Regression Tree Model for Predicting Game Scores for the Golden State Warriors in the National Basketball Association
Abstract
:1. Introduction
2. Related Studies
3. Materials and Methods
3.1. Data
3.2. Methods
3.3. Regression Tree
3.4. Linear Regression
3.5. Support Vector Regression
3.6. Performance Evaluation
4. Results
4.1. Information on Opponents
4.2. Model Validation Results
4.2.1. Regression Tree
4.2.2. Linear Regression
4.3. Model Test Results
5. Discussion
6. Conclusions
- (1)
- The procedures to determine the data rules and to obtain the corresponding equations for obtaining the prediction scores for each team were manual and must be debugged to avoid errors, which was time-consuming.
- (2)
- Other factors may not have been considered in this study. For example, if a team’s key player does not play due to injury, the team may score lower in the relevant match. Factors that have been overlooked in the present study can be looked at by future studies, to determine whether the inclusion of such factors can further improve predictive accuracy.
- (3)
- The proposed models were established and tested for GSW and its opponents. More teams should be tested to evaluate the generality of the proposed model.
- (4)
- The dataset included GSW player match data for the 2017–2018 season only; we encourage researchers to analyze a larger dataset in the future.
- (5)
- The proposed models were established and tested for NBA games only. It can be used in other ball leagues; nevertheless, we do not guarantee that its predictive accuracy can be transferred to other ball leagues. Application of the proposed models on other sport events needs to be verified.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.1136 * GS − 0.0001 * MP + 0.1766 * FGA + 1.0854 * FG% + 0.5169 * 3P% + 0.2683 * FTA + 0.2759 * FT% + 0.0278 * DRB − 0.0262 * AST − 0.0096 * STL − 0.058 * BLK − 0.3728 |
LM2 | PTS = 0.1136 * GS − 0.0001 * MP + 0.1766 * FGA + 1.0854 * FG% + 0.5169 * 3P% + 0.8043 * FTA + 1.2538 * FT% + 0.0278 * DRB − 0.0262 * AST − 0.0096 * STL − 0.058 * BLK − 1.2327 |
LM3 | PTS = 0.0641 * GS − 0.0001 * MP + 1.3903 * FGA + 5.1844 * FG% + 0.1773 * 3PA + 1.2693 * 3P% + 0.2176 * FTA + 1.6953 * FT% + 0.0386 * DRB − 0.0281 * AST − 0.0096 * STL − 0.0723 * BLK − 0.0305 * TOV − 3.8398 |
LM4 | PTS = 0.0641 * GS − 0.0001 * MP + 0.9832 * FGA + 10.0824 * FG% + 0.1815 * 3PA + 1.7658 * 3P% + 0.7227 * FTA + 0.7961 * FT% + 0.1687 * ORB + 0.0299 * DRB − 0.0211 * AST − 0.0096 * STL − 0.0523 * BLK − 0.1202 * TOV − 5.3827 |
LM5 | PTS = 0.0231 * GS − 0.0002 * MP + 0.8761 * FGA + 22.6725 * FG% + 0.2429 * 3PA + 2.3976 * 3P% + 0.6056 * FTA + 1.36 * FT% − 0.0084 * ORB + 0.017 * DRB + 0.0226 * AST − 0.0093 * STL − 0.0145 * BLK + 0.0078 * PF − 10.3598 |
LM6 | PTS = 0.0231 * GS − 0.0006 * MP + 1.1301 * FGA + 21.8965 * FG% + 0.2616 * 3PA + 1.9132 * 3P% + 0.7687 * FTA + 0.8672 * FT% − 0.0084 * ORB + 0.017 * DRB + 0.0757 * AST − 0.0093 * STL − 0.0145 * BLK + 0.0078 * PF − 12.1217 |
LM7 | PTS = 0.0231 * GS − 0.0002 * MP + 0.85 * FGA + 30.7728 * FG% + 0.4108 * 3PA + 2.1747 * 3P% + 0.2773 * FTA + 2.3993 * FT% − 0.0114 * ORB + 0.0194 * DRB + 0.0342 * AST − 0.0093 * STL − 0.0717 * BLK + 0.0424 * PF − 14.1381 |
LM8 | PTS = 0.0231 * GS − 0.0002 * MP + 0.9548 * FGA + 32.9434 * FG% + 0.3487 * 3PA + 2.3784 * 3P% + 0.8931 * FTA + 4.6337 * FT% − 0.0114 * ORB + 0.0194 * DRB + 0.0371 * AST − 0.0093 * STL − 0.079 * BLK + 0.0468 * PF − 20.7739 |
Rule | Regression Equation |
---|---|
LM1 | PTS = −0.041 * GS + 0.1584 * FGA + 0.9103 * FG% − 0.0292 * 3PA + 0.5522 * 3P% + 0.1344 * FTA + 1.9649 * FT% − 0.0137 * DRB + 0.0263 * TRB − 0.0058 * AST − 0.3066 |
LM2 | PTS = −0.1506 * GS + 0.0001 * MP + 0.8048 * FGA + 2.1766 * FG% − 0.0222 * 3PA + 1.782 * 3P% + 0.2419 * FTA + 0.4397 * FT% + 0.1166 * DRB + 0.0199 * TRB − 0.0058 * AST + 0.0508 * STL − 0.1423 * TOV − 0.8115 |
LM3 | PTS = −0.0976 * GS + 0.9177 * FGA + 6.8786 * FG% + 0.0752 * 3PA + 1.7277 * 3P% + 0.5734 * FTA + 0.9142 * FT% − 0.0088 * DRB + 0.0199 * TRB − 0.0058 * AST + 0.1641 * STL − 3.534 |
LM4 | PTS = 0.0332 * GS + 0.6652 * FGA + 17.0546 * FG% + 0.1436 * 3PA + 2.9707 * 3P% + 0.5066 * FTA + 0.968 * FT% + 0.0039 * DRB − 0.0168 * AST − 0.0097 * STL − 0.0193 * BLK − 5.9762 |
LM5 | PTS = 0.0518 * GS + 0.8974 * FGA + 20.9579 * FG% + 0.2801 * 3PA + 2.3938 * 3P% + 0.6731 * FTA + 1.2043 * FT% + 0.0039 * DRB − 0.0094 * AST − 0.0097 * STL − 0.0287 * BLK − 0.0092 * PF − 10.2445 |
LM6 | PTS = 0.0527 * GS + 1.125 * FGA + 15.3185 * FG% + 0.3924 * 3PA + 1.7757 * 3P% + 0.6069 * FTA + 1.4276 * FT% + 0.0039 * DRB − 0.0094 * AST − 0.0097 * STL − 0.1476 * BLK − 0.0093 * PF − 9.355 |
LM7 | PTS = −0.0238 * GS + 0.8634 * FGA + 33.1303 * FG% + 0.3647 * 3PA + 2.4466 * 3P% + 0.6734 * FTA + 1.9331 * FT% + 0.0039 * DRB − 0.0033 * AST − 0.025 * STL − 16.0197 |
Rule | Regression Equation |
---|---|
LM1 | PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.1703 * FTA + 0.8129 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.7113 |
LM2 | PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.2985 * FTA + 1.4463 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.7983 |
LM3 | PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.3021 * FTA + 1.4463 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.7939 |
LM4 | PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.278 * FTA + 1.4463 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.6649 |
LM5 | PTS = −0.0129 * GS + 0.2609 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 5.3769 * 3P% + 0.1705 * FTA + 2.0271 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.2509 * PF + 0.0913 |
LM6 | PTS = −0.0129 * GS + 0.5289 * FGA + 3.4292 * FG% + 0.0257 * 3PA + 2.3564 * 3P% + 0.2095 * FTA + 1.5175 * FT% − 0.0371 * ORB + 0.0034 * TRB − 0.0036 * AST − 0.0189 * STL + 0.0472 * BLK − 1.0459 |
LM7 | PTS = −0.0129 * GS +1.3501 * FGA + 5.7764 * FG% + 0.0831 * 3PA + 0.8934 * 3P% + 0.5419 * FTA + 1.0467 * FT% − 0.016 * ORB + 0.0034 * TRB − 0.0036 * AST − 0.0189 * STL + 0.0673 * BLK − 4.0174 |
LM8 | PTS = −0.0129 * GS + 1.2549 * FGA + 8.1146 * FG% + 0.2546 * 3PA + 1.3603 * 3P% + 0.4042 * FTA + 1.3464 * FT% − 0.016 * ORB + 0.0367 * DRB + 0.0034 * TRB − 0.0036 * AST − 0.1139 * STL + 0.1569 * BLK − 5.5553 |
LM9 | PTS = −0.0129 * GS + 0.8811 * FGA + 12.7822 * FG% + 0.2248 * 3PA + 1.92 * 3P% + 0.5038 * FTA + 1.066 * FT% + 0.0431 * DRB + 0.0034 * TRB − 0.0036 * AST − 0.0196 * STL − 6.0382 |
LM10 | PTS = −0.0177 * GS + 0.7554 * FGA + 21.0721 * FG% + 0.3239 * 3PA + 2.1617 * 3P% + 0.5608 * FTA + 1.2428 * FT% + 0.0124 * ORB + 0.0046 * TRB − 0.0049 * AST − 0.0271 * STL − 8.648 |
LM11 | PTS = −0.0177 * GS + 1.0667 * FGA + 23.761 * FG% + 0.519 * 3PA + 1.9583 * 3P% + 0.6918 * FTA + 1.0464 * FT% + 0.0106 * ORB − 0.0938 * DRB + 0.087 * TRB − 0.0049 * AST − 0.1599 * STL − 13.9301 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.1117 * FGA + 0.9506 * FG% + 0.0409 * 3PA + 0.4507 * 3P% + 0.2321 * FTA + 0.4317 * FT% − 0.0134 * AST − 0.0288 * TOV − 0.2691 |
LM2 | PTS = 0.1117 * FGA + 0.9506 * FG% + 0.0409 * 3PA + 0.4507 * 3P% + 0.2924 * FTA + 0.4856 * FT% − 0.0134 * AST − 0.0288 * TOV − 0.2767 |
LM3 | PTS = 0.1117 * FGA + 0.9506 * FG% + 0.0409 * 3PA + 0.4507 * 3P% + 0.6312 * FTA + 1.2838 * FT% − 0.0134 * AST − 0.0288 * TOV − 0.7792 |
LM4 | PTS = 0.0002 * MP + 1.1678 * FGA + 5.1841 * FG% + 0.052 * 3PA + 0.5047 * 3P% + 0.247 * FTA + 1.4588 * FT% − 0.0079 * AST − 0.0279 * BLK − 0.0431 * TOV + 0.0142 * PF − 3.4654 |
LM5 | PTS = 0.0007 * MP + 0.8117 * FGA + 8.8607 * FG% + 0.052 * 3PA + 0.5047 * 3P% + 0.5133 * FTA + 1.0659 * FT% − 0.0079 * AST − 0.0279 * BLK − 0.035 * TOV + 0.0142 * PF − 4.4419 |
LM6 | PTS = 0.0008 * MP + 1.024 * FGA + 8.438 * FG% + 0.4651 * 3PA + 0.6746 * 3P% + 0.4815 * FTA + 1.244 * FT% − 0.0079 * AST − 0.0553 * BLK − 0.0199 * TOV + 0.0281 * PF − 5.5065 |
LM7 | PTS = 0.0642 * GS + 0.6585 * FGA + 17.1977 * FG% + 0.123 * 3PA + 2.8478 * 3P% + 0.5512 * FTA + 0.3376 * FT% − 0.0062 * TOV − 5.7993 |
LM8 | PTS = -0.1892 * GS + 0.6895 * FGA + 19.3371 * FG% + 0.1374 * 3PA + 1.1288 * 3P% + 0.9205 * FTA + 3.8532 * FT% − 0.0062 * TOV − 10.0091 |
LM9 | PTS = 0.9738 * FGA + 18.7541 * FG% + 0.3873 * 3PA + 1.8752 * 3P% + 0.6744 * FTA + 0.9939 * FT% − 0.1228 * TOV+ 0.0941 * PF − 9.9508 |
LM10 | PTS = 0.9505 * FGA + 33.2296 * FG% + 0.4135 * 3PA + 0.5176 * 3P% + 0.6855 * FTA + 1.3068 * FT% − 0.0062 * TOV − 16.1274 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.1417 * FGA + 2.3515 * FG% + 0.0438 * 3PA + 0.5717 * 3P% + 0.3088 * FTA + 0.4956 * FT% + 0.0123 * AST − 0.0114 * STL − 0.0186 * PF − 0.5119 |
LM2 | PTS = 0.1417 * FGA + 2.3515 * FG% + 0.0438 * 3PA + 0.5717 * 3P% + 0.5335 * FTA + 1.5342 * FT% + 0.0123 * AST − 0.0114 * STL − 0.0186 * PF − 0.9602 |
LM3 | PTS = 0.1417 * FGA + 2.3515 * FG% + 0.0438 * 3PA + 0.5717 * 3P% + 0.7157 * FTA + 1.8756 * FT% + 0.0123 * AST − 0.0114 * STL − 0.0186 * PF − 1.6306 |
LM4 | PTS = 0.544 * FGA + 10.6236 * FG% + 0.2015 * 3PA + 1.5694 * 3P% + 0.5165 * FTA + 0.3576 * FT% + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 3.1167 |
LM5 | PTS = 0.0007 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1501 * 3PA + 1.7466 * 3P% + 0.505 * FTA + 0.4932 * FT% + 0.0269 * ORB + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 0.6677 |
LM6 | PTS = 0.0009 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1501 * 3PA + 1.7207 * 3P% + 0.505 * FTA + 0.4932 * FT% + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 0.7115 |
LM7 | PTS = 0.0009 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1501 * 3PA + 1.7207 * 3P% + 0.505 * FTA + 0.4932 * FT% + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 0.6864 |
LM8 | PTS = 0.0004 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1638 * 3PA + 2.3301 * 3P% + 0.5467 * FTA + 0.4932 * FT% + 0.0269 * AST − 0.0114 * STL − 0.0186 * PF + 0.0274 |
LM9 | PTS = 0.0004 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1638 * 3PA + 2.5019 * 3P% + 0.5467 * FTA + 0.4932 * FT% + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF + 0.1507 |
LM10 | PTS = −0.3212 * GS + 0.0005 * MP + 1.2472 * FGA + 7.1835 * FG% + 0.3778 * 3PA + 1.2633 * 3P% + 0.569 * FTA + 1.0027 * FT% − 0.01 * AST − 0.0114 * STL + 0.022 * TOV − 0.0175 * PF − 5.3952 |
LM11 | PTS = −0.4592 * GS + 0.0007 * MP + 0.9651 * FGA + 12.8293 * FG% + 0.3184 * 3PA + 1.8388 * 3P% + 0.594 * FTA + 1.3671 * FT% − 0.0122 * AST − 0.0114 * STL + 0.0267 * TOV − 0.0175 * PF − 7.5166 |
LM12 | PTS = 0.0004 * MP + 0.8434 * FGA + 23.068 * FG% + 0.3742 * 3PA + 1.8547 * 3P% + 0.6369 * FTA + 1.2095 * FT% − 0.0187 * STL − 0.0246 * PF − 11.2644 |
LM13 | PTS = 0.9557 * FGA + 35.1348 * FG% + 0.4416 * 3PA + 2.0119 * 3P% + 0.7654 * FTA + 1.7094 * FT% − 0.0187 * STL − 0.0293 * PF − 18.4038 |
Rule | Regression Equation |
---|---|
LM1 | PTS = −0.0001 * MP + 0.1764 * FGA + 1.2818 * FG% + 0.0302 * 3PA + 0.3982 * 3P% + 0.2116 * FTA + 0.2799 * FT% − 0.0063 * ORB − 0.0039 * AST + 0.0066 * TOV − 0.4257 |
LM2 | PTS = −0.0001 * MP + 0.1764 * FGA + 1.2818 * FG% + 0.0302 * 3PA + 0.3982 * 3P% + 0.6367 * FTA + 1.3491 * FT% − 0.0063 * ORB − 0.0039 * AST + 0.0066 * TOV − 1.08 |
LM3 | PTS = 0.0004 * MP + 1.2723 * FGA + 5.901 * FG% + 0.0727 * 3PA + 1.4136 * 3P% + 0.1406 * FTA + 0.3975 * FT% − 0.0063 * ORB − 0.0101 * DRB − 0.0039 * AST + 0.0066 * TOV − 4.2519 |
LM4 | PTS = 0.0002 * MP + 1.3525 * FGA + 5.4025 * FG% + 0.2633 * 3PA + 1.8194 * 3P% + 0.1406 * FTA + 0.5444 * FT% − 0.0063 * ORB − 0.1234 * DRB − 0.0039 * AST + 0.1613 * TOV − 3.1576 |
LM5 | PTS = 0.2564 * FGA + 10.7834 * FG% + 0.3757 * 3PA + 1.4551 * 3P% + 0.576 * FTA + 1.2406 * FT% − 0.0063 * ORB − 0.0039 * AST + 0.0066 * TOV − 2.0274 |
LM6 | PTS = −0.0558 * GS + 0.6383 * FGA + 19.7827 * FG% + 0.268 * 3PA + 2.5233 * 3P% + 0.7214 * FTA + 0.6825 * FT% − 0.0058 * ORB + 0.0199 * DRB − 0.017 * TRB − 0.0036 * AST − 0.0131 * STL + 0.1189 * TOV − 7.0797 |
LM7 | PTS = −0.3244 * GS + 1.0839 * FGA + 19.3213 * FG% + 0.4449 * 3PA + 2.1591 * 3P% + 0.6807 * FTA + 1.0698 * FT% − 0.0058 * ORB + 0.0231 * DRB − 0.0163 * TRB − 0.0036 * AST − 0.0079 * STL + 0.1128 * TOV − 11.7177 |
LM8 | PTS = −0.1213 * GS + 0.9832 * FGA + 28.6595 * FG% + 0.4575 * 3PA + 3.2159 * 3P% + 0.6941 * FTA + 1.0059 * FT% − 0.0058 * ORB + 0.1812 * DRB − 0.2023 * TRB − 0.0036 * AST − 0.0079 * STL + 0.0431 * TOV − 15.7175 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.0879 * GS + 0.2072 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.2015 * FTA + 0.3589 * FT% + 0.0115 * DRB − 0.4674 |
LM2 | PTS = −0.0195 * GS + 0.305 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.2015 * FTA + 0.3589 * FT% + 0.0115 * DRB − 0.5628 |
LM3 | PTS = −0.0534 * GS + 0.3246 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P%+ 0.2015 * FTA + 0.3589 * FT% + 0.0115 * DRB − 0.438 |
LM4 | PTS = 0.0879 * GS + 0.2789 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.355 * FTA + 1.5366 * FT% + 0.0115 * DRB − 0.736 |
LM5 | PTS = 0.2084 * GS + 0.2692 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.4238 * FTA + 1.3183 * FT% + 0.0115 * DRB − 0.514 |
LM6 | PTS = 0.0519 * GS + 1.076 * FGA + 6.512 * FG% + 0.1729 * 3PA + 1.8056 * 3P% + 0.7639 * FTA + 0.1474 * FT% + 0.0049 * DRB − 0.0194 * STL − 4.1035 |
LM7 | PTS = 0.0519 * GS + 0.9832 * FGA + 9.8844 * FG% + 0.0892 * 3PA + 2.7334 * 3P% + 0.6035 * FTA + 1.0813 * FT% + 0.0132 * DRB + 0.0488 * AST − 0.0168 * STL + 0.0159 * TOV − 0.0707 * PF − 5.3049 |
LM8 | PTS = 0.0519 * GS + 1.1435 * FGA + 9.7413 * FG% + 0.4609 * 3PA + 1.436 * 3P% + 0.7036 * FTA + 0.5026 * FT% + 0.0148 * DRB − 0.0168 * STL + 0.0189 * TOV − 6.3336 |
LM9 | PTS = 0.0552 * GS − 0.0005 * MP + 0.933 * FGA + 19.8717 * FG%+ 0.3163 * 3PA + 2.8292 * 3P% + 0.6613 * FTA + 0.7231 * FT% + 0.1377 * ORB + 0.0706 * AST + 0.0995 * PF − 9.7557 |
LM10 | PTS = 0.0949 * GS − 0.0001 * MP + 0.8701 * FGA + 34.7682 * FG% + 0.4849 * 3PA + 0.7035 * 3P% + 0.8098 * FTA + 0.854 * FT% − 16.5234 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.0373 * GS + 0.0001 * MP + 0.1732 * FGA + 1.3719 * FG% + 0.0186 * 3PA + 0.5554 * 3P% + 0.4754 * FTA + 0.1408 * FT% − 0.0137 * ORB − 0.4115 |
LM2 | PTS = 0.0373 * GS − 0 * MP + 1.1834 * FGA + 4.4244 * FG% + 0.2057 * 3PA + 0.8084 * 3P% + 0.2278 * FTA + 1.1137 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 2.7073 |
LM3 | PTS = 0.0373 * GS + 1.636 * FGA + 4.5897 * FG% + 0.4005 * 3PA + 0.8084 * 3P% + 0.2278 * FTA + 0.7968 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 3.3137 |
LM4 | PTS = 0.0373 * GS + 1.7152 * FGA + 4.5897 * FG% + 0.3666 * 3PA + 0.8084 * 3P% + 0.2278 * FTA + 0.7968 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 3.2551 |
LM5 | PTS = 0.0373 * GS + 1.7152 * FGA + 4.5897 * FG% + 0.3666 * 3PA + 0.8084 * 3P% + 0.2278 * FTA + 0.7968 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 3.2495 |
LM6 | PTS = 0.0373 * GS + 0.9708 * FGA + 7.3572 * FG% + 0.2765 * 3PA + 1.4484 * 3P% + 0.4488 * FTA + 1.1871 * FT% − 0.0137 * ORB − 0.026 * DRB + 0.0184 * TRB − 3.8555 |
LM7 | PTS = 0.0576 * GS + 0.0004 * MP + 0.6212 * FGA + 15.8628 * FG% + 0.2172 * 3PA + 2.6106 * 3P% + 0.6639 * FTA + 0.7769 * FT% − 0.0066 * ORB − 0.0034 * TRB − 6.2503 |
LM8 | PTS = 0.0428 * GS − 0.0003 * MP + 0.917 * FGA + 17.8927 * FG% + 0.3595 * 3PA + 1.7654 * 3P% + 0.6567 * FTA + 0.9399 * FT% − 0.0066 * ORB − 0.0034 * TRB − 8.5359 |
LM9 | PTS = 0.018 * GS + 1.2138 * FGA + 18.004 * FG% + 0.4471 * 3PA + 1.971 * 3P% + 0.6639 * FTA + 0.6885 * FT% − 0.0066 * ORB − 0.0398 * TRB − 11.5673 |
LM10 | PTS = 0.018 * GS + 0.86 * FGA + 28.3833 * FG% + 0.2731 * 3PA + 3.349 * 3P% + 0.8045 * FTA + 0.0848 * FT% − 0.0066 * ORB − 0.0084 * TRB + 0.0604 * AST − 13.2198 |
LM11 | PTS = 0.018 * GS + 0.9991 * FGA + 34.5189 * FG% + 0.1635 * 3PA + 6.3365 * 3P% + 0.8812 * FTA + 0.0848 * FT% − 0.0066 * ORB − 0.0084 * TRB − 18.7932 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.1275 * FGA + 0.744 * FG% − 0.0091 * 3PA + 0.3932 * 3P% + 0.2197 * FTA + 0.5097 * FT% − 0.0094 * ORB − 0.0116 * STL + 0.0017 * PF − 0.2317 |
LM2 | PTS = 0.1275 * FGA + 0.744 * FG% − 0.0091 * 3PA + 0.3932 * 3P% + 0.1947 * FTA + 0.4477 * FT% − 0.0094 * ORB − 0.0116 * STL + 0.0017 * PF − 0.2315 |
LM3 | PTS = 0.1275 * FGA + 0.744 * FG% − 0.0091 * 3PA + 0.3932 * 3P% + 0.5317 * FTA + 1.5753 * FT% − 0.0094 * ORB − 0.0116 * STL + 0.0017 * PF − 0.8865 |
LM4 | PTS = 0.1211 * GS + 0.8761 * FGA + 7.1345 * FG% + 0.1493 * 3PA + 1.5771 * 3P% + 0.2827 * FTA + 1.2688 * FT% − 0.0094 * ORB − 0.0116 * STL + 0.0561 * PF − 3.4599 |
LM5 | PTS = 1.5315 * FGA + 6.1029 * FG% + 0.5123 * 3PA + 0.8355 * 3P% + 0.3973 * FTA + 1.1581 * FT% − 0.0094 * ORB − 0.0116 * STL + 0.0222 * PF − 5.1388 |
LM6 | PTS = 0.6704 * FGA + 16.1226 * FG% + 0.0548 * 3PA + 4.5211 * 3P% + 0.7321 * FTA + 0.4145 * FT% + 0.0239 * ORB + 0.0612 * AST − 0.0107 * STL − 0.0074 * PF − 5.732 |
LM7 | PTS = 1.0576 * FGA + 17.4133 * FG% + 0.2653 * 3PA + 3.2639 * 3P% + 0.7026 * FTA + 1.1675 * FT% + 0.0023 * ORB − 0.0696 * AST − 0.1496 * STL − 0.0074 * PF − 9.8628 |
LM8 | PTS = 0.9827 * FGA + 32.7185 * FG% + 0.3273 * 3PA + 2.747 * 3P% + 0.5761 * FTA + 1.4136 * FT% + 0.122 * ORB + 0.0165 * DRB − 0.0086 * AST − 0.0107 * STL − 0.0074 * PF − 17.2515 |
LM9 | PTS = 1.0699 * FGA + 34.8959 * FG% + 0.3141 * 3PA + 1.5965 * 3P% + 0.7351 * FTA + 7.6551 * FT% − 0.0086 * ORB + 0.0149 * DRB − 0.0086 * AST − 0.0107 * STL − 0.0074 * PF − 24.755 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.0413 * GS − 0.0001 * MP + 0.1552 * FGA + 0.8205 * FG% + 0.3668 * 3P% + 0.7021 * FTA + 0.2154 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.0219 * TOV − 0.261 |
LM2 | PTS = 0.0413 * GS − 0.0001 * MP + 0.1552 * FGA + 0.8205 * FG% + 0.3668 * 3P% + 0.3342 * FTA + 0.2154 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.0219 * TOV − 0.2706 |
LM3 | PTS = 0.0413 * GS − 0.0001 * MP + 1.4643 * FGA + 5.6642 * FG% + 0.1354 * 3PA + 1.5398 * 3P% + 0.3504 * FTA + 1.6443 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.1064 * STL + 0.0216 * TOV − 4.5824 |
LM4 | PTS = 0.0413 * GS − 0.0001 * MP + 0.9679 * FGA + 11.2032 * FG% + 0.2884 * 3PA + 1.7817 * 3P% + 0.5292 * FTA + 1.1448 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.0105 * STL + 0.1496 * TOV − 5.9879 |
LM5 | PTS = 0.0733 * GS − 0.0008 * MP + 0.8959 * FGA + 24.0439 * FG% + 0.4825 * 3PA + 0.8487 * 3P% + 0.7238 * FTA + 1.4474 * FT% − 0.0343 * ORB − 0.0111 * DRB − 0.0656 * TRB − 0.0163 * AST + 0.0239 * STL − 10.3867 |
LM6 | PTS = 0.0733 * GS − 0.0002 * MP + 0.6956 * FGA + 35.8693 * FG% + 0.2857 * 3PA + 3.7184 * 3P% + 0.7753 * FTA + 0.6452 * FT% − 0.3115 * ORB − 0.0111 * DRB − 0.099 * AST + 0.0205 * STL − 12.4609 |
LM7 | PTS = 0.0733 * GS − 0.0002 * MP + 0.9346 * FGA + 38.5068 * FG% + 0.4206 * 3PA + 3.3224 * 3P% + 0.8132 * FTA + 0.59 * FT% − 0.0863 * ORB − 0.0971 * DRB − 0.0354 * AST + 0.0205 * STL − 19.0252 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.2048 * FGA + 1.25 * FG% + 0.7276 * 3P% + 0.4824 * FTA + 0.1768 * FT% − 0.0656 * ORB − 0.0031 * DRB − 0.0102 * PF − 0.4649 |
LM2 | PTS = −0.0339 * GS + 1.5162 * FGA + 6.3018 * FG% + 0.0185 * 3PA + 1.7818 * 3P% + 0.5911 * FTA + 0.7567 * FT% − 0.0523 * ORB − 0.0031 * DRB + 0.0019 * PF − 4.9028 |
LM3 | PTS = −0.2885 * GS + 0.7331 * FGA + 11.9836 * FG% + 0.1983 * 3PA + 2.6125 * 3P% + 0.4927 * FTA + 1.1207 * FT% − 0.0639 * ORB − 0.0097 * DRB + 0.0252 * AST + 0.0126 * TOV − 0.0026 * PF − 4.5582 |
LM4 | PTS = −0.0506 * GS + 1.1112 * FGA + 13.576 * FG% + 0.3853 * 3PA + 2.3329 * 3P% + 0.7029 * FTA + 0.2593 * FT% − 0.066 * ORB − 0.0103 * DRB − 0.0247 * AST + 0.0137 * TOV − 0.0026 * PF − 8.2262 |
LM5 | PTS = 0.9919 * FGA + 25.6773 * FG% + 0.2983 * 3PA + 2.7463 * 3P% + 0.6605 * FTA + 1.2326 * FT% − 0.0118 * DRB − 0.1516 * STL − 0.0327 * PF − 13.4103 |
LM6 | PTS = 0.0013 * MP + 0.9668 * FGA + 39.4122 * FG% + 0.3625 * 3PA + 0.8249 * 3P% + 0.7043 * FTA + 1.8209 * FT% − 0.0169 * DRB − 0.0445 * PF − 22.6992 |
References
- Ruan, L.; Li, C.; Zhang, Y.; Wang, H. Soft computing model based financial aware spatiotemporal social network analysis and visualization for smart cities. Comput. Environ. Urban Syst. 2019, 77, 101268. [Google Scholar] [CrossRef]
- Dulebenets, M.A.; Abioye, O.F.; Ozguven, E.E.; Moses, R.; Boot, W.R.; Sando, T. Development of statistical models for improving efficiency of emergency evacuation in areas with vulnerable population. Reliab. Eng. Syst. Saf. 2019, 182, 233–249. [Google Scholar] [CrossRef]
- Andrée, B.P.J.; Chamorro, A.; Spencer, P.; Koomen, E.; Dogo, H. Revisiting the relation between economic growth and the environment; A global assessment of deforestation, pollution and carbon emission. Renew. Sustain. Energy Rev. 2019, 114, 109221. [Google Scholar] [CrossRef]
- Ulak, M.B.; Ozguven, E.E.; Vanli, O.A.; Dulebenets, M.A.; Spainhour, L. Multivariate random parameter Tobit modeling of crashes involving aging drivers, passengers, bicyclists, and pedestrians: Spatiotemporal variations. Accid. Anal. Prev. 2018, 121, 1–13. [Google Scholar] [CrossRef]
- Narasingam, A.; Kwon, J.S.-I. Data-driven identification of interpretable reduced-order models using sparse regression. Comput. Chem. Eng. 2018, 119, 101–111. [Google Scholar] [CrossRef]
- Nauright, J.; Zipp, S. The Complex World of Global Sport. Sport Soc. Cult. Commerce Media Politics 2018, 21, 1113–1119. [Google Scholar]
- Allison, L. The Global Politics of Sport: The Role of Global Institutions in Sport; Psychology Press, Routledge: London, UK, 2005. [Google Scholar]
- Loh, W.-Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Yi, H.-S.; Lee, B.; Park, S.; Kwak, K.-C.; An, K.-G. Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine. Environ. Eng. Res. 2019, 24, 404–411. [Google Scholar] [CrossRef]
- Kumar, S.; Chowdary, D.; Venkatramaphanikumar, S.; Kishore, K. M5P model tree in predicting student performance: A case study. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; pp. 1103–1107. [Google Scholar]
- Kohestani, V.; Hassanlourad, M.; Bazargan, L.M. Prediction the Ultimate Bearing Capacity of Shallow Foundations on the Cohesionless Soils Using M5P Model Tree. J. Civ. Eng. Educ. 2016, 27, 99–109. [Google Scholar]
- Ozhegov, E.; Ozhegova, A. Regression Tree Model for Analysis of Demand with Heterogeneity and Censorship; HSE Working Papers WP BRP 174/EC/2017; National Research University Higher School of Economics: Moscow, Russia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Thabtah, F.; Zhang, L.; Abdelhamid, N. NBA game result prediction using feature analysis and machine learning. Ann. Data Sci. 2019, 6, 103–116. [Google Scholar] [CrossRef]
- Valero, C.S. Predicting Win-Loss outcomes in MLB regular season games—A comparative study using data mining methods. Int. J. Comput. Sci. Sport 2016, 15, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Razali, N.; Mustapha, A.; Yatim, F.A.; Ab Aziz, R. Predicting football matches results using bayesian networks for English Premier League (EPL). IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012099. [Google Scholar] [CrossRef]
- Pathak, N.; Wadhwa, H. Applications of Modern Classification Techniques to Predict the Outcome of ODI Cricket. Procedia Comput. Sci. 2016, 87, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Loeffelholz, B.; Bednar, E.; Bauer, K.W. Predicting NBA games using neural networks. J. Quant. Anal. Sports 2009, 5, 1–17. [Google Scholar] [CrossRef]
- Cao, C. Sports Data Mining Technology Used in Basketball Outcome Prediction. Bachelor’s Thesis, Technological University Dublin, Dublin, Ireland, 2012. [Google Scholar]
- Harville, D.A. The selection or seeding of college basketball or football teams for postseason competition. J. Am. Stat. Assoc. 2003, 98, 17–27. [Google Scholar] [CrossRef]
- Karlis, D.; Ntzoufras, I. Analysis of sports data using bivariate Poisson models. J. R. Stat. Soc. Ser. D Stat. 2003, 52, 381–393. [Google Scholar] [CrossRef]
- Adam, A. Generalised linear model for football matches prediction. In Proceedings of the MLSA@PKDD/ECML, Riva del Garda, Italy, 19 September 2016; p. 1842. [Google Scholar]
- Wheeler, K. Predicting NBA Player Performance. Available online: http://cs229.stanford.edu/proj2012/Wheeler-PredictingNBAPlayerPerformance.pdf (accessed on 7 June 2019).
- Singh, T.; Singla, V.; Bhatia, P. Score and Winning Prediction in Cricket Through Data Mining. In Proceedings of the 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI), Faridabad, India, 8–10 October 2015; pp. 60–66. [Google Scholar] [CrossRef]
- Wiseman, O. Using Machine Learning to Predict the Winning Score of Professional Golf Events on the PGA Tour. Master’s Thesis, National College of Ireland, Dublin, Ireland, 2016. [Google Scholar]
- Lu, J.; Chen, Y.; Zhu, Y. Prediction of future NBA games’ point difference: A statistical modeling approach. In Proceedings of the 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 8–10 November 2019; pp. 252–256. [Google Scholar]
- Revin, A.; Chimka, R.J. NBA game results versus sports gaming information. Int. J. Perform. Anal. Sport 2013, 13, 885–896. [Google Scholar] [CrossRef]
- Basketball-Reference. Available online: https://www.basketball-reference.com/ (accessed on 7 June 2019).
- Casals, M.; Martinez, J. Modelling player performance in basketball through mixed models. Int. J. Perform. Anal. Sports 2013, 13, 64–82. [Google Scholar] [CrossRef]
- Martínez, J.; Martínez, L. El uso de indicadores de desempeño normalizados para la valoración de jugadores: El caso de las estadísticas por minuto en baloncesto. Motricidad. Eur. J. Hum. Mov. 2010, 24, 39–62. [Google Scholar]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Wang, Y.; Witten, I.H. Induction of Model Trees for Predicting Continuous Classes; University of Waikato, Department of Computer Science: Hamilton, New Zealand, 1996. [Google Scholar]
- Behnood, A.; Behnood, V.; Gharehveran, M.M.; Alyamac, K.E.J.C.; Materials, B. Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm. Constr. Bulid. Mater. 2017, 142, 199–207. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Springer: Berlin, Germany, 2015; pp. 67–80. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Miljković, D.; Gajić, L.; Kovačević, A.; Konjović, Z. The use of data mining for basketball matches outcomes prediction. In Proceedings of the IEEE 8th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 10–11 September 2010; pp. 309–312. [Google Scholar]
- Cheng, G.; Zhang, Z.; Kyebambe, M.N.; Kimbugwe, N.J.E. Predicting the outcome of NBA playoffs based on the maximum entropy principle. Entropy 2016, 18, 450. [Google Scholar] [CrossRef]
- Pai, P.-F.; ChangLiao, L.-H.; Lin, K.-P. Analyzing basketball games by a support vector machines with decision tree model. Neural Comput. Appl. 2016, 28. [Google Scholar] [CrossRef]
- Jain, S.; Kaur, H. Machine learning approaches to predict basketball game outcome. In Proceedings of the 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall), Dehradun, India, 15–16 September 2017; pp. 1–7. [Google Scholar]
Items | Variable Name | Abbreviation | Whether to Choose |
---|---|---|---|
1 | Player Uniform Number | No. | X |
2 | Rank | Rk | X |
3 | Season Game | G | X |
4 | Date | Date | X |
5 | Age | Age | X |
6 | Team | Tm | X |
7 | Home/Away | H/A | X |
8 | Opponent | Opp | X |
9 | Games Started | GS | V |
10 | Minutes Played | MP | V |
11 | Field Goals | FG | X |
12 | Field Goal Attempts | FGA | V |
13 | Field Goal Percentage | FG% | V |
14 | 3-Point Field Goals | 3P | X |
15 | 3-Point Field Goal Attempts | 3PA | V |
16 | 3-Point Field Goal Percentage | 3P% | V |
17 | Free Throws | FT | X |
18 | Free Throw Attempts | FTA | V |
19 | Free Throw Percentage | FT% | V |
20 | Offensive Rebounds | ORB | V |
21 | Defensive Rebounds | DRB | V |
22 | Total Rebounds | TRB | V |
23 | Assists | AST | V |
24 | Steals | STL | V |
25 | Blocks | BLK | V |
26 | Turnovers | TOV | V |
27 | Personal Fouls | PF | V |
28 | Points | PTS | V (Output) |
29 | Game Score | GmSc | X |
30 | Plus/Minus | +/− | X |
Season Game | Date | Opponent | Short Name |
---|---|---|---|
67 | 2018/3/11 | Minnesota Timberwolves | MIN |
68 | 2018/3/14 | LA Lakers | LAL |
69 | 2018/3/16 | Sacramento Kings | SAC |
70 | 2018/3/17 | Phoenix Suns | PHX |
71 | 2018/3/19 | SA Spurs | SAS |
72 | 2018/3/23 | Atlanta Hawks | ATL |
73 | 2018/3/25 | Utah Jazz | UTH |
74 | 2018/3/27 | Indiana Pacers | IND |
75 | 2018/3/29 | Milwaukee Bucks | MIL |
76 | 2018/3/31 | Sacramento Kings | SAC |
77 | 2018/4/1 | Phoenix Suns | PHX |
78 | 2018/4/3 | Oklahoma City Thunder | OCT |
79 | 2018/4/5 | Indiana Pacers | IND |
80 | 2018/4/7 | New Orleans Pelicans | NOP |
81 | 2018/4/8 | Phoenix Suns | PHX |
82 | 2018/4/10 | Utah Jazz | UTH |
Regression Models | Model Building Time (Seconds) | RMSE |
---|---|---|
Regression tree (M5P) | 0.210 | 0.9645 |
Linear regression | 0.001 | 1.3081 |
Support vector regression | 0.310 | 2.4904 |
Rule | Regression Equation |
---|---|
LM1 | PTS = 0.0696 * GS − 0.0003 * MP + 0.4028 * FGA + 0.8397 * FG% − 0.0269 * 3PA + 0.5822 * 3P% + 0.3586 * FTA + 1.5292 * FT% − 0.0075 * ORB + 0.0149 * DRB − 0.0168 * TRB − 0.018 * BLK − 0.0056 * PF − 0.4345 |
LM2 | PTS = 0.0375 * GS − 0.0001 * MP + 1.5187 * FGA + 5.7312 * FG% − 0.0045 * 3PA + 2.1884 * 3P% + 0.5562 * FTA + 0.8675 * FT% − 0.0075 * ORB − 0.0407 * DRB − 0.0048 * TRB − 0.0156 * BLK − 0.0056 * PF − 4.5329 |
LM3 | PTS = 0.0375 * GS − 0.0003 * MP + 1.1779 * FGA + 11.5318 * FG% + 0.1554 * 3PA + 1.7568 * 3P% + 0.5515 * FTA + 0.8305 * FT% − 0.0075 * ORB + 0.0399 * DRB − 0.0581 * TRB + 0.0477 * AST − 0.0837 * BLK + 0.0804 * TOV − 0.0056 * PF − 6.7484 |
LM4 | PTS = 0.3764 * GS − 0.0004 * MP + 1.0899 * FGA + 22.5574 * FG% + 0.3394 * 3PA + 3.1752 * 3P% + 0.755 * FTA + 1.0507 * FT% − 0.0176 * ORB − 0.0132 * PF − 13.0728 |
LM5 | PTS = 0.2379 * GS − 0.0007 * MP + 0.8717 * FGA + 32.494 * FG% + 0.1633 * 3PA + 6.1986 * 3P% + 0.9576 * FTA + 0.0606 * FT% − 0.0176 * ORB − 0.0954 * DRB − 0.0132 * PF − 13.2189 |
LM6 | PTS = 0.2379 * GS − 0.0015 * MP + 1.0394 * FGA + 32.1141 * FG% + 0.4884 * 3PA + 5.535 * 3P% + 0.8918 * FTA + 0.5658 * FT% − 0.0176 * ORB − 0.0132 * PF − 17.2302 |
Season Game | Data | GSW PTS | Opponents | Opponents PTS | GSW WIN/LOSE | |||
---|---|---|---|---|---|---|---|---|
Actual | Predicted | Actual | Predicted | Actual | Predicted | |||
67 | 2018/3/11 | 103 | 108 | MIN | 109 | 106 | LOSE | WIN |
68 | 2018/3/14 | 117 | 118 | LAL | 106 | 106 | WIN | WIN |
69 | 2018/3/16 | 93 | 96 | SAC | 98 | 100 | LOSE | LOSE |
70 | 2018/3/17 | 124 | 122 | PHX | 109 | 111 | WIN | WIN |
71 | 2018/3/19 | 75 | 78 | SAS | 89 | 86 | LOSE | LOSE |
72 | 2018/3/23 | 106 | 104 | ATL | 94 | 99 | WIN | WIN |
73 | 2018/3/25 | 91 | 86 | UTH | 110 | 109 | LOSE | LOSE |
74 | 2018/3/27 | 81 | 81 | IND | 92 | 93 | LOSE | LOSE |
75 | 2018/3/29 | 107 | 107 | MIL | 116 | 114 | LOSE | LOSE |
76 | 2018/3/31 | 112 | 115 | SAC | 96 | 97 | WIN | WIN |
77 | 2018/4/1 | 117 | 114 | PHX | 107 | 114 | WIN | TIE |
78 | 2018/4/3 | 111 | 106 | OCT | 107 | 104 | WIN | WIN |
79 | 2018/4/5 | 106 | 107 | IND | 126 | 131 | LOSE | LOSE |
80 | 2018/4/7 | 120 | 116 | NOP | 126 | 129 | LOSE | LOSE |
81 | 2018/4/8 | 117 | 117 | PHX | 100 | 100 | WIN | WIN |
82 | 2018/4/10 | 79 | 81 | UTH | 119 | 119 | LOSE | LOSE |
Accuracy: 87.5% |
Author, Year | Features | Method | Accuracy |
---|---|---|---|
Miljković et al., 2010 [35] | FG, FGA, FG%, 3P, 3PA, 3PA%, FT, FTA, FT%, ORB, DRB, TRB, AST, STL, BLK, TOV, PF, PTS, W, L, Pct, Homewon, Homelost, Roadwon, Roadlost, Divwon, Divlost, confwon, conflost, streak, L10won, L10lost | Naive Bayes Decision tree KNN SVM | 67.00% |
Cao, 2012 [18] | G, Opp, MP, FG, FGA, 3P, 3PA, FT, FTA, ORB, TRB, AST, STL, BLK, TOV, PF, PTS, PER, TS%, eFG%, ORB%, DRB%, TRB%, AST%, STL%, BLK%, TOV%, USG%, Ortg, DRtg, OWS, DWS, WS, WS/48 | Logistic regression ANN SVM Naive Bayes | 69.67% |
Wheeler, 2012 [22] | Pace, OPTS, OFG%, OTOR, DRB%, O%Rim, O%Short, OXeFG%, OeFG%, TRB%, MP, FGA, FTA, eFG%, TS%, ORtg | Linear regression | 47.00% |
Cheng et al., 2016 [36] | FG, FGA, 3P, 3PA, FT, FTA, ORB, DRB, AST, STL, BLK, TOV, PF, PTS | NBAME model (Using the principle of maximum entropy) | 74.40% |
Pai et al., 2016 [37] | 2P%, 3P%, FT, DRB, TRB, STL, AST | HSVMDT (SVM + decision rules) | 85.25% |
Kaur and Jain, 2017 [38] | FG, FGA, FG%, 3P, 3PA%, FT, FT%, DRB, TRB, AST, TOV, PF, PTS, TS%, eFG%, ORB%, TRB%, BLK%, TOV%, ORtg, DRtg | HFSVM model (SVM + fuzzy rules) | 88.26% |
This study | GS, MP(s), FGA, FG%, 3PA, 3P%, FTA, FT%, ORB, DRB, TRB, AST, STL, BLK, TOV, PF | Regression tree (M5P) | 87.50% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.-L.; Lin, Y.-J. Regression Tree Model for Predicting Game Scores for the Golden State Warriors in the National Basketball Association. Symmetry 2020, 12, 835. https://doi.org/10.3390/sym12050835
Huang M-L, Lin Y-J. Regression Tree Model for Predicting Game Scores for the Golden State Warriors in the National Basketball Association. Symmetry. 2020; 12(5):835. https://doi.org/10.3390/sym12050835
Chicago/Turabian StyleHuang, Mei-Ling, and Yi-Jung Lin. 2020. "Regression Tree Model for Predicting Game Scores for the Golden State Warriors in the National Basketball Association" Symmetry 12, no. 5: 835. https://doi.org/10.3390/sym12050835
APA StyleHuang, M. -L., & Lin, Y. -J. (2020). Regression Tree Model for Predicting Game Scores for the Golden State Warriors in the National Basketball Association. Symmetry, 12(5), 835. https://doi.org/10.3390/sym12050835