
symmetryS S

Article

Regression Tree Model for Predicting Game Scores
for the Golden State Warriors in the National
Basketball Association

Mei-Ling Huang * and Yi-Jung Lin
Department of Industrial Engineering and Management National Chin-Yi University of Technology,
Taichung 411, Taiwan; s4a815002@student.ncut.edu.tw
* Correspondence: huangml@ncut.edu.tw

Received: 28 April 2020; Accepted: 16 May 2020; Published: 19 May 2020
����������
�������

Abstract: Data mining is becoming increasingly used in sports. Sport data analyses help fans to
understand games and teams’ results. Information provided by such analyses is useful for game
lovers. Specifically, the information can help fans to predict which team will win a game. Many
scholars have devoted attention to predicting the results of various sporting events. In addition to
predicting wins and losses, scholars have explored team scores. Most studies on score prediction
have used linear regression models to predict the scores of ball games; nevertheless, studies have
yet to use regression tree models to predict basketball scores. Therefore, the present study analyzed
game data of the Golden State Warriors and their opponents in the 2017–2018 season of the National
Basketball Association (NBA). Strong and weak symmetry requirements were identified for each
team. We developed a regression tree model for score prediction. After predicting the scores of each
player on two teams, we summed and compared the predicted total scores to obtain the predicted
results (lose or win) of the team of interest. The results of this study revealed that the regression tree
model can effectively predict the score of each player and the total score of the team. The model
achieved a predictive accuracy of 87.5%.

Keywords: National Basketball Association; regression tree; linear regression; game points prediction

1. Introduction

Advanced statistical methods were commonly used in various studies. A soft computing model
used a learning approach for addressing data management over social networks [1]. Dulebenets et al. [2]
applied regression models to estimate the effects of various factors on the driving ability of individuals.
Andrée et al. [3] estimated a penalized non-parametric model of environmental output across
economic development. A multivariate random parameter Tobit model was utilized to determine the
factors that drive both the crash occurrence probability and the crash rate of 65+ roadway users [4].
Narasingam et al. [5] applied sparse regression to determine the structure of reduced-order model on
a hydraulic fracturing process.

Since the 20th century, sport has grown globally [6,7]. Professional sporting games, such as
basketball, baseball, tennis, and golf, and events such as the World Football Championship and the
Olympic Games not only attract the attention of many fans but also continue to create extremely high
output value for the sport industry. The Internet has enabled sport betting to develop rapidly. In most
countries, sport betting is inextricably linked to professional sport. In sport betting, increasing the
betting win rate requires—in addition to subjective judgements—predictions from historical data on
the game, such as predictions of total results, total over or under, handicaps, and point spreads.

Scholars in most studies have applied linear regression models to predict the scores of various
ball games. However, studies have yet to use the regression tree method to predict basketball scores.
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Regression trees are similar to classification trees and are easy to understand and interpret. Unlike
classification trees, the regression tree is suitable for continuous or ordered discrete dependent variables,
and the prediction error of a regression tree is usually measured by the square difference between
the actual value and the predicted value (see [8]). Regression trees have been used for predictions in
several areas; for example, they have been used for predicting short-term algal blooms in the field of
environmental engineering [9], for predicting student performance in teaching [10], for predicting the
ultimate bearing capacity of shallow foundations in cohesive soils in civil engineering [11], and for
demand analysis in economics [12]. Therefore, in the present study, we used the regression tree method
to predict the scores of basketball games. Single-season (2017–2018) match data from the National
Basketball Association (NBA) were used to predict the scores of each player on two teams. After the
predicted scores of the two teams were added and compared, the team’s predicted win or loss results
could be obtained. The linear regression and support vector regression were also utilized in this study.
Results from regression tree model, linear regression model, and support vector regression model
were compared.

2. Related Studies

Several scholars have devoted attention to predicting the results of various sporting events
and have conducted research on basketball, baseball, football, cricket, and other ball games [13–16].
Thabtah et al. [13] applied naive Bayes, neural network–like, and decision tree machine learning
methods to various feature sets, in order to construct prediction models. By comparing the respective
prediction accuracy rates, they could select the model with superior performance and determine the
key factors affecting the results of the game. Valero [14] analyzed 10 years of Major League Baseball
(MLB) regular season game data, using four data mining methods, namely lazy learners, artificial
neural networks, support vector machines, and decision trees; the goal was to evaluate the abilities
of the aforementioned classification- and regression-based methods in predicting game outcomes
(home team win or lose) in MLB games. Razali et al. [15] used Bayesian networks to predict home
victories, away victories, and draws in the English Premier League. Pathak et al. [16] applied modern
classification techniques, namely naive Bayes, support vector machine, and Random Forest, to predict
the outcome of the One Day International (ODI) cricket match.

Loeffelholz et al. [17] collected 620 NBA games and used neural networks to predict the success of
basketball teams. The selection of features input to the neural networks as the most salient features for
prediction from signal-to-noise ratios and expert opinions was also discussed in this study. Cao [18]
collected the data of five regular NBA seasons and applied machine learning algorithms to build
models for predicting the NBA game outcomes.

In addition to the prediction of victory or defeat, many scholars have studied team scores. For
example, Harville [19] proposed a linear model for predicting differences in scores for college basketball
or football games, using the difference in team effects plus or minus the home-field or field advantage.
To fit a relevant linear model, Harville proposed an improved method of least-squares estimation and
applied team estimates, in order to rank teams in the league. The study findings revealed that the results
of the playoffs could be effectively predicted. Karlis and Ntzoufras [20] proposed bivariate Poisson
models for analyzing goals scored by two teams and adjusted the models to increase the probability of
a draw. Adam [21] attempted to extend the bivariate Poisson method through a generalized linear
model. The score was modeled as the joint probability of a Poisson distribution representing the total
number of goals and a binomial distribution representing a team goal.

Wheeler [22] first used the chi-square test to screen input variables; the threshold was set to
0.05, excluding features not exceeding the threshold, and 16 variables were finally obtained. Linear
regression was then used to calculate the average score of each player according to the characteristic
variables and to obtain the sum of the predicted scores for the two players on the field. Finally, the
results of the two teams’ matches (win/lose) were compared. In addition, to compare the performance of
the linear regression model with other benchmark models, feature variables were input into naive Bayes
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and support vector machine (SVM) classifiers, to obtain classification results. The linear regression
output value was converted into two classification values for comparison. The linear regression model
predicted a player’s average score, and the converted win–loss classification result had an error rate of
53%. The naive Bayes and SVM classifier error rates were as low as 31%.

Singh et al. [23] proposed two separate models for predicting the match results for the ODI. They
used data for the 2013 and 2014 ODI competitions as training and testing sets and conducted 10
cross-validations. Linear regression was used to predict the final score of the first round of ODI, and a
naive Bayes classifier was used to estimate the probability of a team winning the second round. The
results showed that, for prediction of the final score, the errors in the linear regression classifier were
less than those for the current Run Rate method. As the game progressed, the accuracy of the naive
Bayes prediction of the game results increased from 70% to 91%.

Wiseman [24] predicted the winning score of events on the PGA Tour, using first-round data.
The author used linear regression, neural network regression, Bayesian linear regression, decision
forest regression, and boosted decision tree regression models and compared the performance of the
methods. Models were constructed by using data from 2004 to 2015 and validated by using the 2016
tournament. Correlation matrix analysis was conducted for various features. The first-round lead
score, first-round average score, event, course yardage, and total prize money were selected as forecast
indicators, and the R-squared and mean square error (MSE) values were used as evaluation indicators.
The results revealed that the linear regression and Bayesian linear regression models were superior to
the other models.

Lu et al. [25] analyzed games from 2012 to 2016 and established the least square fir model, using
previous game results, team ability, and home advantages, based on data from five seasons, to predict
the point difference for each team. Linear regression models depending on total over/under were fit to
data before the all-star break and checked for adequacy, to predict final score difference between home
and away NBA teams, for a regular season during 2011–2012 [26].

3. Materials and Methods

3.1. Data

In this study, we considered the Golden State Warriors (GSW), one of the 30 NBA teams, for analysis.
All teams competing with the GSW were regarded as opponents. The reason for choosing the GSW as
the research object is that, in the traditional basketball concept, the closer to the basket score, the more
solid the game will win, and the three-pointer is just a way to assist in scoring. However, the presence
and rise of Stephen Curry subverts this traditional concept and opens up the modern basketball of
“three-pointers”. In addition, the Golden State Warriors are the champions of the NBA’s first season,
and the team won a total of six league championships. Therefore, this study used the Golden State
Warriors as the object of analysis. Other teams can also model and predict according to the proposed
method of this article.

We executed the data collection step by capturing GSW player match data for the 2017–2018
season from the Basketball Reference website [27]. Because the final purpose was to obtain prediction
results through prediction scores, GSW opponents’ data must also be collected. After the collection
of the data, the missing values were deleted. The missing data in this dataset comprised only two
major items: Inactive and Player Suspended. We manually removed data fields indicating “Inactive”
and “Player Suspended”. The number of records is not fixed for each player on the field. Some teams
change players frequently. Each team has a total of 30 database fields, as shown in Table 1. The first
eight items are related to the event and were not considered in the prediction model in this study.
For the ninth item (i.e., Games Started), players in the starting lineup are usually the best players
on the team (see [28]). If the best player acts as a starter but does not contribute to the team, the
player is considered to have hindered the team. The corresponding variable was therefore selected to
establish whether it is relevant to the score. Regarding the 10th item (i.e., Minutes Played), Martínez
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and Martínez [29] indicated that no linear correlation exists between score and playing time. However,
we used the M5Prime model tree algorithm (M5P) [30], which predicts nonlinear continuous data;
therefore, this variable was selected and used in the prediction model. The 11th to 28th items pertain to
personal data contributed by players to the team in the game. Among them, Field Goals, 3-Point Field
Goals, and Free Throws are absolutely linearly related to the score (2 × FG + 3P + FT = PTS). Therefore,
the above three items were excluded in the prediction model. In addition, the 28th item represents the
player’s score, which we used as an output item. Game Score (29th item) and Plus/Minus (30th item)
are the player efficiency level and personal goal difference. Both items are calculated based on the
player’s personal data; therefore, they were not used in the prediction model. Finally, items considered
to be removed from the dataset were player uniform number, rank, season game, date, age, team,
home/away, opponent, field foals, 3-point field goals, free throws, game score, and plus/minus.

Table 1. Variables for each field in the database.

Items Variable Name Abbreviation Whether to Choose

1 Player Uniform Number No. X
2 Rank Rk X
3 Season Game G X
4 Date Date X
5 Age Age X
6 Team Tm X
7 Home/Away H/A X
8 Opponent Opp X
9 Games Started GS V
10 Minutes Played MP V
11 Field Goals FG X
12 Field Goal Attempts FGA V
13 Field Goal Percentage FG% V
14 3-Point Field Goals 3P X

15 3-Point Field Goal
Attempts 3PA V

16 3-Point Field Goal
Percentage 3P% V

17 Free Throws FT X
18 Free Throw Attempts FTA V
19 Free Throw Percentage FT% V
20 Offensive Rebounds ORB V
21 Defensive Rebounds DRB V
22 Total Rebounds TRB V
23 Assists AST V
24 Steals STL V
25 Blocks BLK V
26 Turnovers TOV V
27 Personal Fouls PF V

28 Points PTS V
(Output)

29 Game Score GmSc X
30 Plus/Minus +/− X

Table 1 presents a summary of the variables considered in the regression tree model for this study,
including the variable fields and variable abbreviations. The last column in the table indicates whether
the variables were included in the model in this study. Sixteen input variables were used, and the
output variables were the actual points.

The dataset was divided into a training set, validation set, and test set, and the ratio of the three
sets was 6:2:2. In 82 games, the total number of players playing in each game is different. To avoid a
scenario in which data of the 3rd player in the 50th game are assigned to the training set and data of
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the 4th player in the same game are assigned to the verification set, we divided the dataset according
to Season Game, with the first 50 fields representing the training set, the 51st–66th fields representing
the validation set, and the 67th–82nd fields representing the test set.

3.2. Methods

The flowchart of the study procedure is illustrated in Figure 1. We considered three regression
methods, namely regression tree, linear regression, and support vector regression models, for modeling,
prediction, and comparison. After training three regression models through the training set, we used
the three constructed models to predict the validation dataset and used the root mean square error
(RMSE) as an error index (loss function) for the models. We determined the superior of the three
aforementioned models and used it to predict player scores. This step was executed by using the
test set. After predicting and summing up the scores of players in each field, we obtained the team’s
predicted total score. By comparing the two teams’ predicted total scores, we could obtain the predicted
match result; finally, we could compare the result with the actual result and calculate the accuracy rate
of the predicted match result.

Figure 1. Research flowchart.

3.3. Regression Tree

The overall process of the regression tree method is similar to that of the classification tree method,
and a prediction value is obtained at each node. Classification trees are used to process discrete data,
whereas regression trees are used to process continuous data.

We constructed the model employed in this study by using the M5P tree regression algorithm
in Weka software. M5P is a machine learning algorithm published by Wang and Witten in 1996 [31].
Its predecessor was M5, which was developed by Quinlan in 1992. Compared with traditional linear
regression algorithms, M5P can accurately predict nonlinear data, and the rules and regression models
are easy to interpret.

M5P is a binary regression tree model. The last node in the regression tree is a linear regression
function that produces continuous numerical attributes. The M5P algorithm includes four main steps:
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The first step entails dividing the input space into several subspaces, to create a tree. The variability
in the subspace from root to node can be minimized by using segmentation criteria. The standard
deviation of the value reaching this node is used to measure variability. The construction of the tree is
completed by using a reduced standard deviation range (SDR) factor, which maximizes the expected
reduction in errors on the nodes, as expressed in the following equation:

SDR = sd(S) −
∑

i

Si
|S|
× sd(Si) (1)

where S is the set of data records arriving at the node, Si is the set obtained by dividing the node
according to a given attribute, and sd is the standard deviation. The second step entails developing
a linear regression model in each subspace, using the data associated with that subspace. The third
step involves applying pruning techniques to overcome the problem of overtraining. However, the
pruning process may cause a sharp interruption between adjacent linear models. The final step entails
performing a smoothing process to compensate for the sharp interruption. The smoothing process
combines all models from leaf to root to create the final model of the leaf. In the process, the predicted
values of the leaves are filtered when they return to the root. The filtered values are combined with the
predicted values through a linear regression of the node, as follows:

E′ =
ne + ka
n + k

(2)

where E′ is the estimated value passed to the next highest node, e is the estimated value passed from
below to the current node, a is the predicted value of the model at this node, n is the number of training
examples that have reached the node, and k is a constant (see [31,32]).

3.4. Linear Regression

Linear regression is the simplest and most commonly used prediction model. A linear regression
model predicts the linear relationship between continuous target variables and predicted variables,
and many data items fulfil the basic assumptions of normal distribution and linear relationship.

Linear regression models can be divided into simple linear regression and multiple linear regression
models. Simple linear regression models entail the use of a single independent variable (X) to predict a
dependent variable (Y). The regression equation can be expressed as follows:

Yi = β0 + β1Xi + εi, i = 1, . . . , n (3)

where Yi is the actual observation value (variable) for the ith observation value of the dependent
variable, Y; Xi is the ith observation (variable) of the independent variable, X; β0 is the parameter of
the regression mode (termed the intercept or constant term); β1 is the parameter of the regression
mode (termed the regression coefficient or slope); n is the number of observations; and εi is a random
variable of the ith observation and belongs to a random error.

Multiple linear regression models entail the use of two or more independent variables to predict a
dependent variable (Y). The regression equation can be expressed as follows:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + εi, i = 1, . . . , n (4)

where Yi is the actual observation value of the ith observation value for the dependent variable, Y;
Xki is the ith observation for the kth independent variable, X; β0 is a parameter of the regression mode
(termed the intercept); β1, . . . , βk is a parameter of the multiple regression mode (termed the regression
coefficient); εi is a random variable of the ith observation value; n is the number of observations; k is
the number of independent variables; and k > 0 is a positive integer.
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3.5. Support Vector Regression

Support vector regression (SVR) solves binary classification problems and has been proven to be
an effective tool in real-value function estimation [33]. Like a regression method, the output of SVR is a
real number. SVR finds an optimal hyperplane that balancing the model complexity and prediction
error. The main advantages of SVR include that its computational complexity does not depend on the
dimensionality of the input space, and it has excellent generalization capability, with high prediction
accuracy. The prediction function of SVR is defined as follows [34]:

f (x) = (w, x) + b (5)

where X denotes the space of the input patterns; and (w,x) denotes the dot product in X. If we minimize
w and b, the optimization problem is defined as follows:

Rsvm(C) = C
1
n

n∑
i=1

Lε(di, yi) +
1
2
‖w‖2 (6)

Lε(di, yi) =

{ ∣∣∣di − yi − ε,
∣∣∣di − yi

∣∣∣ ≥ ε
0 , otherwise

(7)

where C 1
n

n∑
i=1

Lε(di, yi) is empirical error risk, which could be obtained from an ε-insensitive loss

function in Equation (7); 1
2‖w‖

2 is a regularization term; and C is a regularization.
By introducing positive slack variables ξi and ξi

∗ into Equation (6), we get the following:

Minimize Rsvm(w, ξ∗) = 1
2‖w‖

2 + C
n∑

i=1
(ξi + ξi

∗)

Subject to di −wφ(xi) − bi ≤ ε+ ξ
wφ(xi) + bi − di ≤ ε+ ξi

∗ , ξi
∗
≥ 0

(8)

Lagrange multiplier is used to solve the optimization problem, and Equation (5) becomes the
following:

f (x, ai, ai
∗) =

n∑
i=1

(ai − ai
∗)K(x, xi) + b (9)

where ai and ai
∗ are Lagrange multipliers, satisfying ai*ai

∗ = 0, ai ≥ 0 and ai
∗
≥ 0 for i = 1, . . . , n, and

the dual optimization problem is as follows:

Max R(ai, ai
∗) =

n∑
i=1

di(ai − ai
∗) − ε

n∑
i=1

(ai + ai
∗) − 1

2

n∑
i=1

n∑
j=1

(ai − ai
∗)(a j − a j

∗)K
(
xi − x j

)
Subject to

n∑
i=1

(ai − ai
∗) = 0,

{
0 ≤ ai ≤ C, i = 1, 2, . . . , n
0 ≤ ai

∗
≤ C, i = 1, 2, . . . , n

(10)

3.6. Performance Evaluation

Several loss functions are used for regression, with commonly used functions being the MSE
and mean absolute error (MAE). The MAE is an absolute value of the deviation between target and
output value; therefore, positive and negative phases cannot cancel out. The MAE can thus effectively
reflect the reality of the prediction error. Nevertheless, the MAE value is not differentiable at 0, and no
method exists for determining the correction direction of a model through differentiation. The MSE
overcomes this disadvantage but cannot easily be used to interpret data to obtain interpretable units.
The solution is to use the RMSE to obtain an interpretable unit.

Accordingly, we used the RMSE to evaluate predictive performance. The RMSE is the square
root of the ratio of the sum of all squared deviations of the predicted value from the actual values
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to the number of observations, n. To explain the degree of dispersion of a sample, the RMSE can be
minimized for nonlinear fitting. The RMSE formula is as follows:

RMSE =

√√
1
n

n∑
i=1

(
Ŷi −Yi

)2
(11)

where Ŷi is the predicted value, and Yi is the actual value.

4. Results

In this study, we used the training set to construct three regression models—regression tree, linear
regression, and support vector regression models—through Weka software. We subsequently used
the three regression models to predict the validation data and then calculated the RMSE values of the
models, in order to determine the optimal model. Finally, the optimal model obtained from the training
and validation sets was employed for prediction, using the test set to measure model performance.
Results obtained by using data for the GSW as an example are described in the following sections.

4.1. Information on Opponents

Table 2 lists the opponent data corresponding to Season Game for the test set. The total scores
of the last 16 GSW games were predicted; subsequently, the total scores of the 11 teams in Table 2
were also predicted. By comparing the predicted total scores of the two teams, we obtained the
predicted outcomes. Finally, we compared the actual results with the predicted results and calculated
the accuracy of win or loss predictions.

Table 2. Opponent data corresponding to GSW test set data.

Season Game Date Opponent Short Name

67 2018/3/11 Minnesota Timberwolves MIN
68 2018/3/14 LA Lakers LAL
69 2018/3/16 Sacramento Kings SAC
70 2018/3/17 Phoenix Suns PHX
71 2018/3/19 SA Spurs SAS
72 2018/3/23 Atlanta Hawks ATL
73 2018/3/25 Utah Jazz UTH
74 2018/3/27 Indiana Pacers IND
75 2018/3/29 Milwaukee Bucks MIL
76 2018/3/31 Sacramento Kings SAC
77 2018/4/1 Phoenix Suns PHX
78 2018/4/3 Oklahoma City Thunder OCT
79 2018/4/5 Indiana Pacers IND
80 2018/4/7 New Orleans Pelicans NOP
81 2018/4/8 Phoenix Suns PHX
82 2018/4/10 Utah Jazz UTH

4.2. Model Validation Results

We applied the training set to construct the model and used the validation set to establish the
best model; we then obtained the prediction results for the two models, as well as the equations for
the regression tree, linear regression, and support vector regression models. The modeling results
are presented in Table 3. Figure 2 illustrates the regression tree, and Table 4 presents the regression
equation. The linear regression equation is represented by Equation (12).
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Table 3. Comparison of predictive performance of regression models, using GSW data.

Regression Models Model Building Time (Seconds) RMSE

Regression tree (M5P) 0.210 0.9645
Linear regression 0.001 1.3081

Support vector regression 0.310 2.4904

Figure 2. Regression tree diagram of GSW.

Table 4. Six regression equations for regression tree model for prediction of GSW scores.

Rule Regression Equation

LM1
PTS = 0.0696 * GS − 0.0003 * MP + 0.4028 * FGA + 0.8397 * FG% − 0.0269 * 3PA + 0.5822 *
3P% + 0.3586 * FTA + 1.5292 * FT% − 0.0075 * ORB + 0.0149 * DRB − 0.0168 * TRB − 0.018 *

BLK − 0.0056 * PF − 0.4345

LM2
PTS = 0.0375 * GS − 0.0001 * MP + 1.5187 * FGA + 5.7312 * FG% − 0.0045 * 3PA + 2.1884 *
3P% + 0.5562 * FTA + 0.8675 * FT% − 0.0075 * ORB − 0.0407 * DRB − 0.0048 * TRB − 0.0156 *

BLK − 0.0056 * PF − 4.5329

LM3
PTS = 0.0375 * GS − 0.0003 * MP + 1.1779 * FGA + 11.5318 * FG% + 0.1554 * 3PA + 1.7568 *
3P% + 0.5515 * FTA + 0.8305 * FT% − 0.0075 * ORB + 0.0399 * DRB − 0.0581 * TRB + 0.0477 *

AST − 0.0837 * BLK + 0.0804 * TOV − 0.0056 * PF − 6.7484

LM4 PTS = 0.3764 * GS − 0.0004 * MP + 1.0899 * FGA + 22.5574 * FG% + 0.3394 * 3PA + 3.1752 *
3P% + 0.755 * FTA + 1.0507 * FT% − 0.0176 * ORB − 0.0132 * PF − 13.0728

LM5 PTS = 0.2379 * GS − 0.0007 * MP + 0.8717 * FGA + 32.494 * FG% + 0.1633 * 3PA + 6.1986 *
3P% + 0.9576 * FTA + 0.0606 * FT% − 0.0176 * ORB − 0.0954 * DRB − 0.0132 * PF − 13.2189

LM6 PTS = 0.2379 * GS − 0.0015 * MP + 1.0394 * FGA + 32.1141 * FG% + 0.4884 * 3PA + 5.535 *
3P% + 0.8918 * FTA + 0.5658 * FT% − 0.0176 * ORB − 0.0132 * PF − 17.2302

4.2.1. Regression Tree

According to Table 3, the regression tree model with the lowest RMSE was the optimal model.
Although constructing the model would require a longer time than that required for the linear regression
model, the RMSE value of the regression tree model was the lowest among the three models. Therefore,
the regression tree model was used to predict player scores in the subsequent step.

4.2.2. Linear Regression

The linear regression model for conducting predictions for the GSW can be expressed as follows:

PTS = 0.716 ∗ GS + (−0.001) ∗MP + 1.049 ∗ FGA + 6.03 ∗ FG% + 0.133 ∗ 3PA + 4.635
∗ 3P% + 0.933 ∗ FTA + (−0.219) ∗ ORB + (−0.164) ∗ PF + (−2.055)

(12)

4.3. Model Test Results

Consider, for example, the test set data of GSW players for March 11, 2018; each row in Figure 3
contains information on players who played for the GSW on that day. According to the rules derived
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from the training set in Figure 2, we used the program to determine the rules (LM1–LM6) for each row
of test set data. After judgement, the input variables were entered into the corresponding equations,
to obtain the predicted PTS in the last column of Figure 4. The actual total score of the GSW team
on March 11, 2018, was 103 points, and the team’s total score based on predictions was 108 points
(Figure 4).

Figure 3. Regression tree rules derived through Excel.

Figure 4. Predictions of GSW total team scores on 11 March 2018.

We used the data in the remaining 15 test sets for the GSW and the data in the test sets for the
opponent teams, to obtain the total score from each prediction. Each team input into the M5P training
model was subject to several rules, with each rule having a corresponding regression equation. The
relevant form of the opponent is presented in the Appendix A to Appendix C. After obtaining the
predicted scores of both parties in all test sets, we could predict the GSW match results by comparing
the predicted GSW scores with the opponent scores. Finally, we compared the predicted scores with the
actual win or loss results and then calculated the accuracy of the predicted match results. Table 5 lists
the predicted results, on the basis of the test set, of the last 16 games of the GSW, and their opponents
in the 2017–2018 season. Figure 5 presents a line chart comparing the actual and predicted scores of the
GSW and their opponents.

Figure 5. GSW actual and predicted score (left) vs. opponent’s actual and predicted score (right).

Except for the prediction errors for the 67th and 77th fields, all predictions were accurate, and
the prediction accuracy was 87.5% (Table 5). In addition, the actual scores for some games were not
significantly different from the corresponding predicted scores. For some games, the actual scores were
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accurately predicted; for example, the predictions for the GSW in game 74, for both teams in game 81,
and for the opponents in game 82 were accurate. Therefore, the regression tree model can effectively
predict team scores.

Table 5. Final prediction of test set.

Season
Game

Data
GSW PTS Opponents Opponents PTS GSW WIN/LOSE

Actual Predicted Actual Predicted Actual Predicted

67 2018/3/11 103 108 MIN 109 106 LOSE WIN
68 2018/3/14 117 118 LAL 106 106 WIN WIN
69 2018/3/16 93 96 SAC 98 100 LOSE LOSE
70 2018/3/17 124 122 PHX 109 111 WIN WIN
71 2018/3/19 75 78 SAS 89 86 LOSE LOSE
72 2018/3/23 106 104 ATL 94 99 WIN WIN
73 2018/3/25 91 86 UTH 110 109 LOSE LOSE
74 2018/3/27 81 81 IND 92 93 LOSE LOSE
75 2018/3/29 107 107 MIL 116 114 LOSE LOSE
76 2018/3/31 112 115 SAC 96 97 WIN WIN
77 2018/4/1 117 114 PHX 107 114 WIN TIE
78 2018/4/3 111 106 OCT 107 104 WIN WIN
79 2018/4/5 106 107 IND 126 131 LOSE LOSE
80 2018/4/7 120 116 NOP 126 129 LOSE LOSE
81 2018/4/8 117 117 PHX 100 100 WIN WIN
82 2018/4/10 79 81 UTH 119 119 LOSE LOSE

Accuracy: 87.5%

Note: Bold font represents that the predicted game result is different from the actual game result.

5. Discussion

Table 6 provides results from relevant studies. Several scholars have devoted attention to
predicting game wins or losses. The use of machine learning models in earlier studies, to predict
competition results, and the development of models based on other principles in recent years have
engendered an increase in the accuracy of predictions. Miljkovic et al. [35] used four machine learning
algorithms to predict the competition results and reported that the naive Bayes classifier had the best
prediction accuracy rate (67%). Moreover, Cao [18] used four machine learning methods for prediction,
including a naive Bayes classifier, and revealed that the logistic regression model achieved higher
prediction accuracy than did the naive Bayes classifier. Cheng et al. [36] developed an NBAME model
based on the principle of maximum entropy, to predict the outcome of games. They compared the
performance of the NBAME model with traditional machine learning classifiers and reported that the
NBAME model achieved a higher prediction accuracy rate (74.4%). To solve the shortcomings of SVMs
that lack rule generation, Pai et al. [37] and Kaur et al. [38] used SVMs to combine decision rules and
fuzzy rules, respectively, to develop new predictive match outcome models. The results demonstrated
that the models achieved higher accuracy than did the conventional SVMs. Linear regression was
used in another study [22], and the accuracy achieved was 47%. Although it is much lower than our
result from our linear regression model, it is important to know that the proposed methodology is not
comparable with this study, due to the use of a different database.

Due to the uncertainty of game results, linear regression cannot be used to generate a regression
equation that illustrates the linear relationship between variables and scores. The M5P regression tree
algorithm used in this study could establish multiple regression models based on the distribution
of data, and the prediction accuracy was determined to be higher than those of the linear regression
model and support vector regression model. The present study differs from other studies in that it
applied a regression tree model to predict the scores of players in two opposing teams for each match
and then summed and compared the scores, to obtain the game results of the team of interest.
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Table 6. Comparison with results in the relevant literature.

Author, Year Features Method Accuracy

Miljković et al.,
2010 [35]

FG, FGA, FG%, 3P, 3PA, 3PA%, FT, FTA,
FT%, ORB, DRB, TRB, AST, STL, BLK, TOV,

PF, PTS, W, L, Pct, Homewon, Homelost,
Roadwon, Roadlost, Divwon, Divlost,

confwon, conflost, streak, L10won, L10lost

Naive Bayes
Decision tree

KNN
SVM

67.00%

Cao, 2012 [18]

G, Opp, MP, FG, FGA, 3P, 3PA, FT, FTA,
ORB, TRB, AST, STL, BLK, TOV, PF, PTS,
PER, TS%, eFG%, ORB%, DRB%, TRB%,

AST%, STL%, BLK%, TOV%, USG%, Ortg,
DRtg, OWS, DWS, WS, WS/48

Logistic regression
ANN
SVM

Naive Bayes

69.67%

Wheeler,
2012 [22]

Pace, OPTS, OFG%, OTOR, DRB%, O%Rim,
O%Short, OXeFG%, OeFG%, TRB%, MP,

FGA, FTA, eFG%, TS%, ORtg
Linear regression 47.00%

Cheng et al.,
2016 [36]

FG, FGA, 3P, 3PA, FT, FTA, ORB, DRB, AST,
STL, BLK, TOV, PF, PTS

NBAME model
(Using the principle of

maximum entropy)
74.40%

Pai et al.,
2016 [37] 2P%, 3P%, FT, DRB, TRB, STL, AST HSVMDT

(SVM + decision rules) 85.25%

Kaur and Jain,
2017 [38]

FG, FGA, FG%, 3P, 3PA%, FT, FT%, DRB,
TRB, AST, TOV, PF, PTS, TS%, eFG%,

ORB%, TRB%, BLK%, TOV%, ORtg, DRtg

HFSVM model
(SVM + fuzzy rules) 88.26%

This study GS, MP(s), FGA, FG%, 3PA, 3P%, FTA, FT%,
ORB, DRB, TRB, AST, STL, BLK, TOV, PF Regression tree (M5P) 87.50%

Note: The accuracy listed in this table was the highest one in each related study from the method in the bold font.

6. Conclusions

We conducted this study to develop regression tree and linear regression models by using data
from two competing teams in a single NBA season. We predicted the scores of each player on the two
teams and summed and compared the predicted scores of the two competing teams; thus, the win or
loss results of the team of interest could be obtained. The results reveal that the regression tree model
could predict player scores more accurately when compared with the linear regression model.

Any game is a complex system. The model proposed in this study yields favorable results for the
prediction of the outcome of NBA games. This model can thus provide valuable prediction information
for NBA team leaders and players. The limitation and future study of our method includes the
following:

(1) The procedures to determine the data rules and to obtain the corresponding equations for
obtaining the prediction scores for each team were manual and must be debugged to avoid errors,
which was time-consuming.

(2) Other factors may not have been considered in this study. For example, if a team’s key player
does not play due to injury, the team may score lower in the relevant match. Factors that have
been overlooked in the present study can be looked at by future studies, to determine whether
the inclusion of such factors can further improve predictive accuracy.

(3) The proposed models were established and tested for GSW and its opponents. More teams should
be tested to evaluate the generality of the proposed model.

(4) The dataset included GSW player match data for the 2017–2018 season only; we encourage
researchers to analyze a larger dataset in the future.

(5) The proposed models were established and tested for NBA games only. It can be used in other
ball leagues; nevertheless, we do not guarantee that its predictive accuracy can be transferred to
other ball leagues. Application of the proposed models on other sport events needs to be verified.
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Appendix A

Figure A1 presents the comparison of the prediction performance of two regression models of 11
opponents of GSW.

Figure A1. Comparison of the prediction performance of two regression models of 11 opponents
of GSW.

Appendix B

Figures A2 and A3 show the regression tree diagram of 11 opponents of GSW.

Figure A2. Regression tree diagram of GSW opponents (A).
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Figure A3. Regression tree diagram of GSW opponents (B).

Appendix C

Tables A1–A11 present the regression equations of several regression trees of 11 GSW opponents.

Table A1. Eight regression equations of the regression tree model of MIN.

Rule Regression Equation

LM1 PTS = 0.1136 * GS − 0.0001 * MP + 0.1766 * FGA + 1.0854 * FG% + 0.5169 * 3P% + 0.2683 * FTA +
0.2759 * FT% + 0.0278 * DRB − 0.0262 * AST − 0.0096 * STL − 0.058 * BLK − 0.3728

LM2 PTS = 0.1136 * GS − 0.0001 * MP + 0.1766 * FGA + 1.0854 * FG% + 0.5169 * 3P% + 0.8043 * FTA +
1.2538 * FT% + 0.0278 * DRB − 0.0262 * AST − 0.0096 * STL − 0.058 * BLK − 1.2327

LM3
PTS = 0.0641 * GS − 0.0001 * MP + 1.3903 * FGA + 5.1844 * FG% + 0.1773 * 3PA + 1.2693 * 3P% +

0.2176 * FTA + 1.6953 * FT% + 0.0386 * DRB − 0.0281 * AST − 0.0096 * STL − 0.0723 * BLK −
0.0305 * TOV − 3.8398

LM4
PTS = 0.0641 * GS − 0.0001 * MP + 0.9832 * FGA + 10.0824 * FG% + 0.1815 * 3PA + 1.7658 * 3P% +

0.7227 * FTA + 0.7961 * FT% + 0.1687 * ORB + 0.0299 * DRB − 0.0211 * AST − 0.0096 * STL −
0.0523 * BLK − 0.1202 * TOV − 5.3827

LM5
PTS = 0.0231 * GS − 0.0002 * MP + 0.8761 * FGA + 22.6725 * FG% + 0.2429 * 3PA + 2.3976 * 3P% +
0.6056 * FTA + 1.36 * FT% − 0.0084 * ORB + 0.017 * DRB + 0.0226 * AST − 0.0093 * STL − 0.0145 *

BLK + 0.0078 * PF − 10.3598

LM6
PTS = 0.0231 * GS − 0.0006 * MP + 1.1301 * FGA + 21.8965 * FG% + 0.2616 * 3PA + 1.9132 * 3P% +
0.7687 * FTA + 0.8672 * FT% − 0.0084 * ORB + 0.017 * DRB + 0.0757 * AST − 0.0093 * STL − 0.0145

* BLK + 0.0078 * PF − 12.1217

LM7
PTS = 0.0231 * GS − 0.0002 * MP + 0.85 * FGA + 30.7728 * FG% + 0.4108 * 3PA + 2.1747 * 3P% +

0.2773 * FTA + 2.3993 * FT% − 0.0114 * ORB + 0.0194 * DRB + 0.0342 * AST − 0.0093 * STL −
0.0717 * BLK + 0.0424 * PF − 14.1381

LM8
PTS = 0.0231 * GS − 0.0002 * MP + 0.9548 * FGA + 32.9434 * FG% + 0.3487 * 3PA + 2.3784 * 3P% +
0.8931 * FTA + 4.6337 * FT% − 0.0114 * ORB + 0.0194 * DRB + 0.0371 * AST − 0.0093 * STL − 0.079

* BLK + 0.0468 * PF − 20.7739
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Table A2. Seven regression equations of the regression tree model of LAL.

Rule Regression Equation

LM1 PTS = −0.041 * GS + 0.1584 * FGA + 0.9103 * FG% − 0.0292 * 3PA + 0.5522 * 3P% + 0.1344 * FTA +
1.9649 * FT% − 0.0137 * DRB + 0.0263 * TRB − 0.0058 * AST − 0.3066

LM2
PTS = −0.1506 * GS + 0.0001 * MP + 0.8048 * FGA + 2.1766 * FG% − 0.0222 * 3PA + 1.782 * 3P% +

0.2419 * FTA + 0.4397 * FT% + 0.1166 * DRB + 0.0199 * TRB − 0.0058 * AST + 0.0508 * STL −
0.1423 * TOV − 0.8115

LM3 PTS = −0.0976 * GS + 0.9177 * FGA + 6.8786 * FG% + 0.0752 * 3PA + 1.7277 * 3P% + 0.5734 * FTA
+ 0.9142 * FT% − 0.0088 * DRB + 0.0199 * TRB − 0.0058 * AST + 0.1641 * STL − 3.534

LM4 PTS = 0.0332 * GS + 0.6652 * FGA + 17.0546 * FG% + 0.1436 * 3PA + 2.9707 * 3P% + 0.5066 * FTA
+ 0.968 * FT% + 0.0039 * DRB − 0.0168 * AST − 0.0097 * STL − 0.0193 * BLK − 5.9762

LM5 PTS = 0.0518 * GS + 0.8974 * FGA + 20.9579 * FG% + 0.2801 * 3PA + 2.3938 * 3P% + 0.6731 * FTA +
1.2043 * FT% + 0.0039 * DRB − 0.0094 * AST − 0.0097 * STL − 0.0287 * BLK − 0.0092 * PF − 10.2445

LM6 PTS = 0.0527 * GS + 1.125 * FGA + 15.3185 * FG% + 0.3924 * 3PA + 1.7757 * 3P% + 0.6069 * FTA +
1.4276 * FT% + 0.0039 * DRB − 0.0094 * AST − 0.0097 * STL − 0.1476 * BLK − 0.0093 * PF − 9.355

LM7 PTS = −0.0238 * GS + 0.8634 * FGA + 33.1303 * FG% + 0.3647 * 3PA + 2.4466 * 3P% + 0.6734 * FTA
+ 1.9331 * FT% + 0.0039 * DRB − 0.0033 * AST − 0.025 * STL − 16.0197

Table A3. Eleven regression equations of the regression tree model of SAC.

Rule Regression Equation

LM1 PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.1703 * FTA
+ 0.8129 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.7113

LM2 PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.2985 * FTA
+ 1.4463 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.7983

LM3 PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.3021 * FTA
+ 1.4463 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.7939

LM4 PTS = −0.0129 * GS + 0.2146 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 1.6046 * 3P% + 0.278 * FTA +
1.4463 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.0228 * PF − 0.6649

LM5 PTS = −0.0129 * GS + 0.2609 * FGA + 1.5615 * FG% + 0.0132 * 3PA + 5.3769 * 3P% + 0.1705 * FTA
+ 2.0271 * FT% + 0.0034 * TRB − 0.0036 * AST − 0.0062 * STL − 0.2509 * PF + 0.0913

LM6 PTS = −0.0129 * GS + 0.5289 * FGA + 3.4292 * FG% + 0.0257 * 3PA + 2.3564 * 3P% + 0.2095 * FTA +
1.5175 * FT% − 0.0371 * ORB + 0.0034 * TRB − 0.0036 * AST − 0.0189 * STL + 0.0472 * BLK − 1.0459

LM7 PTS = −0.0129 * GS +1.3501 * FGA + 5.7764 * FG% + 0.0831 * 3PA + 0.8934 * 3P% + 0.5419 * FTA +
1.0467 * FT% − 0.016 * ORB + 0.0034 * TRB − 0.0036 * AST − 0.0189 * STL + 0.0673 * BLK − 4.0174

LM8
PTS = −0.0129 * GS + 1.2549 * FGA + 8.1146 * FG% + 0.2546 * 3PA + 1.3603 * 3P% + 0.4042 * FTA
+ 1.3464 * FT% − 0.016 * ORB + 0.0367 * DRB + 0.0034 * TRB − 0.0036 * AST − 0.1139 * STL +

0.1569 * BLK − 5.5553

LM9 PTS = −0.0129 * GS + 0.8811 * FGA + 12.7822 * FG% + 0.2248 * 3PA + 1.92 * 3P% + 0.5038 * FTA +
1.066 * FT% + 0.0431 * DRB + 0.0034 * TRB − 0.0036 * AST − 0.0196 * STL − 6.0382

LM10 PTS = −0.0177 * GS + 0.7554 * FGA + 21.0721 * FG% + 0.3239 * 3PA + 2.1617 * 3P% + 0.5608 * FTA
+ 1.2428 * FT% + 0.0124 * ORB + 0.0046 * TRB − 0.0049 * AST − 0.0271 * STL − 8.648

LM11 PTS = −0.0177 * GS + 1.0667 * FGA + 23.761 * FG% + 0.519 * 3PA + 1.9583 * 3P% + 0.6918 * FTA +
1.0464 * FT% + 0.0106 * ORB − 0.0938 * DRB + 0.087 * TRB − 0.0049 * AST − 0.1599 * STL − 13.9301
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Table A4. Ten regression equations of the regression tree model of SAS.

Rule Regression Equation

LM1 PTS = 0.1117 * FGA + 0.9506 * FG% + 0.0409 * 3PA + 0.4507 * 3P% + 0.2321 * FTA + 0.4317 * FT%
− 0.0134 * AST − 0.0288 * TOV − 0.2691

LM2 PTS = 0.1117 * FGA + 0.9506 * FG% + 0.0409 * 3PA + 0.4507 * 3P% + 0.2924 * FTA + 0.4856 * FT%
− 0.0134 * AST − 0.0288 * TOV − 0.2767

LM3 PTS = 0.1117 * FGA + 0.9506 * FG% + 0.0409 * 3PA + 0.4507 * 3P% + 0.6312 * FTA + 1.2838 * FT%
− 0.0134 * AST − 0.0288 * TOV − 0.7792

LM4 PTS = 0.0002 * MP + 1.1678 * FGA + 5.1841 * FG% + 0.052 * 3PA + 0.5047 * 3P% + 0.247 * FTA +
1.4588 * FT% − 0.0079 * AST − 0.0279 * BLK − 0.0431 * TOV + 0.0142 * PF − 3.4654

LM5 PTS = 0.0007 * MP + 0.8117 * FGA + 8.8607 * FG% + 0.052 * 3PA + 0.5047 * 3P% + 0.5133 * FTA +
1.0659 * FT% − 0.0079 * AST − 0.0279 * BLK − 0.035 * TOV + 0.0142 * PF − 4.4419

LM6 PTS = 0.0008 * MP + 1.024 * FGA + 8.438 * FG% + 0.4651 * 3PA + 0.6746 * 3P% + 0.4815 * FTA +
1.244 * FT% − 0.0079 * AST − 0.0553 * BLK − 0.0199 * TOV + 0.0281 * PF − 5.5065

LM7 PTS = 0.0642 * GS + 0.6585 * FGA + 17.1977 * FG% + 0.123 * 3PA + 2.8478 * 3P% + 0.5512 * FTA +
0.3376 * FT% − 0.0062 * TOV − 5.7993

LM8 PTS = -0.1892 * GS + 0.6895 * FGA + 19.3371 * FG% + 0.1374 * 3PA + 1.1288 * 3P% + 0.9205 * FTA
+ 3.8532 * FT% − 0.0062 * TOV − 10.0091

LM9 PTS = 0.9738 * FGA + 18.7541 * FG% + 0.3873 * 3PA + 1.8752 * 3P% + 0.6744 * FTA + 0.9939 * FT%
− 0.1228 * TOV+ 0.0941 * PF − 9.9508

LM10 PTS = 0.9505 * FGA + 33.2296 * FG% + 0.4135 * 3PA + 0.5176 * 3P% + 0.6855 * FTA + 1.3068 * FT%
− 0.0062 * TOV − 16.1274

Table A5. Thirteen regression equations of the regression tree model of PHX.

Rule Regression Equation

LM1 PTS = 0.1417 * FGA + 2.3515 * FG% + 0.0438 * 3PA + 0.5717 * 3P% + 0.3088 * FTA + 0.4956 * FT%
+ 0.0123 * AST − 0.0114 * STL − 0.0186 * PF − 0.5119

LM2 PTS = 0.1417 * FGA + 2.3515 * FG% + 0.0438 * 3PA + 0.5717 * 3P% + 0.5335 * FTA + 1.5342 * FT%
+ 0.0123 * AST − 0.0114 * STL − 0.0186 * PF − 0.9602

LM3 PTS = 0.1417 * FGA + 2.3515 * FG% + 0.0438 * 3PA + 0.5717 * 3P% + 0.7157 * FTA + 1.8756 * FT%
+ 0.0123 * AST − 0.0114 * STL − 0.0186 * PF − 1.6306

LM4 PTS = 0.544 * FGA + 10.6236 * FG% + 0.2015 * 3PA + 1.5694 * 3P% + 0.5165 * FTA + 0.3576 * FT%
+ 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 3.1167

LM5 PTS = 0.0007 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1501 * 3PA + 1.7466 * 3P% + 0.505 * FTA +
0.4932 * FT% + 0.0269 * ORB + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 0.6677

LM6 PTS = 0.0009 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1501 * 3PA + 1.7207 * 3P% + 0.505 * FTA +
0.4932 * FT% + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 0.7115

LM7 PTS = 0.0009 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1501 * 3PA + 1.7207 * 3P% + 0.505 * FTA +
0.4932 * FT% + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF − 0.6864

LM8 PTS = 0.0004 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1638 * 3PA + 2.3301 * 3P% + 0.5467 * FTA +
0.4932 * FT% + 0.0269 * AST − 0.0114 * STL − 0.0186 * PF + 0.0274

LM9 PTS = 0.0004 * MP + 0.2844 * FGA + 5.1577 * FG% + 0.1638 * 3PA + 2.5019 * 3P% + 0.5467 * FTA +
0.4932 * FT% + 0.0086 * AST − 0.0114 * STL − 0.0186 * PF + 0.1507

LM10 PTS = −0.3212 * GS + 0.0005 * MP + 1.2472 * FGA + 7.1835 * FG% + 0.3778 * 3PA + 1.2633 * 3P% +
0.569 * FTA + 1.0027 * FT% − 0.01 * AST − 0.0114 * STL + 0.022 * TOV − 0.0175 * PF − 5.3952

LM11 PTS = −0.4592 * GS + 0.0007 * MP + 0.9651 * FGA + 12.8293 * FG% + 0.3184 * 3PA + 1.8388 * 3P%
+ 0.594 * FTA + 1.3671 * FT% − 0.0122 * AST − 0.0114 * STL + 0.0267 * TOV − 0.0175 * PF − 7.5166

LM12 PTS = 0.0004 * MP + 0.8434 * FGA + 23.068 * FG% + 0.3742 * 3PA + 1.8547 * 3P% + 0.6369 * FTA +
1.2095 * FT% − 0.0187 * STL − 0.0246 * PF − 11.2644

LM13 PTS = 0.9557 * FGA + 35.1348 * FG% + 0.4416 * 3PA + 2.0119 * 3P% + 0.7654 * FTA + 1.7094 * FT%
− 0.0187 * STL − 0.0293 * PF − 18.4038
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Table A6. Eight regression equations of the regression tree model of ATL.

Rule Regression Equation

LM1 PTS = −0.0001 * MP + 0.1764 * FGA + 1.2818 * FG% + 0.0302 * 3PA + 0.3982 * 3P% + 0.2116 * FTA
+ 0.2799 * FT% − 0.0063 * ORB − 0.0039 * AST + 0.0066 * TOV − 0.4257

LM2 PTS = −0.0001 * MP + 0.1764 * FGA + 1.2818 * FG% + 0.0302 * 3PA + 0.3982 * 3P% + 0.6367 * FTA
+ 1.3491 * FT% − 0.0063 * ORB − 0.0039 * AST + 0.0066 * TOV − 1.08

LM3 PTS = 0.0004 * MP + 1.2723 * FGA + 5.901 * FG% + 0.0727 * 3PA + 1.4136 * 3P% + 0.1406 * FTA +
0.3975 * FT% − 0.0063 * ORB − 0.0101 * DRB − 0.0039 * AST + 0.0066 * TOV − 4.2519

LM4 PTS = 0.0002 * MP + 1.3525 * FGA + 5.4025 * FG% + 0.2633 * 3PA + 1.8194 * 3P% + 0.1406 * FTA +
0.5444 * FT% − 0.0063 * ORB − 0.1234 * DRB − 0.0039 * AST + 0.1613 * TOV − 3.1576

LM5 PTS = 0.2564 * FGA + 10.7834 * FG% + 0.3757 * 3PA + 1.4551 * 3P% + 0.576 * FTA + 1.2406 * FT%
− 0.0063 * ORB − 0.0039 * AST + 0.0066 * TOV − 2.0274

LM6
PTS = −0.0558 * GS + 0.6383 * FGA + 19.7827 * FG% + 0.268 * 3PA + 2.5233 * 3P% + 0.7214 * FTA
+ 0.6825 * FT% − 0.0058 * ORB + 0.0199 * DRB − 0.017 * TRB − 0.0036 * AST − 0.0131 * STL +

0.1189 * TOV − 7.0797

LM7
PTS = −0.3244 * GS + 1.0839 * FGA + 19.3213 * FG% + 0.4449 * 3PA + 2.1591 * 3P% + 0.6807 * FTA
+ 1.0698 * FT% − 0.0058 * ORB + 0.0231 * DRB − 0.0163 * TRB − 0.0036 * AST − 0.0079 * STL +

0.1128 * TOV − 11.7177

LM8
PTS = −0.1213 * GS + 0.9832 * FGA + 28.6595 * FG% + 0.4575 * 3PA + 3.2159 * 3P% + 0.6941 * FTA
+ 1.0059 * FT% − 0.0058 * ORB + 0.1812 * DRB − 0.2023 * TRB − 0.0036 * AST − 0.0079 * STL +

0.0431 * TOV − 15.7175

Table A7. Ten regression equations of the regression tree model of UTH.

Rule Regression Equation

LM1 PTS = 0.0879 * GS + 0.2072 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.2015 * FTA +
0.3589 * FT% + 0.0115 * DRB − 0.4674

LM2 PTS = −0.0195 * GS + 0.305 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.2015 * FTA +
0.3589 * FT% + 0.0115 * DRB − 0.5628

LM3 PTS = −0.0534 * GS + 0.3246 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P%+ 0.2015 * FTA +
0.3589 * FT% + 0.0115 * DRB − 0.438

LM4 PTS = 0.0879 * GS + 0.2789 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.355 * FTA +
1.5366 * FT% + 0.0115 * DRB − 0.736

LM5 PTS = 0.2084 * GS + 0.2692 * FGA + 1.2399 * FG% + 0.0347 * 3PA + 0.5013 * 3P% + 0.4238 * FTA +
1.3183 * FT% + 0.0115 * DRB − 0.514

LM6 PTS = 0.0519 * GS + 1.076 * FGA + 6.512 * FG% + 0.1729 * 3PA + 1.8056 * 3P% + 0.7639 * FTA +
0.1474 * FT% + 0.0049 * DRB − 0.0194 * STL − 4.1035

LM7 PTS = 0.0519 * GS + 0.9832 * FGA + 9.8844 * FG% + 0.0892 * 3PA + 2.7334 * 3P% + 0.6035 * FTA +
1.0813 * FT% + 0.0132 * DRB + 0.0488 * AST − 0.0168 * STL + 0.0159 * TOV − 0.0707 * PF − 5.3049

LM8 PTS = 0.0519 * GS + 1.1435 * FGA + 9.7413 * FG% + 0.4609 * 3PA + 1.436 * 3P% + 0.7036 * FTA +
0.5026 * FT% + 0.0148 * DRB − 0.0168 * STL + 0.0189 * TOV − 6.3336

LM9 PTS = 0.0552 * GS − 0.0005 * MP + 0.933 * FGA + 19.8717 * FG%+ 0.3163 * 3PA + 2.8292 * 3P% +
0.6613 * FTA + 0.7231 * FT% + 0.1377 * ORB + 0.0706 * AST + 0.0995 * PF − 9.7557

LM10 PTS = 0.0949 * GS − 0.0001 * MP + 0.8701 * FGA + 34.7682 * FG% + 0.4849 * 3PA + 0.7035 * 3P% +
0.8098 * FTA + 0.854 * FT% − 16.5234
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Table A8. Eleven regression equations of the regression tree model of IND.

Rule Regression Equation

LM1 PTS = 0.0373 * GS + 0.0001 * MP + 0.1732 * FGA + 1.3719 * FG% + 0.0186 * 3PA + 0.5554 * 3P% +
0.4754 * FTA + 0.1408 * FT% − 0.0137 * ORB − 0.4115

LM2 PTS = 0.0373 * GS − 0 * MP + 1.1834 * FGA + 4.4244 * FG% + 0.2057 * 3PA + 0.8084 * 3P% +
0.2278 * FTA + 1.1137 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 2.7073

LM3 PTS = 0.0373 * GS + 1.636 * FGA + 4.5897 * FG% + 0.4005 * 3PA + 0.8084 * 3P% + 0.2278 * FTA +
0.7968 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 3.3137

LM4 PTS = 0.0373 * GS + 1.7152 * FGA + 4.5897 * FG% + 0.3666 * 3PA + 0.8084 * 3P% + 0.2278 * FTA +
0.7968 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 3.2551

LM5 PTS = 0.0373 * GS + 1.7152 * FGA + 4.5897 * FG% + 0.3666 * 3PA + 0.8084 * 3P% + 0.2278 * FTA +
0.7968 * FT% − 0.0137 * ORB − 0.0526 * DRB + 0.0372 * TRB − 3.2495

LM6 PTS = 0.0373 * GS + 0.9708 * FGA + 7.3572 * FG% + 0.2765 * 3PA + 1.4484 * 3P% + 0.4488 * FTA +
1.1871 * FT% − 0.0137 * ORB − 0.026 * DRB + 0.0184 * TRB − 3.8555

LM7 PTS = 0.0576 * GS + 0.0004 * MP + 0.6212 * FGA + 15.8628 * FG% + 0.2172 * 3PA + 2.6106 * 3P% +
0.6639 * FTA + 0.7769 * FT% − 0.0066 * ORB − 0.0034 * TRB − 6.2503

LM8 PTS = 0.0428 * GS − 0.0003 * MP + 0.917 * FGA + 17.8927 * FG% + 0.3595 * 3PA + 1.7654 * 3P% +
0.6567 * FTA + 0.9399 * FT% − 0.0066 * ORB − 0.0034 * TRB − 8.5359

LM9 PTS = 0.018 * GS + 1.2138 * FGA + 18.004 * FG% + 0.4471 * 3PA + 1.971 * 3P% + 0.6639 * FTA +
0.6885 * FT% − 0.0066 * ORB − 0.0398 * TRB − 11.5673

LM10 PTS = 0.018 * GS + 0.86 * FGA + 28.3833 * FG% + 0.2731 * 3PA + 3.349 * 3P% + 0.8045 * FTA +
0.0848 * FT% − 0.0066 * ORB − 0.0084 * TRB + 0.0604 * AST − 13.2198

LM11 PTS = 0.018 * GS + 0.9991 * FGA + 34.5189 * FG% + 0.1635 * 3PA + 6.3365 * 3P% + 0.8812 * FTA +
0.0848 * FT% − 0.0066 * ORB − 0.0084 * TRB − 18.7932

Table A9. Nine regression equations of the regression tree model of MIL.

Rule Regression Equation

LM1 PTS = 0.1275 * FGA + 0.744 * FG% − 0.0091 * 3PA + 0.3932 * 3P% + 0.2197 * FTA + 0.5097 * FT% −
0.0094 * ORB − 0.0116 * STL + 0.0017 * PF − 0.2317

LM2 PTS = 0.1275 * FGA + 0.744 * FG% − 0.0091 * 3PA + 0.3932 * 3P% + 0.1947 * FTA + 0.4477 * FT% −
0.0094 * ORB − 0.0116 * STL + 0.0017 * PF − 0.2315

LM3 PTS = 0.1275 * FGA + 0.744 * FG% − 0.0091 * 3PA + 0.3932 * 3P% + 0.5317 * FTA + 1.5753 * FT% −
0.0094 * ORB − 0.0116 * STL + 0.0017 * PF − 0.8865

LM4 PTS = 0.1211 * GS + 0.8761 * FGA + 7.1345 * FG% + 0.1493 * 3PA + 1.5771 * 3P% + 0.2827 * FTA +
1.2688 * FT% − 0.0094 * ORB − 0.0116 * STL + 0.0561 * PF − 3.4599

LM5 PTS = 1.5315 * FGA + 6.1029 * FG% + 0.5123 * 3PA + 0.8355 * 3P% + 0.3973 * FTA + 1.1581 * FT%
− 0.0094 * ORB − 0.0116 * STL + 0.0222 * PF − 5.1388

LM6 PTS = 0.6704 * FGA + 16.1226 * FG% + 0.0548 * 3PA + 4.5211 * 3P% + 0.7321 * FTA + 0.4145 * FT%
+ 0.0239 * ORB + 0.0612 * AST − 0.0107 * STL − 0.0074 * PF − 5.732

LM7 PTS = 1.0576 * FGA + 17.4133 * FG% + 0.2653 * 3PA + 3.2639 * 3P% + 0.7026 * FTA + 1.1675 * FT%
+ 0.0023 * ORB − 0.0696 * AST − 0.1496 * STL − 0.0074 * PF − 9.8628

LM8 PTS = 0.9827 * FGA + 32.7185 * FG% + 0.3273 * 3PA + 2.747 * 3P% + 0.5761 * FTA + 1.4136 * FT%
+ 0.122 * ORB + 0.0165 * DRB − 0.0086 * AST − 0.0107 * STL − 0.0074 * PF − 17.2515

LM9 PTS = 1.0699 * FGA + 34.8959 * FG% + 0.3141 * 3PA + 1.5965 * 3P% + 0.7351 * FTA + 7.6551 * FT%
− 0.0086 * ORB + 0.0149 * DRB − 0.0086 * AST − 0.0107 * STL − 0.0074 * PF − 24.755
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Table A10. Seven regression equations of the regression tree model of OCT.

Rule Regression Equation

LM1 PTS = 0.0413 * GS − 0.0001 * MP + 0.1552 * FGA + 0.8205 * FG% + 0.3668 * 3P% + 0.7021 * FTA +
0.2154 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.0219 * TOV − 0.261

LM2 PTS = 0.0413 * GS − 0.0001 * MP + 0.1552 * FGA + 0.8205 * FG% + 0.3668 * 3P% + 0.3342 * FTA +
0.2154 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.0219 * TOV − 0.2706

LM3 PTS = 0.0413 * GS − 0.0001 * MP + 1.4643 * FGA + 5.6642 * FG% + 0.1354 * 3PA + 1.5398 * 3P% +
0.3504 * FTA + 1.6443 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.1064 * STL + 0.0216 * TOV − 4.5824

LM4 PTS = 0.0413 * GS − 0.0001 * MP + 0.9679 * FGA + 11.2032 * FG% + 0.2884 * 3PA + 1.7817 * 3P% +
0.5292 * FTA + 1.1448 * FT% − 0.0063 * DRB − 0.0047 * AST + 0.0105 * STL + 0.1496 * TOV − 5.9879

LM5
PTS = 0.0733 * GS − 0.0008 * MP + 0.8959 * FGA + 24.0439 * FG% + 0.4825 * 3PA + 0.8487 * 3P% +

0.7238 * FTA + 1.4474 * FT% − 0.0343 * ORB − 0.0111 * DRB − 0.0656 * TRB − 0.0163 * AST +
0.0239 * STL − 10.3867

LM6 PTS = 0.0733 * GS − 0.0002 * MP + 0.6956 * FGA + 35.8693 * FG% + 0.2857 * 3PA + 3.7184 * 3P% +
0.7753 * FTA + 0.6452 * FT% − 0.3115 * ORB − 0.0111 * DRB − 0.099 * AST + 0.0205 * STL − 12.4609

LM7 PTS = 0.0733 * GS − 0.0002 * MP + 0.9346 * FGA + 38.5068 * FG% + 0.4206 * 3PA + 3.3224 * 3P% +
0.8132 * FTA + 0.59 * FT% − 0.0863 * ORB − 0.0971 * DRB − 0.0354 * AST + 0.0205 * STL − 19.0252

Table A11. Six regression equations of the regression tree model of NOP.

Rule Regression Equation

LM1 PTS = 0.2048 * FGA + 1.25 * FG% + 0.7276 * 3P% + 0.4824 * FTA + 0.1768 * FT% − 0.0656 * ORB −
0.0031 * DRB − 0.0102 * PF − 0.4649

LM2 PTS = −0.0339 * GS + 1.5162 * FGA + 6.3018 * FG% + 0.0185 * 3PA + 1.7818 * 3P% + 0.5911 * FTA
+ 0.7567 * FT% − 0.0523 * ORB − 0.0031 * DRB + 0.0019 * PF − 4.9028

LM3
PTS = −0.2885 * GS + 0.7331 * FGA + 11.9836 * FG% + 0.1983 * 3PA + 2.6125 * 3P% + 0.4927 * FTA

+ 1.1207 * FT% − 0.0639 * ORB − 0.0097 * DRB + 0.0252 * AST + 0.0126 * TOV −
0.0026 * PF − 4.5582

LM4 PTS = −0.0506 * GS + 1.1112 * FGA + 13.576 * FG% + 0.3853 * 3PA + 2.3329 * 3P% + 0.7029 * FTA +
0.2593 * FT% − 0.066 * ORB − 0.0103 * DRB − 0.0247 * AST + 0.0137 * TOV − 0.0026 * PF − 8.2262

LM5 PTS = 0.9919 * FGA + 25.6773 * FG% + 0.2983 * 3PA + 2.7463 * 3P% + 0.6605 * FTA + 1.2326 * FT%
− 0.0118 * DRB − 0.1516 * STL − 0.0327 * PF − 13.4103

LM6 PTS = 0.0013 * MP + 0.9668 * FGA + 39.4122 * FG% + 0.3625 * 3PA + 0.8249 * 3P% + 0.7043 * FTA
+ 1.8209 * FT% − 0.0169 * DRB − 0.0445 * PF − 22.6992
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