framework under which the mutual information, shared between the inputs and the output of a
system, can be decomposed into components which measure four different aspects of the information:
the unique information that each input conveys about the output; the shared information that both
inputs possess regarding the output; the information that the inputs in combination have about the
output. Partial information decomposition has been applied to data in neuroscience; see, e.g., [31,44-46].
For a recent overview, see [28]. The PIDs were computed using the freely available Python package,
dit [47].

Here there are two inputs, R, C, and one output, Y. The information decomposition can be
expressed as [32]

I(Y;R,C) = Ium](Y; R|C) + Iunq(Y; CIR) + Lpa(Y;R,C) + Isyn(Y} R,C). (8)

Adapting the notation of [32] we express our joint input mutual information in four terms
as follows:

It is possible to make deductions about a PID by using the following four equations which give a
link between the components of a PID and certain classical Shannon measures of mutual information.
The following are in (Equations (4) and (5), [32]) , with amended notation; see also [30].

I(Y;R) = UngR + Shd )
I(Y;C) = UnqC + Shd, (10)
I(Y;R|C) = UngR + Syn, (11)
I(Y;C|R) = UnqC + Syn. (12)
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The Equations (8)—(10) are illustrated in graphical format in Figure 2. Using (8)-(10) we may deduce
the following connections between classical information measures and partial information components.

II(Y;R;C) = Syn — Shd (13)
I(Y;R) — I(Y;C) = UnqR — UnqC (14)
UngR = Ing(Y; R|C) denotes the unique information that R conveys about Y;
UnqC = Lyng(Y; C|R) is the unique information that C conveys about Y;
Shd = L,;(Y;R,C) gives the shared (or redundant) information that both R and C have
about Y;
Syn = Isyn (Y;R,C) is the synergy or information that the joint variable (R, C) has about

Y that cannot be obtained by observing R and C separately.

I(Y;R,C)

I(Y;R) 1(Y;C)

Figure 2. Williams-Beer diagram. A Williams-Beer diagram showing the decomposition of the joint
mutual information I(Y; R, C) between the output Y and the two inputs R and C into a sum of the four
partial information components, Shd, UngR, UnqC and Syn, as defined in the text.

When the partial information components are all non-negative, we may deduce the following
from (2), (9) and (10). When the interaction information in (7) is positive, a lower bound on the synergy
of a system is given by the interaction information [41]. Also, the expression in (14) provides a lower
bound for UngR, when I(Y; R) > I(Y;C). Thus, some deductions can be made without considering a
PID. While such deductions can be useful in providing information bounds, it is only by computing a
PID that the actual values of the partial information components can be obtained.

We consider here five of the different information decompositions that have been proposed.
The five methods of decomposition are Imin [30], Iproj [48], Ibroja [49,50], Iees [51] and Igep [52].
Although there are clear conceptual differences between them, our emphasis is upon aspects of
the decompositions on which we find that they all agree.

In particular, all the PID methods, except I.cs , produce PID components that are non-negative,
whereas I.s can produce negative values. The PID I is a pointwise-based method in which local
information measures are employed at the level of individual realizations. This is also the case with
fully pointwise PIDs, such as [53,54]. Local mutual information is explained by Lizier in [55]. If U, V
are discrete random variables then the mutual information I(U, V) shared between U and V can be
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written as an average of the local mutual information terms i(u; v), for each individual realization
(u,v) of (U, V), as follows

IU; V) = Y p(u,0) log, m =Y p(u,0)log, lm =Y p(u,0)log,i(u;0),  (15)
where (u[o)
o - p u\o
i(u;v) = log, ()

is the local mutual information associated with the realization (u, v) of (U, V).

The local mutual information i(u; v) is positive when p(u|v) > p(u), so that “knowing the value
of v increased our expectation of (or positively informed us about) the value of the measurement u” [55].
The local mutual information i(u;v) is negative when p(u|v) < p(u), so that “knowing about the
value of v actually changed our belief p(u) about the probability of occurrence of the outcome u to a
smaller value p(u|v), and hence we considered it less likely that # would occur when knowing v than
when not knowing v, in a case were u nevertheless occurred” [55]. Of course, the average of these local
measures is the mutual information I(U; V), as in (15), but when pointwise information measures are
used to construct a PID there can be negative averages. For further details of how negative values of
PID components can occur, see [53,54].

In the simulations, it will be found in some cases that the I..s PID has a negative value for the
unique information due to context, C. We interpret this to mean that the unique information provided
by C is, on average, less likely to result in predicting the correct value of the output Y. We adopt the
term ‘misinformation” from [53,54], and describe this as "unique misinformation due to context, C’.

We also consider residual output entropy defined by H(Y)res = H(Y|R,C). In addition to the
four PID components, this residual measure is useful in expressing the information that is in Y but
not in R, C. It is also worth noting that these five terms add up to the output entropy H(Y), and when
plotted we refer to the decomposition as a spectrum.

H(Y) = UngR + UnqC + Shd + Syn + H (Y )es. (16)

When making comparisons between different systems it is sometimes necessary to normalize the
five measures in (16) by dividing each term by their total, the output entropy, H(Y'). Such normalization
was applied in some systems that are considered in Section 3.1.

2.3. Transfer Functions

We consider eight different forms of transfer function when computing the conditional output
probabilities in (1). These transfer functions provide different ways of combining the two inputs.
The functions in (17) define modulatory forms of interaction, whereas those in (18) are arithmetic.
One aim of this study is to compare the PIDs obtained when using the different functions.

There are four modulatory transfer functions that are defined as follows.

Twi (7, ¢) = 3r(1 +exp (rc))

Tva(r,¢) =r+rc a7)
Twms(r,¢) = r(1 + tanh (rc))

Tma(r,c) =12'¢

We also consider four transfer functions that correspond to arithmetic interactions between the
inputs. They are given by

Ta(r,c) =r+c, Ts(r,c)=r—c, Tp(r,c)=rc, Tp(r,c)=r/c. (18)
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2.4. Different Signal-Strength Scenarios

The inputs to the processor, R, C are composed as R = 51X; and C = 5,Xp, where Xj, X, are
continuous random variables that have mean values of +1. Then the mean values of R are +s1 and
the mean values of C are *s;. The signal strengths, s1,s,, are non-negative real parameters that
characterize the strength of each input.

Four combinations of signal strengths are used in this study, as defined in Table 1.

Table 1. The four signal-strength scenarios

S1  Scenario 1: Strong R, with C near 0 (s1 = 10.0,s, = 0.05)
S2  Scenario 2: R near zero, with strong C  (s; = 0.05,s, = 10.0)
S3  Scenario 3: Weak R, with C near 0 (s1 = 1.00,s, = 0.05)
S4  Scenario 4: Weak R, with moderate C  (s; = 1.00,s, = 5.00)

They are chosen to test for the key properties of contextual modulation. They are:

CM1: Thedrive, R, is sufficient for the output to transmit information about the input, so context,
C, is not necessary.

CM2: The drive, R, is necessary for the output to transmit information about the input, so context,
C, is not sufficient.

CM3: The output can transmit unique information about the drive, R, but little or no unique
information or misinformation about the context, C.

CM4: The context can strengthen the transmission of information about R when R is weak.

2.5. Bivariate Gaussian Mixture Model (BGM)

In earlier work [29], we considered units that are bipolar. The bivariate Gaussian mixture model
offers a generalization to continuous inputs which reflect underlying binary events. We also consider a
single bivariate Gaussian model for the inputs that is obviously more relevant to interactions between
the two sites of integration within pyramidal cells. It is useful to know that two such different models
for the inputs give essentially the same results on all the issues explored herein. We require the
marginal distributions for the integrated receptive and contextual fields R and C to be bimodal, with
the distribution of R with modes at 4 s; and the distribution of C with modes at &+ s,. We shall define a
bivariate Gaussian mixture model for (R, C) which has four modes — at (—s1, —s2), (—s1,52), (51, —52)
and (s1,s7). First we consider the bivariate Gaussian mixture model for (Xj, X5 ), with probability

density function
4

f(x],x2|‘1/ll, VZ/ VB/ ]’l4/2) - 2 niﬂ(‘xll x2|ﬂirz), (19)

i=1
o[ [ e feeef
and the {7;} are the mixing proportions that are non-negative and sum to unity. For simplicity, we
have assumed that the bivariate Gaussian pdfs, which form the four components of the mixture, have
the same covariance matrix and also that the variances of X; and X; are equal. We note, in particular,
that the correlation between X; and Xj is equal to p in all four of the component distributions.
However, we require investigation of, the correlation of X; and X; for the mixture distribution
defined by f(x1, x2|p1, 2, i3, Ha, L) and, in particular, we need to find a way of setting this correlation
to take any desired value in the simulations. We proceed as follows.
Consider the random vector X given by

1

Xy
X3

X:
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Then, with respect to the mixture model (19), X has mean vector

—7T1 — T + 713 + 71y

4 4
E(X)=Y mEX|i) =Y mu= ,
() = LB = L= | 7

where we have used the law of iterated expectation. We make the simplifying assumption that 7ty = 74
and that 7r3 = 71, which results in both components of [E(X) being equal to zero. This assumption also
means that 711 + 1, = %

We denote the covariance matrix of X in the mixture model (19) by K. Then

K=E[(X - pu)(X = )] = E(XXT) —up" = E(XX"),
since y is the zero vector. Now, again using the law of iterated expectation, we have that

4 4 4
E(XXT) =Y mEXXTi) =Y m (S+pipl) =S+ Y mpipf,
i=1 i=1 i=1

which simplifies to

2 2
o +1 00° + 27 — 27
K=E(xx") =
( ) p¢72 +2m —2mp o2 +1
Therefore, in the mixture model (19), the Pearson correlation coefficient of X; and X» is

2 4 2m —2
cor(X, Xy) = FT LS

Setting this expression to be equal to the desired value of the correlation, d, gives that
m — = 3(d— (o —d)d?).
Taking p = d and using the equality 71 + 7, = § gives that
m=1+d)/4=A and m=(1—-d)/4=p.

Hence, to generate values of (X, Xp) from the BGM model that have correlation d we take

Z:(Tz[; ﬂ, mp=m=A and w3 =M =4,

for some pre-selected value of ¢.
Now let R = 51X; and C = s,Xp. Then (R,C) has the same correlation as (X3, Xp), by the
invariance of Pearson correlation under linear transformation, and it has a bivariate Gaussian mixture

L) )

and component covariance matrices all equal to

5 s% dsisp
log > |
dsisp s

model with component means
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with mixing proportions {A, jt, u, A }. It follows from the above discussion that in the bivariate Gaussian
mixture model (19), (R, C) has mean vector y and covariance matrix K given by

1 d
d 1|’

Some plots of the BGM probability density function are given in Figure 3. To complete the 3D
specification of the joint distribution for (Y, R, C) the conditional distribution of Y, given that R = r

and C = ¢, was assumed to be Bernoulli with probability equal to the logistic function applied to
T(r,c),asin (1).

H= [g] and K= (c?+1)

(a)d =0.8 (b)d =02
Figure 3. Probability density plots of (X7, X») in the bivariate Gaussian model for two different values

of the correlation, d.

2.6. Single Bivariate Gaussian Model (SBG)

While in our previous work [29] bipolar inputs have been considered, and a continuous version
considered in Section 2.5, there are many datasets in neuroscience and in machine learning where the
input variables are not bimodal. We extend our approach, therefore, by considering the input data to
have been generated from a single bivariate Gaussian probability model. We take (X1, X;) to have a
bivariate Gaussian distribution, with mean vector and covariance matrix

N o4
”_[1’ Z_‘Tld 1]'

Then, R and C are bivariate Gaussian, with mean vector and covariance matrix

2
P‘_lzl , 2—02[51 dslsZ].
2

dsy1sp s%
Taking o = 0.3, ensures that almost 100% of the generated values of (X7, X») lie within the unit
square [0,2] x [0,2], and so the corresponding values of R and C are almost certainly positive.
Given positive inputs, it is necessary to introduce a bias term, b, into each transfer function. Thus,
the general T(r, c) is replaced here by

Ty(r,c) = T(r,c) — b,

where b is taken to be the median of the values of T(r, c) obtained by plugging in the generated values
of r and c. This choice of b ensures that the simulated outputs are equally likely to be +1 or —1,
so the output entropy H(Y) will be very close to its maximum value of 1. The conditional output
probabilities are computed using (1) , with T(r, c¢) replaced by Tj(r, c) for each of the transfer functions
in (17) and (18).
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2.7. First Simulation, with Inputs Generated Using the BGM Model

The first simulation study has four factors: transfer function, PID method, scenario and the
correlation between the inputs. For each combination of the eight transfer functions, four signal-strength
scenarios and two values of correlation (0.8, 0.2), data were generated using the following procedure.

One million samples of (Xj,X,) were generated from the bivariate Gaussian mixture model
in (19) for a given value of the correlation, d, a given combination of the signal strengths, 51,5, and a
given transfer function. In all cases the standard deviation of X; and X, was taken as o = 0.3.

For each sample, the values of R and C were computed as r = s1x; and ¢ = spxp, and these
values were passed through the appropriate transfer function to compute the conditional output
probability, 6, in (1). For each value of r, c a value of Y was simulated from the Bernoulli distribution
with probability, 6;., thus giving a simulated data set for (Y, R, C).

Given the that PIDs have not yet been developed for this type of data, it is necessary to bin
the data. For each data set, a hierarchical binning procedure was employed. The values of R were
separated according to sign, and then the positive values were split equally into three bins using
tertiles, and similarly for the negative values of R. The same procedure was used to define bins for the
values of C.

The values of the binary output Y were binned according to sign. Having defined the bins,
the one million (Y, R, C) observations were allocated to the appropriate bins. This procedure produced
a 6 x 6 x 2 probability array that was used in each case as input for the computation of each of
the five PIDs used in the study, making use of the package, dit, which is available on GitHub
(https:/ /github.com /dit/dit).

2.8. The Second Simulation, with Inputs Generated Using the SBG Model

The second simulation study is essentially a repeat of the first study, as described in Section 2.6,
with the continuous input data for R and C being generated using the SBG model of Section 2.6 rather
than the BGM model. The values of the binary output Y were simulated in a similar way, with transfer
functions of the form Tj(r, c) used rather than T(r,c). The binning of the data was performed in a
slightly different way. Given the absence of bipolarity here, the values of R were divided equally into
six bins defined by sextiles, and similarly for C. The binary outputs were split according to sign. Thus,
again here, a 6 x 6 x 2 probability array was created, and it was used in each case to compute the PIDs.

3. The Results

The PIDs obtained using the methods, Iiin , Iproj , Ibroja » Were almost identical in both simulations,
so we show results only for the I, method. Thus, anything said in the ensuing about this method
also applies to the [, and Lproj PIDs.

3.1. First Simulation, With Inputs Generated Using the BGM Model

Here, each input is generated from a bimodal Gaussian distribution which has four modes, as
defined near (19). The results are presented in Figures 4 and 5 in a way that makes it easy to make
many different comparisons if the color scheme for depicting the five different components is learned.
They show that different transfer functions can transmit similar components of input information in
some signal-strength scenarios, but very different components under other scenarios. The rich variety
of spectra produced provides a new perspective on the information processing capabilities of each
of the transfer functions. In particular, they show that the components of information transmitted
by contextual modulation differ greatly from those of all four simple arithmetic operators, including
multiplication and division, which are also often thought of as modulatory.

The asymmetrical effects of R and C on output when using a modulatory transfer are clear.
The first row of spectra in Figure 4 is for strong drive and weak modulation. Nearly all the input
information is transmitted, half as that unique to the drive, shown in blue, and half as a shared
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component due to the correlation between the two inputs. The second row of spectra is for the reverse
strength scenario. In that case no information is transmitted. The two bottom rows show that although
modulatory transfer functions do not transmit information unique to the modulator (C), they do use
that information to modulate output in cases where drive is present but weak.
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Figure 4. Normalized spectra for the Ipyja, Igepand Ies PIDs, for each of the scenarios:
S1 (s; = 10.0,s, = 0.05), S2 (51 = 0.05,s, = 10.0), S3 (s; = 1.00,s, = 0.05), S4 (s; = 1.0,5, = 5.0).
The data were generated from the bivariate Gaussian mixture model. The correlation between inputs,
R and C, is 0.8. The modulatory transfer functions, M1, M2, M3, M4, and the arithmetic transfer
functions, A, S, P, D, are defined in Section 2.3.
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Figure 5. Normalized spectra for the Ipyja, Igepand Ies PIDs, for each of the scenarios:
S1 (s = 10.0,s, = 0.05), S2 (s = 0.05,s, = 10.0), S3 (s; = 1.00,s, = 0.05), S4 (s; = 1.0,sp = 5.0).
The data were generated from the bivariate Gaussian mixture model. The correlation between inputs,
R and C, is 0.2. The modulatory transfer functions, M1, M2, M3, M4, and the arithmetic transfer
functions, A, S, P, D, are defined in Section 2.3.

3.1.1. Distinctive Information Transmission Properties of Contextual Modulation

The distinctive properties of contextual modulation can be seen by comparing the
Iproja decomposition of M1, i.e., the left-most spectra in column 1 of Figure 4, with those of all
four simple arithmetic operators. The four rows show these decompositions for each of the four
different signal-strength scenarios. M1 transmits the same or very similar components as additive
and subtractive operators when context strength is close to zero. Thus, in the absence of contextual
information, it defaults to near-equivalence with the additive and subtractive operators. The effects
of contextual modulation differ greatly from those of addition and subtraction when drive strength
approaches zero, however. In that case no input information is transmitted by the modulatory
interaction whereas additive and subtractive operators transmit all or most of the input information in
the form of the shared component and that unique to the stronger input. These comparisons show
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that drive is both necessary and sufficient for transmission of input information by the contextual
modulatory interaction, M1, and that contextual input is neither necessary nor sufficient. Thus,
this clearly displays the marked asymmetry between the effects of driving and modulatory input that
is a distinctive property of contextual modulation.

In Figure 5, the correlation between R and C is weak (0.2), rather than strong (0.8), and this
produces some clear differences in the expression of some information components when the spectra
are compared with the corresponding spectra in Figure 4. For all transfer functions, except the
multiplicative transfer function, P, and the divisive transfer function, D, there has been a large reduction
in shared information, with a corresponding increase in the values of the unique information. This is
not surprising since the part of the shared information that is due to the correlation between the inputs
must decrease as the correlation between inputs is changed from strong to weak.

All of the conclusions regarding the comparisons of the modulatory with the arithmetic transfer
functions that are discussed above, where the correlation between inputs is strong, apply here also
when this correlation is weak, as do the conclusions regarding contextual modulation.

For both values of the correlation between the inputs we note the following. The components
transmitted by M1 differ greatly from those of the multiplicative and divisive operators under all
signal-strength scenarios. The multiplicative and divisive operators predominantly transmit synergistic
components. They never transmit unique components. Contextual modulation does transmit some
synergy, but that is much smaller than that transmitted by either multiplication or division, and occurs
only when drive is weak. When drive is strong enough it transmits large components of both shared
information and of that unique to the drive Though contextual modulation is neither necessary nor
sufficient for information transmission, its modulatory effects can be clearly seen by comparing the
components transmitted by M1 when drive is weak and context is moderate in Figures 4j and 5j,
with those transmitted when drive is weak and context is near zero in Figures 4g and 5g. Moderate
context increases the transmission of information about the drive by 0.4 bits. Stronger contextual inputs
increase it even further. This increase is predominantly in the shared information but does include
some increase in the component unique to the drive, and an increase in the synergistic component.

These fundamental contrasts between contextual modulation and the arithmetic operators apply
also to the forms of interaction labeled as M2, M3, and M4, but with a few differences in some of the
signal-strength scenarios. No differences between the four forms of contextual modulation occur when
the strength of either the drive or the context is near zero. When neither is near zero the main effect of
M2 is to greatly increase the synergistic component, resembling P. When drive is weak and context is
strong M2 transmits mainly synergy, and is not at all effective in amplifying transmission of either the
unique or shared information in the drive. M3 and M4 in that case do amplify transmission of shared
information, but not of that unique to the drive. Over all scenarios only M1 uses context to increase
the transmission of information unique to the drive.

3.1.2. Comparison of Five Different Forms of Information Decomposition

Encouraging convergence of the PID methodologies is indicated by our finding that the Iy,
decomposition gives essentially the same results as Iimin and Iy . Furthermore, the distinctive
properties of contextual modulation seen when using the I,;j, decomposition still apply when using
the other forms, except for a few differences that are as follows. The PIDs Iyep, and Iecs differ from Iprja ,
Imin and Ipyoj , mainly in that when neither drive nor context are near zero they show that M1, M3 and
M4 transmit some information unique to the context (Igep ) and some misinformation unique to the
context (Iecs ), Wwhereas Ibroja does not. Therefore, the Lgep and I.s PIDs in Figure 4k do not support
condition CM3 for contextual modulation.

In contrast to all the other methods the I.cs PID can have negative unique information components.
From (9)—(12) it can be seen that a negative value for UngR or UnqC corresponds the value of Shd or
Syn or both being larger than they would be if the unique components were non-negative. Therefore,
the I.s spectra can cover a range of approximately 1.4 instead of the range of 1 for the other PID
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methods. Nevertheless, in Scenario 1, the spectra for P and D are exactly the same as those obtained
using Iproja and Igep - For the other transfer functions, which have almost identical spectra, the fact
that UnqC is about -0.2 means that the synergy and shared components in these six spectra are
correspondingly larger by 0.2. In Scenario 2, all the spectra are the same except for A and S. In this
case, a negative value for UngR leads to the presence of non-zero synergy and a larger estimate of
the shared information. The spectra for Scenario 3 are almost the same as the corresponding transfer
functions with Ij, and Igep , and so similar comments apply. In Scenario 4, the patterns of the spectra
and the comparisons between them are essentially the same as those in the I,j, PIDs and so similar
comparisons apply here, although the presence of negative unique components distorts the values of
the other PID components, thus giving the spectra a somewhat different appearance.

In all four scenarios, transfer functions P and D have the same spectra for all five of the PID
methods. For Scenarios 1-3, all five PID methods show the same results for each transfer function,
with the exception of functions A and S in Scenario 2 (d, e, f) in which I has different spectra than
those obtained with the other four methods. In Scenario 4, the spectra produced using l4ep, are very
similar to those obtained with Inin , Iproj and Iproja €XCEPE for the presence of larger values of UngR
and UnqC. Apart from functions P and D, the I.s spectra appear to be rather different from the
corresponding spectra given with the other four methods due to the presence of negative values for
UngR and/or UnqC.

When the correlation between inputs is weak, as in Figure 5, all five PID methods produce the
same spectra for P and D. For the remaining transfer functions, the corresponding lyoja and Igep spectra
are identical when either the drive or context is close to zero. When the drive is weak and the context
is moderate, the corresponding Igep and Iy, Spectra are virtually identical for the arithmetic transfer
functions, along with M2, whereas for M1, M2 and M3 Iy, produces larger unique components, and
in particular positive values of information unique to the context.

When the correlation between inputs is weak, the negative components in I.s are smaller in
magnitude. Apart from the negative unique components, the I.s spectra are very similar to those of
the Iproja and Igep methods when either drive or context is close to zero. When neither is close to zero,
the Iccs spectra are more like the corresponding Iy Spectra than those due to Iye, because Igep has
larger values for information unique to the context, C.

The same conclusions regarding contextual modulation and the comparison of PID methods, that
are given above in the case of strong correlation between inputs, apply here also when that correlation
is weak.

Despite these differences the overall picture that emerges is that the distinctive properties of
contextual modulation and their fundamental contrasts with the four simple arithmetic operators can
be clearly seen in the decompositions produced by all five methods for computing the decompositions.
The only exception regarding contextual modulation is that noted for Lgep and I.cs. Whether the
differences noted between the various methods have any functional significance remains to be
determined.

3.2. Second Simulation, With Inputs Generated Using the SBG Model

In this simulation, each input is generated from a unimodal Gaussian distribution. The spectra
for the case of strong correlation between inputs are in Figure 6.

When either the drive or context is close to zero, the modulatory transfer functions indicate that
conditions CM1 and CM2 are satisfied. Furthermore, comparison of the corresponding spectra between
Scenarios 3 and 4 shows that conditions CM3 and CM4 also hold, although only marginally for M3;
M1, M2 and M4 transmit mainly shared information along with some synergy and information unique
to the drive. Transfer functions A and S are different from M1-M4 in that they express information that
is unique to whichever is the stronger input, and they have fairly large values of UnqC in Scenarios 2
and 4, thus breaking condition CM3.
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When either the drive or context is close to zero P transmits virtually no information; when this is
not the case, P expresses mainly shared information, and has a similar spectra to those of M2 for all five
PIDs. Transfer function D transmits virtually no information in Scenarios 2 and 4 where the context is
moderate or strong, but when the context is close to zero it transmits mainly synergistic information.
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Figure 6. Normalized spectra for the Ipyja, Igepand Ies PIDs, for each of the scenarios:
S1 (s; = 10.0,s, = 0.05), S2 (51 = 0.05,s, = 10.0), S3 (s; = 1.00,s, = 0.05), S4 (s; = 1.0,5, = 5.0).
The data were generated from the single bivariate Gaussian model. The correlation between inputs,
R and C, is 0.8. The modulatory transfer functions, M1, M2, M3, M4, and the arithmetic transfer
functions, A, S, P, D, are defined in Section 2.3.

3.2.1. Distinctive Information Transmission Properties of Contextual Modulation

When the correlation between inputs is weak, in Figure 7, there is generally less shared information
and larger values for the unique information components and the synergistic information. The same
points made in the case of strong correlation between inputs also apply here: transfer functions M1,
M2 and M4 possess the properties CM1—CM4 required for contextual modulation, and M3 marginally
s0. Thus, none of the simple arithmetic transfer functions have the properties required for modulation,
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even though two of them, subtraction and division are asymmetric. Modulation requires more than
mere asymmetry; it requires a special kind of asymmetry.
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Figure 7. Normalized spectra for the Ipyja, Igepand Ies PIDs, for each of the scenarios:
S1 (s; = 10.0,sp = 0.05), S2 (s; = 0.05,s, = 10.0), S3 (s; = 1.00,s, = 0.05), S4 (s; = 1.0,sp = 5.0).
The data were generated from the single bivariate Gaussian model. The correlation between inputs,
R and C, is 0.2. The modulatory transfer functions, M1, M2, M3, M4, and the arithmetic transfer
functions, A, S, P, D, are defined in Section 2.3.

3.2.2. Comparison of Five Different Forms of Information Decomposition

Ignoring the very small negative spectral components in the I..s PIDs, indicating the transmission
of a little unique misinformation, all five PID methods produce very similar spectra in Scenarios 1-3
for all transfer functions except D. Transfer function D gives the same spectra across all PID methods
in Scenarios 2 and 4, but in Scenarios 1 and 3 the other PID methods express the same level of
synergistic information, but where I, gives a small shared component I4ep and Iecs have small
unique information components.

In Scenario 4, where the drive is weak and the context is moderate, the corresponding I, and
I.cs spectra are rather similar, although I..s suggests the transmission of some unique information due
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to context, C with M1 and M4. The corresponding I4p, spectra for all transfer functions, except for M1,
M2 and M4, has similar spectra to those given by Iy, and Iees ; for M1, M2 and M4, I4ep has larger
unique components, including quite large unique components due to context with M1 and M4.

Only the spectra computed by the Iprgja , Imin , Iproj and Iecs methods possess all the requirements
CM1-CM4 required to demonstrate contextual modulation.

3.3. Partial Information Decomposition of Binarized Action Potential Data from a Detailed Multi-Compartment
Model of A Neuron

Pyramidal cells in layer 5 of neocortex have a central role in neocortex, and provide most of its
output to centers outside of the thalamo-cortical system. A detailed multi-compartmental model of
a layer 5 pyramidal neuron was used [56] to produce data on the number of action potential (AP)s
emitted for all combinations of two variables: the numbers of basal and apical inputs to the model.
The numbers of basal inputs were equally spaced in the range 0, 10, 20, ...300, while the numbers
of apical inputs were equally spaced in the range 0, 10, 20, ..., 200, giving 31 different numbers
of basal input and 21 different numbers of apical input. There were 651 combinations of numbers
of basal and apical inputs, and for each one the number of APs that were omitted were recorded
in the range 0 to 4. These data were not analyzed in [56] but they are available [57]. We take R to
represent the number of basal inputs, and C to represent the number of apical inputs. The output
Y is taken to be binary, i.e., ‘burst” or 'no burst’, coded as 1 and 0 respectively, where a ‘burst’ is
defined as 2—4 APs within the brief interval following input, and 'no burst’ is defined as 0 or 1 AP.
(PID analyses were conducted also with the numbers of spikes split into three categories
(0-1, 2, 34 APs) and the results (not shown here) were very similar to those displayed in Figure 8)
Please note that here R, C are considered to be discrete random variables, and Y has the value O or 1
(rather than —1 or 1, as previously).

This is a discrete set of data, but for each combination of the basal and apical inputs the conditional
distribution of Y given that R = r,C = c is degenerate, since there is only one value of the binary
output Y for each combination of R and C. Thus, it is necessary to categorize the data to produce a
PID. The values of each of the inputs R and C were divided into four categories by using the quartiles
of each of their distributions, thus giving a 4 x4 x2 contingency table for use in computing the partial
information components.

Several classical information measures were computed for this 4x4x2 system; see Table 2. In this
4x4x2 system, the joint mutual information I(Y; R, C) = 0.59 bit, while I(Y;R) — I(Y;C) = 0.12 > 0,
so in any non-negative PID UngR is larger than UnqC by 0.12 bit. The interaction information in this
system is 0.16 bit, which is 26% of the joint mutual information. Thus, without performing a PID we can
deduce that UnqR > UnqC and that at least 26% of the mutual information between the output Y and the
inputs R, C is due to synergy. To obtain the actual values of the partial information components, the five
PIDs were applied to these data and the results are given in Figure 8.

Table 2. Some estimated classical Shannon information measures, given to two significant figures. The
unit is bit.

H(Y) I(Y;R) I(v;C) I(Y;R|C) I(Y;C|R) I(Y;R,C) II(Y;R;C)
088 028 0.16 043 0.31 0.59 0.16

All five PIDs reveal an asymmetry between the unique information components with much more
unique information being transmitted about R than about C. The unique information transmitted
about the basal input is large, at 20% of the joint mutual information. Information transmitted uniquely
about C is at or near zero for the PIDs using the Iiin , Lproj and Iproja methods, and is low for the other
two methods. All PIDs have a large synergy component. The basal and apical inputs combine to
transfer 53% of the joint mutual information as synergy, and they contribute to transferring 27% as
shared information. Similar results are obtained using the Ics and Igep PID methods, except that they
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suggest a larger transmission of unique information about C than dolin , Iproj and Iproja , with shared
and synergistic information being less. In brief, decomposition of the components of information
transmitted by such a cell indicates that the basal input is predominantly driving, and the apical input
is predominantly amplifying, as previously hypothesized [29].

UngR UnqC
[l

0.75 1

0.50 -

0.25 -

0.00 -

Ibroja Iccs Idep

Figure 8. Partial information decompositions are shown (the unit is bit) of Shai et al.’s binarized action
potential data in relation to the numbers of basal and apical inputs to the detailed multi-compartmental
model of a layer 5 pyramidal cell. All five PID methods were used, with the results from I, and
Lproj being virtually identical to those obtained using the I, method, so their results are not shown.

4. Conclusions and Discussion

These decompositions of the information transmitted by various neuronal transfer functions
show that contextual modulation has properties that contrast with those of all four arithmetic
operators, that it can take various forms, and that it requires a special kind of asymmetric transfer
function. They enhance our understanding of contextual modulation in the neocortex. Furthermore,
decomposition of the output of a multi-compartmental model of a layer 5 pyramidal cell indicates that
contextual modulation can occur at the level of individual cells.

4.1. Contextual Modulation Contrasts with the Arithmetic Operators

The information processing properties of contextual modulation are very different from those of
the arithmetic operators. Though the modulatory transfer functions studied here are defined by the
arithmetic operators their information processing properties are not in any simple sense a compilation
of those of the individual operators used to define them. Outputs from additive and subtractive
interactions transmit unique information about whichever input is strongest, whereas the modulatory
functions transmit unique information only about the drive. Multiplicative and divisive operators
also differ greatly from the contextual modulation studied above. Though contrasts between the four
elementary arithmetic operators loom large in descriptions of modulatory interactions, it is sometimes
noted that they may also involve complex combinations of them [2]. Here we have shown that the
information processing consequences of even simple combinations of them can be very different from
those of the elementary operators themselves. It should also be noted that many different processes in
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neocortex have been referred to as ‘gain modulation’ [2]. Many of them are examples of contextual
modulation as rigorously defined here, but some of them are not.

Emphasis upon the essential asymmetry of contextual modulation may give the impression
that it cannot be reciprocal. It can be reciprocal, however, and often is in neocortex. Consider the
example shown in Figure 1. The central symbol is more likely to be seen as a letter if the surrounding
symbols are seen as letters, but perception of them also depends on perception of the central symbol as
the many different streams of processing engage in reciprocal mutual disambiguation. Long-range
lateral connections between distinct streams of processing with non-overlapping receptive fields could
implement that reciprocal modulation.

The contextual modulations studied here transmit information unique to the driving input while
transmitting little or no unique information or misinformation about the context, C, though using it to
amplify or attenuate transmission of information about the drive. When the driving input is very weak
modulatory functions transmit little or no input information, whereas additive and subtractive transfer
functions can transmit much or all of it. Modulatory transfer functions transmit all the information
in the drive given that it is strong enough, including that which is unique to the drive, whereas
divisive and multiplicative transfer functions transmit little or no information unique to either input,
and predominantly transmit synergistic information. Divisive interactions transmit little or no input
information under conditions where the amplifying effects of modulation are strongest, i.e., where
drive is present but weak and modulatory inputs are strong. Modulatory transfer functions show
strong asymmetries between driving and modulatory inputs, as they were designed to do, and this
clearly contrasts them with additive and multiplicative functions.

Modulatory, additive, and subtractive transfer functions can have equivalent or similar effects
under special input conditions, however, such as when the modulatory input is very weak. Many
empirically observed transfer functions that seem linear may therefore seem so only because the
modulatory input was weak or absent, as it is in many physiological and psychological experiments.

4.2. There are Various Forms of Contextual Modulation

Five different forms of contextual modulation have been studied here: M1-M4, and that in
the detailed compartmental model of a pyramidal cell. Though the differences between them were
not great, they may be of considerable functional significance. Decompositions of the modulatory
interactions observed in the psychophysical experiments performed in the Dering lab [29] show them
to be more similar to our original modulatory interaction M1 than to the others investigated here.
Much remains to be learned concerning the various forms of contextual modulation that occur in
neocortex, however, as discussed further in Section 4.5.

The results reported here can be seen as pure cases of drive and contextual modulation. We have
no grounds for supposing that intermediate cases have no functional utility in neural systems, however.
On the contrary, it seems probable that intermediate cases combining some properties of drive and
modulation will be found in biological neural systems.

4.3. Is Coordinate Transformation an Example of Contextual Modulation?

When summarizing evidence that gain modulation is a basic principle of brain function, Salinas
and Sejnowski [58,59] argue that it is a non-linear way in which neurons combine information from
two (or more) sources, which may be of sensory, motor, or cognitive origin. They argue that gain
modulation is revealed when one input, the modulatory one, affects the gain or the sensitivity of the
neuron to the other input, without modifying its selectivity or receptive field properties. Though this
may seem to be equivalent to contextual modulation, Salinas and Sejnowski demonstrate its role in
coordinate transformation, and this shows that there are important differences between their concept of
gain modulation and contextual modulation. Coordinate transformations compute relations between
two inputs so they transmit large synergistic components when both inputs are strong. This clearly
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contrasts with the contextual modulation studied here, which transmits no synergistic information
when both inputs are strong.

4.4. Is the Contrast Between "Modulation” and 'Drive” Adequately Defined?

Many researchers contrast modulation with drive, as do we. Sherman and Guillery have long
been associated with this terminology, and have provided much of the most convincing physiological
evidence for its usefulness [36]. From our present perspective some difficult issues arise for this
terminology, however. First, there is as yet no consensus on how to define ‘drive’, and different ways of
defining it will have different implications for the contrast with modulation. For example, drive could
be defined as input that specifies selectivity or receptive field properties [59], as input that is necessary
for information to be transmitted [6], or even as the information whose transmission is modulated.
Second, the decompositions reported here show that both additive and subtractive interactions
contribute to output semantics. Though ‘drive’ can be defined to mean driving either up or down, it is
more likely to be interpreted as excitatory drive. Third, multiplicative and divisive transfer functions
predominantly transmit synergistic information that requires knowledge of both inputs, so both inputs
are essential. Therefore, if drive is defined as either specifying the receptive fields to which cells
are selectively sensitive or as necessary for information to be transmitted, it would need to include
multiplicative and divisive interactions in the ‘drive’, even though well-established terminology
describes them as being modulatory. Finally, it seems better to define ‘contextual modulation” by
saying what it is than by saying what it is not. This is what the scenarios studied above were designed
to do. One further way to clarify these issues would be by applying information decomposition to
physiological phenomena such as those on which Sherman and Guillery [36] base their distinction
between drive and modulation.

4.5. What Forms of Modulation Occur in Neocortex?

Neurophysiological and biophysical evidence for multiplicative and divisive forms of gain
modulation have been extensively discussed in previous reviews [1,2]. The possibility of context-sensitive
two-point processors was not adequately considered in those reviews, however. That may in part be
due to the relative sparseness of direct evidence from multi-site intracellular recordings, which require
considerable technical virtuosity, particularly in awake behaving animals. It may also have been due
to the lack of an adequate mathematical framework within which to conceptualize and measure the
distinct contributions that two inputs can make to an output. Partial information decomposition may
help to meet that need but is a very recent development that has not yet been extensively applied to
physiological data from networks of neurons or to psychophysical phenomena. Where it has been
applied to networks of neurons [44,60] and to the contextual effects of flankers in psychophysical studies
of visual edge detection [29], results are encouraging. Nevertheless, we see these results, and those
reported here, as no more than early stages in the exploration of context-sensitive sensitive two-point
neurons, and in the application of multivariate mutual information decomposition to crucial issues
in neuroscience.
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Nomenclature

Mathematical Symbols

o0 mE =

p().p()
fCo) fils)
}H/EZ

){1/)(2

X1, X2

51,52
T(r,c)

Te(r,c)

A discrete random variable representing the binary output

A realization of the random variable Y

A continuous random variable representing the receptive field input
A realization of the random variable R

A continuous random variable representing the contextual field input
A realization of the random variable C

A univariate and bivariate probability mass functions, e.g., p(u), p(u,v)
Bivariate probability density functions, as in (19)

Mean vector and covariance matrix, as in (19)

The mixing proportions in the bivariate Gaussian mixture model,
as in (19)

Continuous random variables following various Gaussian
probability models

The realized values of random variables X7, X5

The signal strengths used to compute r and ¢

The general form of transfer function, given receptive field input r and
contextual field input c, as in (1).

The transfer function for F, given receptive field input » and contextual
field input ¢, as in (17) and (18).

Classical Information Terms

1(Y;R,C)
I(Y;R|C)
1(Y;C|R)

II(Y;R;C)

The Shannon entropy of the random variable Y

The residual entropy of the output random variable Y, which is equal to
H(Y|R,C), the entropy in Y that is not shared with R or C.

The Shannon entropy where the random variable is evident in the text
The Shannon entropy of a bivariate random vector, e.g., H(Y, R)

The Shannon entropy of the trivariate random vector (Y, R, C)

The mutual information shared between two random variables,
e.g., I(Y;R)

The local mutual information shared between realizations of two
random variables, e.g., i(1;v)

The mutual information shared between the random variable Y and the
random vector (R, C)

The conditional mutual information shared between the random
variables Y and R but not shared with C

The mutual information shared between the random variables Y and C
but not shared with R

The interaction information — a measure involving synergy and shared
information which involves all three random variables Y, R, C.

Partial Information Decomposition

PID

Ibroja
Inin
Lproj
Lees

Partial Information Decomposition, with components UngR, UnqC, Shd
and Syn, defined in Section 2.2

The PID developed by Bertschinger et al. [49]
The PID developed by Williams and Beer [30]
The PID developed by Harder et al. [48]

The PID developed by Ince [51]
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Lgep The PID developed by James et al. [52]
Other Acronyms
M1-M4 Four modulatory transfer functions, with M; with transfer function

Twm, (i = 1,2,3,4), as defined in Section 2.3

A,S,P.D Four arithmetic transfer function, with e.g., A with transfer function Ty,
as defined in Section 2.3

51-54 Four signal-strength scenarios, as defined in Section 2.4

CM1-CM4 Four key properties of contextual modulation, as defined in Section 2.4

BGM Bivariate Gaussian Mixture Model, as defined in Section 2.5

SBG Single bivariate Gaussian Model, as defined in Section 2.6

AP Action potential
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