Cohomology of Lie Superalgebras
Abstract
:1. Introduction
2. Preliminaries
- , for , (-grading)
- , (super skew-symmetry)
- , (super Jacobi-identity)
- .
- , where are the even derivations from to A and are the even inner derivations from to A.
- parameterizes the equivalence classes of extensions of by A.
- parameterizes the set of infinitesimal deformations of .
3. The Betti Numbers for Nilpotent Lie Superalgebras
- If then by Equation (1), the only possibility is to have and therefore the only vector is .
- If , by Equation (3) we must cancel the repeated terms, and the other two terms and must be zero. This is only possible when and . Therefore the resulting cocycle isIf then there is only one k-cocycle which is the linear combination of two vectors of the form .
- If the situation is similar. We haveThen the extreme terms are cancelled only by taking and . Then the cocyle isIf then there is only one k-cocycle which is the linear combination of three vectors of the form .
- (1)
- : If then . Therefore is also a coboundary for .
- (2)
- : If then . Therefore is also a coboundary for .
- (3)
- : If then . Therefore is also a coboundary for .
- (1)
- with . This gives us k vectors.
- (2a)
- .
- (2b)
- .
- (3)
- with . This gives us vectors.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Nilpotent Lie Superalgebras of Dimension ≤5
Notation | Product | |||
---|---|---|---|---|
[29] | ||||
Dimension | ||||
: | . | |||
Dimension | ||||
: | ||||
: | ||||
Dimension | ||||
: | , | |||
Dimension | ||||
: | , | |||
: | , | |||
: | , | |||
Dimension | ||||
: | , | |||
: | , | |||
Dimension | ||||
: | , | , | ||
: | , | , | , | |
Dimension | ||||
: | , | , | , | |
: | , | , | . | |
: | , | . | ||
Dimension | ||||
: | , | . | ||
: | , | , | . | |
: | , | , | ||
: | , | , | , | |
: | , | , | , | |
Dimension | ||||
: | , | . | ||
: | , | . | ||
: | , | , | . | |
: | , | , | . | |
: | , | , | . | |
: | , | , | . | . |
: | , | . | ||
: | , | . | ||
: | , | , | . | |
: | , | . | ||
Dimension | ||||
: | , | , | , | . |
: | , | . | ||
: | , | , | . | |
: | , | , | , | . |
: | , | . |
References
- Tuynman, G.M.; Wiegerinck, W.A.J.J. Central extensions and physics. J. Geom. Phys. 1987, 4, 207–258. [Google Scholar] [CrossRef]
- Andrzejewski, T.; Figueroa-O’Farrill, J.M. Kinematical Lie algebras in 2+1 dimensions. J. Math. Phys. 2018, 59, 061703. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-O’Farrill, J.M. Kinematical Lie algebras via deformation theory. J. Math. Phys. 2018, 59, 061701. [Google Scholar] [CrossRef] [Green Version]
- Cairns, G.; Jambor, S. The cohomology of the Heisenberg Lie algebras over fields of finite characteristic. Proc. Am. Math. Soc. 2008, 136, 3803–3807. [Google Scholar] [CrossRef] [Green Version]
- Cairns, G.; Jessup, B.; Pitkethly, J. On the Betti Numbers of Nilpotent Lie Algebras of Small Dimension. In Integrable Systems and Foliations; Springer: New York, NY, USA, 1997. [Google Scholar]
- Santharoubane, L. Cohomology of Heisenberg Lie algebras. Proc. Am. Math. Soc. 1983, 87, 23–28. [Google Scholar] [CrossRef]
- Magnin, L. Cohomologie adjointe des algebres de Lie de Heisenberg. Comm. Alg. 1993, 21, 2101–2129. [Google Scholar] [CrossRef]
- Armstrong, G.; Sigg, S. On the cohomology of a particular class of nilpotent Lie algebras. Bull. Austral. Math. Soc. 1996, 54, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, G.; Cairns, G.; Jessup, B. Explicit Betti numbers for a family of nilpotent Lie algebras. Proc. Am. Math. Soc. 1997, 125, 381–385. [Google Scholar] [CrossRef]
- Sköldberg, E. Morse Theory from an Algebraic Viewpoint. Tran. Am. Math. Soc. 2006, 358, 115–129. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Tirao, P. The adjoint homology of a family of 2-step nilradicals. J. Algebra 2012, 352, 268–289. [Google Scholar] [CrossRef] [Green Version]
- Agrebaoui, B.; Ben Fraj, N. On the cohomology of the Lie superalgebra of contact vector fields on S1|1. Bulletin de la Societé Royale des Sciences de Liège 2004, 76, 365–375. [Google Scholar]
- Iohara, K.; Koga, Y. Second homology of Lie superalgebras. Math. Nachr. 2005, 278, 1041–1053. [Google Scholar] [CrossRef]
- Kornyak, V.V. Computation of cohomology of Lie superalgebras of vector fields. Int. J. Mod. Phys. C 2000, 11, 397–413. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Zhang, R.B. Cohomology of Lie superalgebras and . Proc. Lond. Math. Soc. 2007, 94, 91–136. [Google Scholar] [CrossRef] [Green Version]
- Leites, D.A.; Fuks, D.B. Cohomology of Lie super-algebras. Dokl. Bolg. Akad. Nauk 1984, 37, 1294–1296. [Google Scholar]
- Fuks, D.B. Cohomology of Infinite Dimensional Lie Algebras; Consultants Bureau: New York, NY, USA, 1987. [Google Scholar]
- Bai, W.; Liu, W. Cohomology of Heisenberg Lie superalgebras. J. Math. Phys. 2017, 58, 021701. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yang, Y. Cohomology of model filiform Lie superalgebras. J. Algebra Its Appl. 2018, 17, 1850074. [Google Scholar] [CrossRef]
- Yang, Y.; Dua, X.; Liu, W. Adjoint Cohomology of Heisenberg Lie Superalgebras. arXiv 2018, arXiv:1809.03150. [Google Scholar]
- Yang, Y.; Liu, W. On cohomology of filiform Lie superalgebras. J. Geom. Phys. 2018, 134, 212–234. [Google Scholar] [CrossRef] [Green Version]
- Kac, V. Lie superalgebras. Adv. Math. 1977, 26, 8–96. [Google Scholar] [CrossRef] [Green Version]
- Scheunert, M. The Theory of Lie Superalgebras: An Introduction; Springer: New York, NY, USA, 1979. [Google Scholar]
- Musson, I.M. Lie Superalgebras and Enveloping Algebras. Grad. Stud. Math. 2012, 131, 28. [Google Scholar]
- Serganova, V. Representations of Lie Superalgebras. In Perspectives in Lie Theory; Callegaro, F., Carnovale, G., Caselli, F., De Concini, C., De Sole, A., Eds.; Springer INdAM Series; Springer: Cham, Switzerland, 2017; Volume 19. [Google Scholar]
- Varadarajan, V.S. Supersymmetry for Mathematicians: An Introduction. In Courant Lecture Notes in Mathematics; American Mathematical Society: Providence, RI, USA, 2004; Volume 11. [Google Scholar]
- Hegazi, A. Classification of nilpotent Lie superalgebras of dimension five I. Int. J. Theoret. Phys. 1999, 38, 1735–1739. [Google Scholar] [CrossRef]
- Matiadou, N.L.; Fellouris, A. A classification of the five-dimensional Lie superalgebras, over the complex numbers. Math. Balkanica (N. S.) 2005, 19, 143–154. [Google Scholar]
- Alvarez, M.A.; Hernández, I. Varieties of nilpotent Lie superalgebras of dimension ≤5. Forum Math. 2020, 32, 641–661. [Google Scholar] [CrossRef]
Lie Superalgebra | odd | even | ||||
---|---|---|---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, M.A.; Rosales-Gómez, J. Cohomology of Lie Superalgebras. Symmetry 2020, 12, 833. https://doi.org/10.3390/sym12050833
Alvarez MA, Rosales-Gómez J. Cohomology of Lie Superalgebras. Symmetry. 2020; 12(5):833. https://doi.org/10.3390/sym12050833
Chicago/Turabian StyleAlvarez, María Alejandra, and Javier Rosales-Gómez. 2020. "Cohomology of Lie Superalgebras" Symmetry 12, no. 5: 833. https://doi.org/10.3390/sym12050833
APA StyleAlvarez, M. A., & Rosales-Gómez, J. (2020). Cohomology of Lie Superalgebras. Symmetry, 12(5), 833. https://doi.org/10.3390/sym12050833