
symmetryS S

Article

CryptoDL: Predicting Dyslexia Biomarkers from
Encrypted Neuroimaging Dataset Using
Energy-Efficient Residue Number System and Deep
Convolutional Neural Network

Opeyemi Lateef Usman * and Ravie Chandren Muniyandi

Research Centre for Cyber Security, Faculty of Information Science and Technology,
University Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; ravie@ukm.edu.my
* Correspondence: p99943@siswa.ukm.edu.my

Received: 15 February 2020; Accepted: 26 March 2020; Published: 20 May 2020
����������
�������

Abstract: The increasing availability of medical images generated via different imaging techniques
necessitates the need for their remote analysis and diagnosis, especially when such datasets involve
brain morphological biomarkers, an important biological symmetry concept. This development
has made the privacy and confidentiality of patients’ medical records extremely important. In this
study, an approach for a secure dyslexia biomarkers classification is proposed using a deep learning
model and the concept of residue number system (RNS). A special moduli set of RNS was used to
develop a pixel-bitstream encoder that encrypts the 7-bit binary value of each pixel present in the
training and testing brain magnetic resonance imaging (MRI) dataset (neuroimaging dataset) prior
to classification using cascaded deep convolutional neural network (CNN). Theoretical analysis of
our encoder design shows that the proposed pixel-bitstream encoder is a combinational circuit that
requires fewer fast adders, with area complexity of 4n AFA and time delay of (3n + 3) DFA for n ≥ 3.
FPGA implementation of the proposed encoder shows 23.5% critical path delay improvement and
saves up to 42.4% power. Our proposed cascaded deep CNN also shows promising classification
outcomes, with the highest performance accuracy of 73.2% on the encrypted data. Specifically, this
study has attempted to explore the potencies of CNN to discriminate cases of dyslexia from control
subjects using encrypted dyslexia biomarkers neuroimaging dataset. This kind of research becomes
expedient owing to the educational and medical importance of dyslexia.

Keywords: dyslexia biomarker; residue number system; encryption; deep learning; neuroimaging dataset

1. Introduction

An important source of diagnostic information for clinicians and medical experts is the analysis
and interpretations of medical images. Medical images have been taken through various medical
imaging techniques, such as X-ray machine, mammography, ultrasound scanner, magnetic resonance
imaging (MRI), computed tomography (CT), positron emission tomography (PET), and so on [1].
Such images were used in different ways to detect and treat diseases early by exposing their structural
anatomical variances to normal biological/pathological processes, better known as biomarkers [2,3].
In the context of brain tissue morphology, function, and cortical geometry properties, such anatomical
structures are referred to as neuro-biomarkers. MRI tools allow medical doctors and researchers to
visualize and analyze alterations in the anatomy of the brain [4] and are available in three different types:
functional MRI (fMRI), structural MRI (sMRI), and diffusion tensor imaging (DTI) [5,6]. These tools
generate the best brain soft-tissue resolutions and have been used to capture and analyze different
brain regions [5–7], using information provided by them to diagnose various critical brain diseases

Symmetry 2020, 12, 836; doi:10.3390/sym12050836 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-0788-5927
http://www.mdpi.com/2073-8994/12/5/836?type=check_update&version=1
http://dx.doi.org/10.3390/sym12050836
http://www.mdpi.com/journal/symmetry

Symmetry 2020, 12, 836 2 of 24

and learning disabilities such as mild cognitive impairment, Alzheimer’s, dementia, schizophrenia,
Williams syndrome, Landau–Kleffner syndrome, autism, attention deficit hyperactivity disorder
(ADHD), and dyslexia, among others [7,8].

Identifying and classifying learning difficulties has economic implications on a nation.
Dyslexia, as a learning disability, affects the child’s academic life and self-esteem into adulthood [9],
hence its early diagnosis through accurate classification of biomarkers contained in the brain MRI
dataset (neuroimaging dataset) is a crucial step towards the provision of appropriate technological
interventions [10], and to consequently enable children to maximize their educational potentials.

Development in machine learning has made classification of dyslexia biomarkers easy, with
promising accuracy. In an attempt to predict biomarkers of dyslexia, previous studies have used
machine learning techniques in the form of artificial neural networks (ANNs) with fewer hidden layers
and support vector machine (SVM) [11,12] to diagnose the conditions of dyslexia, but studies are
uncommon on the application of deep learning models for this type of scenario [13], particularly from the
brain MRI dataset. Deep learning techniques [14] are advanced artificial neural networks. Deep learning
models such as convolutional neural network (CNN), auto-encoders, stacked auto-encoders, deep
belief network (DBN), and a restricted Boltzmann machine (RBM) have demonstrated state-of-the-art
performance in computer vision and image analysis efficiency [15,16]. An illustrative example is the
2012 ImageNet Competition (ILSVRC) [17], where prediction accuracy was improved by more than
15% compared with the best model of the previous year. The general advantages of deep learning over
conventional machine learning are that deep models automatically learn abstract hierarchical feature
representations directly from data, thereby removing the feature extraction engineering step inherent
in the machine learning model [1–4].

With the increasing availability of the medical imaging dataset, cloud deployment of deep leaning
techniques has become expedient and has attracted greater attention recently; for example, Microsoft
Azure Machine Learning Studio and Google Cloud Machine Learning Engine (Google Prediction API),
GraphLab, and Ersatz Labs [18–20]. In this situation, the privacy of patients’ information is extremely
important and needs urgent attention [21], particularly when a learning disability biomarkers dataset
such as dyslexia is involved. To address the privacy issue in medical image, Al-Haj et al. [22] developed
a crypto-based algorithm that ensures a safe exchange of medical images along the transmission
channel. These algorithms are based on cryptographic function and internally generated primary
keys. In a similar manner, a chaotic map cryptographic algorithm has been proposed by Gatta
and Al-Latif [23] based on pixel confusion and diffusion processes. Meanwhile, Pengtao et al. [20],
Dowlin et al. [24], and Chao et al. [25] have independently suggested the use of mathematically
efficient homomorphic cryptography to ensure privacy of sensitive images for a remote classification,
a concept generally referred to as CryptoNet and CryptoDL, respectively. In the methods of [22]
and [23], the confusion process changes pixels’ locations in the plain image, while the diffusion
process transforms an individual pixel’s value in order to eliminate the correlation between pixels
of plain image and chaotic image. Following the confusion paradigm proposed in [23], Koppu and
Viswanatham [26] proposed an image encryption approach based on a miscellaneous dataset of
University of Southern California-Signal and Image Processing Institute (USC-SIPI) using hybrid
chaotic magic transform (HCMT), liner congruential generator (LCG), and Lanczo’s algorithms. In the
process, the LCG random value was used by the HCMT algorithm to shuffle the position of the
pixel in the plain image to create a chaotic cipher-image, while the Lanczo’s algorithm was used to
perform normalization on large eigenvalues and eigenvectors, respectively. These proposed algorithms
only dealt with the security of medical images during transmission, and no consideration is given
to the need for remote classification of such encrypted medical images. Apart from other security
flaws of these algorithms [27], the confusion process of algorithms in [23] and [26], respectively, tends
to adversely affect the classification outcome when such an encrypted image is subjected to deep
model classification owing to the distortion of the region of interest (ROI) that is important to the
classification results.

Symmetry 2020, 12, 836 3 of 24

Residue number system (RNS) is a modular arithmetic-based, non-weighted number system [28],
unlike conventional binary and decimal number systems. Its carry-free computation and parallelism
properties have been exploited in various digital signal processing (DSP) applications such as filtering,
Fourier transforms (discrete and fast), and cryptography [29]. It has widely been used either singly [30]
or in combination [31] with other methods to encrypt both text-based and digital image datasets [32–34].
Using the RNS concept along with deep learning on medical images dataset presents novel research
in the machine learning era, as well as an important breakthrough in patients’ information privacy
preservation in medicine, thereby corroborating the concept of “CryptoDL” described in the previous
studies. In this study, a medical image classification and encryption method is proposed. RNS with a
special moduli set was used to design a bitstream encoder that encrypts MRI sourced brain image
datasets (neuroimaging datasets) before classifying them using cascaded deep CNN. The objective
of this secure classification is to obtain, from the knowledge embedded, the possibility of predicting
the biomarkers of dyslexia from the encrypted neuroimaging dataset. To prevent overfitting issues,
however, our method attempted to augment encrypted data through the creation of multiple image
patches in order to increase the quality of the proposed deep learning model. This approach is rarely
implemented in image encryption [35]. Advantageously, augmentation increases the number of data
points used to train the deep model to prevent overfitting [36].

The entire paper is organized into six sections. Sections 2 and 3 provide an overview of the deep
convolutional neural network (CNN) and RNS-based encryption method for brain image datasets,
respectively. The proposed research methodology is presented in Section 4, with emphasis on the
design of a pixel-bitstream RNS encoder and deep CNN architecture, while Section 5 presents the
experimental results followed by a detail discussion of the findings. Concluding remarks and future
direction are provided in the sixth and final section.

2. An Overview of Deep CNN for Image Dataset Classification

Deep CNNs are special types of artificial neural networks (ANNs) that learn from the spatial
information contained in digital images, hierarchical representations. It was originally designed to
process multi-dimensional (2D and 3D) arrays of high-resolution input datasets such as images and
videos using very few connections between the layers [1–4]. Inspired by a cat’s visual cortex, its origin
is from the Neocognitron proposed by Fukushima in 1980 [37,38], while LeCun et al. [39] gave the first
architecture in 1998 (LeNet-5). From 2012 till now, CNN has witnessed several major architectural
innovations [40], among which the following are popular: AlexNet 2012, VGG 2014, GoogLeNet 2015,
ResNet 2016, ResNexT 2017, and Channel Boosted CNN 2018 [41], to mention but a few. CNNs are
able to form extremely well-organized representations of input images useful for image-oriented tasks,
for example, classification. A CNN possesses several layers of convolutions and activations, often
intertwined by pooling (or subsampling) layers and trained using backpropagation and gradient
descent algorithms, similar to that of the popular feed-forward neural network (FFNN) [42,43].
Additionally, at the end, CNN usually has fully connected layers that compute the final output [44].
The layers of CNN are briefly described below:

i. Convolutional Layer: A convolutional layer is a series of small parameterized filters that operate
on the input data domain. In this study, inputs are raw brain images and encrypted brain
images data. The aim of the convolutional layers is to learn abstract features from the data [45].
Every filter is an n × n matrix called a stride. In this case, we have n = 3. We convolve the
pixels in the input image and evaluate the dot product, called feature maps, of the filter values
and related values in the pixel neighbour. For example, the stride is a pair of numbers (3,3),
in which, in each step, we slide a three-unit filter to the left or down. In summary, given a brain
MRI image I (Figure 1), consisting of R rows, C columns, and D layers, a 2D function I (x, y,
z) where 0 ≤ x < R, 0 ≤ y < C, and 0 ≤ z < D are spatial coordinates, amplitude I is called the

Symmetry 2020, 12, 836 4 of 24

intensity at any point on the 2D set with coordinates (x, y, z) [46]. The process of extracting
feature maps is defined in Equation (1):

I f (x, y, z) =
D−1∑
k = 0

n−1∑
i = 0

n−1∑
j = 0

I(x + i, y + j, z + k) ∗Wi, j,k (1)

where If is the convolved image, and Wi,j,k are coefficients of kernels or strides for convolving
2D arrays.

ii. Activation Layer: The feature maps from convolutional layers are inputted through a nonlinear
activation function to produce another stride called feature maps [4]. After each convolutional
layer, we used a nonlinear activation function. Each activation function performs some fixed
mathematical operations on a single number, which it accepts as input. In practice, there are
several activation functions from which one could choose. These include ReLU (ReLU (z) = max
(0, z)), Sigmoid, Tanh functions, and several other ReLU variants such as leaky ReLU and
parameter ReLU [4,45]. ReLU is an acronym for rectified linear unit.

iii. Pooling Layer: A pooling layer, also known as sub-sampling layer, is next after an activation
layer. The pooling layer takes small grid regions as input and performs operations on them
to produce a single number for each region. Different kinds of pooling layers have been
implemented in previous studies, with max-pooling and average pooling being the two most
common. The pooling layers give CNN some translational invariance because a slight shift of
the input image may result in a slight change in activation maps. In max-pooling (Figure 2),
the value of the largest pixel among all the pixels is considered in the receptive field of the filter,
while the average of all the pixel values is considered in average pooling.

iv. Fully Connected Layer: The fully connected layer has the same structure as classical feed-forward
network hidden layers. This layer is named because each neuron in this layer is linked in
the previous layer to all neurons, where each connection represents a value called weight.
Every neuron’s output is the dot product of two vectors, that is, neuron output in the preceding
layers and the corresponding weight for each neuron.

v. Dropout Layer: This layer is also called dropout regularization. A model sometimes gets skewed
to the training dataset on many occasions, and when the testing dataset is added, it generates
high errors. In this situation, a problem of overfitting has occurred. To avoid overfitting during
the training process, we used a dropout layer. In this layer, by setting them to zero in each
iteration, we dropout a set of connections at random in the fully connected layers. This value
drop prevents overfitting from occurring, so that the final model will not be fully fit to the
training dataset. Batch normalization is also used to resolve internal covariance shift issues
within the feature maps by smoothing the gradient flow, thus helping to improve network
generalization. Figure 3 shows the building blocks of the simplified deep CNN classifier for
brain images.

Symmetry 2020, 12, 836 5 of 24

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 23

𝑰𝒇(𝒙, 𝒚, 𝒛) = ∑ ∑ ∑ 𝑰(𝒙 + 𝒊, 𝒚 + 𝒋, 𝒛 + 𝒌) ∗ 𝑾𝒊,𝒋,𝒌

𝒏−𝟏

𝒋=𝟎

𝒏−𝟏

𝒊=𝟎

𝑫−𝟏

𝒌=𝟎

 (1)

where If is the convolved image, and Wi,j,k are coefficients of kernels or strides for convolving 2D

arrays.

Figure 1. Feature maps extraction [46].

ii. Activation Layer: The feature maps from convolutional layers are inputted through a nonlinear

activation function to produce another stride called feature maps [4]. After each convolutional

layer, we used a nonlinear activation function. Each activation function performs some fixed

mathematical operations on a single number, which it accepts as input. In practice, there are

several activation functions from which one could choose. These include ReLU (ReLU (z) = max

(0, z)), Sigmoid, Tanh functions, and several other ReLU variants such as leaky ReLU and

parameter ReLU [4,45]. ReLU is an acronym for rectified linear unit.

iii. Pooling Layer: A pooling layer, also known as sub-sampling layer, is next after an activation layer.

The pooling layer takes small grid regions as input and performs operations on them to produce

a single number for each region. Different kinds of pooling layers have been implemented in

previous studies, with max-pooling and average pooling being the two most common. The

pooling layers give CNN some translational invariance because a slight shift of the input image

may result in a slight change in activation maps. In max-pooling (Figure 2), the value of the

largest pixel among all the pixels is considered in the receptive field of the filter, while the

average of all the pixel values is considered in average pooling.

Figure 2. Max-pooling operation.

iv. Fully Connected Layer: The fully connected layer has the same structure as classical feed-forward

network hidden layers. This layer is named because each neuron in this layer is linked in the

previous layer to all neurons, where each connection represents a value called weight. Every

Input image, I Feature map, If

Figure 1. Feature maps extraction [46].

Symmetry 2020, 12, x FOR PEER REVIEW 4 of 23

𝑰𝒇(𝒙, 𝒚, 𝒛) = ∑ ∑ ∑ 𝑰(𝒙 + 𝒊, 𝒚 + 𝒋, 𝒛 + 𝒌) ∗ 𝑾𝒊,𝒋,𝒌

𝒏−𝟏

𝒋=𝟎

𝒏−𝟏

𝒊=𝟎

𝑫−𝟏

𝒌=𝟎

 (1)

where If is the convolved image, and Wi,j,k are coefficients of kernels or strides for convolving 2D

arrays.

Figure 1. Feature maps extraction [46].

ii. Activation Layer: The feature maps from convolutional layers are inputted through a nonlinear

activation function to produce another stride called feature maps [4]. After each convolutional

layer, we used a nonlinear activation function. Each activation function performs some fixed

mathematical operations on a single number, which it accepts as input. In practice, there are

several activation functions from which one could choose. These include ReLU (ReLU (z) = max

(0, z)), Sigmoid, Tanh functions, and several other ReLU variants such as leaky ReLU and

parameter ReLU [4,45]. ReLU is an acronym for rectified linear unit.

iii. Pooling Layer: A pooling layer, also known as sub-sampling layer, is next after an activation layer.

The pooling layer takes small grid regions as input and performs operations on them to produce

a single number for each region. Different kinds of pooling layers have been implemented in

previous studies, with max-pooling and average pooling being the two most common. The

pooling layers give CNN some translational invariance because a slight shift of the input image

may result in a slight change in activation maps. In max-pooling (Figure 2), the value of the

largest pixel among all the pixels is considered in the receptive field of the filter, while the

average of all the pixel values is considered in average pooling.

Figure 2. Max-pooling operation.

iv. Fully Connected Layer: The fully connected layer has the same structure as classical feed-forward

network hidden layers. This layer is named because each neuron in this layer is linked in the

previous layer to all neurons, where each connection represents a value called weight. Every

Input image, I Feature map, If

Figure 2. Max-pooling operation.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 23

neuron’s output is the dot product of two vectors, that is, neuron output in the preceding layers

and the corresponding weight for each neuron.

v. Dropout Layer: This layer is also called dropout regularization. A model sometimes gets skewed

to the training dataset on many occasions, and when the testing dataset is added, it generates

high errors. In this situation, a problem of overfitting has occurred. To avoid overfitting during

the training process, we used a dropout layer. In this layer, by setting them to zero in each

iteration, we dropout a set of connections at random in the fully connected layers. This value

drop prevents overfitting from occurring, so that the final model will not be fully fit to the

training dataset. Batch normalization is also used to resolve internal covariance shift issues

within the feature maps by smoothing the gradient flow, thus helping to improve network

generalization. Figure 3 shows the building blocks of the simplified deep CNN classifier for

brain images.

Figure 3. Simplified deep convolutional neural network architecture [4].

3. Background of Residue Number System and Image Encryption

In modular arithmetic, a residue number system (RNS) represents a large integer using a

collection of smaller integer called residues, so that computation can be more effectively performed

[30]. Formally, RNS is expressed as the n-tuple of relatively prime moduli in pairwise form [47]. If S

denotes the set of modules, then S = {m1, m2, …, mn} in such a way that GCD (mi, mj) = 1 is the greatest

common divisor (GCD) provided i ≠ j. The dynamic range M of this RNS system is defined in

Equation (2):

𝑀 = 𝑚1 × 𝑚2 × … × 𝑚𝑛 = ∏ 𝑚𝑖

𝑛

𝑖=1

 (2)

Every integer X ∈ ZM in the RNS can be expressed as 𝑋 → (𝑥1, 𝑥2, … , 𝑥𝑛)using Equation (3):

𝑟 = |𝑋|𝑚𝑖
= 𝑋 𝑚𝑜𝑑 𝑚𝑖 (3)

where ri = x1, ..., xn represents residue; X is a large integer; mi is a module; and M represents the system

dynamic range, which must be sufficiently large enough. ZM ranges from [0, M), called the legitimate

range of X.

Residue number system (RNS) is able to support parallel, carry-free addition, and borrow-free

subtraction and multiplication of a single step without partial product. These features make RNS

useful in digital signal processing (DSP) applications including digital filtering, convolution, fast

Fourier transform, discrete Fourier transform, image processing, and cryptography, among others

Figure 3. Simplified deep convolutional neural network architecture [4].

3. Background of Residue Number System and Image Encryption

In modular arithmetic, a residue number system (RNS) represents a large integer using a
collection of smaller integer called residues, so that computation can be more effectively performed [30].
Formally, RNS is expressed as the n-tuple of relatively prime moduli in pairwise form [47]. If S denotes

Symmetry 2020, 12, 836 6 of 24

the set of modules, then S = {m1, m2, . . . , mn} in such a way that GCD (mi, mj) = 1 is the greatest common
divisor (GCD) provided i , j. The dynamic range M of this RNS system is defined in Equation (2):

M = m1 ×m2 × . . .×mn =
n∏

i = 1

mi (2)

Every integer X ∈ ZM in the RNS can be expressed as X→ (x1, x2, . . . , xn) using Equation (3):

r = |X|mi = X mod mi (3)

where ri = x1, . . . , xn represents residue; X is a large integer; mi is a module; and M represents the
system dynamic range, which must be sufficiently large enough. ZM ranges from [0, M), called the
legitimate range of X.

Residue number system (RNS) is able to support parallel, carry-free addition, and borrow-free
subtraction and multiplication of a single step without partial product. These features make RNS
useful in digital signal processing (DSP) applications including digital filtering, convolution, fast
Fourier transform, discrete Fourier transform, image processing, and cryptography, among others [48].
However, ordered significance among the residue digits is less important, meaning that removal of
some residue digits has no effect, except dynamic range reduction [33].

In image security, cryptography often conceals information, referred to as a plain
image, and involves three important algorithms: keys generation, encryption, and decryption.
Image encryption algorithms distort the original arrangement of pixels in an image, scramble them,
and make them appear disorganized. RNS has been used to improve the performance of other
traditional cryptographic algorithms such as Rivest Shamir and Adleman (RSA) [49], and data
encryption standard (DES) [30]. Like all other digital images, the brain image is an array of pixels,
sometimes called voxel. Each pixel corresponds to any numerical value between 0 and 225, where
0 represents black colour and 225 represents white colour. The value of a pixel at any point in a 7-bit
grayscale image corresponds to the intensity of the light photons at that point.

In this study, a special moduli set of RNS was used to design pixel-bitstream encoder for the brain
MRI dataset (neuroimaging dataset) before subjecting them to deep CNN classification (CryptoDL).
The aim of our secure classification is the possibility of predicting dyslexia biomarkers from the
encrypted neuroimaging dataset. Our proposed methodology is detailed in the subsequent section.
However, the RNS cryptosystem requires the design of a binary-to-residue (BR) converter (encoder)
circuit, which encodes each pixel bitstream during the encryption process, and a residue-to-binary
(RB) converter circuit (decoder) to decrypt the encrypted bitstream to its equivalent pixel value during
the decryption process. The latter can be implemented using variants of Chinese remainder theorem
(CRT) [50], as well as mixed-radix conversion (MRC) algorithms [48,51].

4. Materials and Methods

4.1. Participants

The study sample neuroimaging dataset for our experiment consisted of 45 T1-weighted (T1w) images
of school-aged adult population obtained from Kaggle Database. The sample comprised 19 dyslexics
(mean age = 18.7 years; SD = 2.5576) and 26 control subjects (mean age = 19.0 years; SD = 2.5870) between
the age range of 15–23 years. The overall participants’ mean age and standard deviation (SD) were
18.9 years and 2.5784 years, respectively. We can safely deduce from their age distribution information
that the participants are mainly students, either in secondary schools or higher institutions of learning,
comprising colleges of education, polytechnics, and universities, with a strong belief that a participant
must have had at least ten years of formal education and an intelligence quotient (IQ) greater than 85 on a
curriculum-based Wechsler Adult Intelligence Scale (WAIS). However, there is no information about their
gender distribution. Meanwhile, our experimental model was tested on an unprocessed brain MRI dataset

Symmetry 2020, 12, 836 7 of 24

randomly selected from non-cancerous collections of data reserved for tumor segmentation challenge
on Kaggle website. Expert analysis and interpretations used volumetric properties of grey matter, white
matter, and cerebrospinal fluid tissues to classify the sample in the dataset into dyslexics and controls.
Also, no participant was reported to have been diagnosed with hearing impairment; eyesight problems;
or other critical neurological problems, for example, ADHD and Alzheimer’s disease.

4.2. Brain Images Acquisition and Pre-Processing

For the 19 dyslexic class, whole-brain scans were conducted using a 3T Siemens Tim Trio MRI
scanner with a 32-channel head coil using the following acquisition parameters: acquisition matrix:
256 × 256 × 176; TR = 2300 ms; TE = 2.52 ms; flip angle = 9 deg; Field of View (FOV) = 256 mm; voxel
size: 1 × 1 × 1 mm. Whole-brain scans were acquired with the use of 1.5 T Siemens Avento scanner
with a 32-channel head coil for 26 control subjects. The following parameters were used: acquisition
matrix: 256 × 256 × 170; TR = 1900; TE = 3.92 ms; flip angle = 15 deg; FOV = 256 mm; voxel size: 1 × 1
× 1 mm. The image dataset acquired was normalized and pre-processed in order to maintain uniform
intensity by eliminating inherent heterogeneity caused by different scanner acquisition protocols [52].
From the normalized dataset, cognitive features relating to white matter, grey matter, and cerebrospinal
tissues’ volumetric biomarkers were retrieved. These tissues are, therefore, the region of interest (ROI)
necessary for deep learning classification. At the initial stage, all T1w neuro-images collected were
transformed to FreeSurfer format [53], and normalized for intensity using a method of normalization
of intensity based on histograms [54]. The skulls were subsequently removed using a skull-stripping
algorithm [12,55], and the FSL FNIRT software tool [56] was used to perform non-rigid registration in
the MNI152 brain template (MNI152 standard coordinate). To minimize noise, the registered images
were modulated into Jacobian wrap field and smoothened using Gaussian isotropic kernel (Gaussian
filter) with a kernel size of 4 mm [57].

After segmentation and registration, each image was split into a set of 50 small randomly overlapping
patches of 16 × 16 pixels using some MATLAB codes. There were a total of 576,000 patches, comprising
243,200 patches for the dyslexia biomarker dataset and 332,800 patches for the control subject dataset.
A small patch is generally more homogeneous than the entire image and can be more precisely classified [58].
Several patch-based image filtering algorithms exist, for example, Gaussian filter, and have been reported
in the literature [59]. We explored binary digit 1 and 0 to label the patches, where 1 represents dyslexic and
0 represents normal. Each patch was resized to a height of 64 pixels to generated 64 × 64 pixel patches,
which were used for deep CNN classification before and after encryption, respectively.

4.3. Proposed Conceptual Framework for Secure Brain Image Classification

The proposed conceptual framework for a secure classification of brain images consists of two
parts, as shown in Figure 4: the image encryption part (Crypto) and deep CNN classification part (DL),
respectively. As established in the introductory remarks, the encryption part was designed using a
special moduli set of residue number system (RNS). The proposed RNS encryption is a pixel-based
encryption algorithm in a similar manner as Sirichotedumrong et al. [35]. This algorithm allows a
small number of parameters to train deep models to maintain the resolution value of an encrypted
brain image, and is further discussed in Section 4.4.

Symmetry 2020, 12, 836 8 of 24

Symmetry 2020, 12, x FOR PEER REVIEW 7 of 23

of interest (ROI) necessary for deep learning classification. At the initial stage, all T1w neuro-images

collected were transformed to FreeSurfer format [53], and normalized for intensity using a method

of normalization of intensity based on histograms [54]. The skulls were subsequently removed using

a skull-stripping algorithm [12,55], and the FSL FNIRT software tool [56] was used to perform non-

rigid registration in the MNI152 brain template (MNI152 standard coordinate). To minimize noise,

the registered images were modulated into Jacobian wrap field and smoothened using Gaussian

isotropic kernel (Gaussian filter) with a kernel size of 4 mm [57].

After segmentation and registration, each image was split into a set of 50 small randomly

overlapping patches of 16 × 16 pixels using some MATLAB codes. There were a total of 576,000

patches, comprising 243,200 patches for the dyslexia biomarker dataset and 332,800 patches for the

control subject dataset. A small patch is generally more homogeneous than the entire image and can

be more precisely classified [58]. Several patch-based image filtering algorithms exist, for example,

Gaussian filter, and have been reported in the literature [59]. We explored binary digit 1 and 0 to label

the patches, where 1 represents dyslexic and 0 represents normal. Each patch was resized to a height

of 64 pixels to generated 64 × 64 pixel patches, which were used for deep CNN classification before

and after encryption, respectively.

4.3. Proposed Conceptual Framework for Secure Brain Image Classification

The proposed conceptual framework for a secure classification of brain images consists of two

parts, as shown in Figure 4: the image encryption part (Crypto) and deep CNN classification part

(DL), respectively. As established in the introductory remarks, the encryption part was designed

using a special moduli set of residue number system (RNS). The proposed RNS encryption is a pixel-

based encryption algorithm in a similar manner as Sirichotedumrong et al. [35]. This algorithm allows

a small number of parameters to train deep models to maintain the resolution value of an encrypted

brain image, and is further discussed in Section 4.4.

Figure 4. Proposed conceptual framework. RNS, residue number system; CNN, convolutional neural

network.

4.4. Design of RNS Pixel-Bitstream Encoder for Image Encryption

For the RNS encryption process, the moduli set {2n − 1, 2n, 2n+1 − 1} is suggested to establish

bitstream shares for each pixel present in the patched brain image dataset, where m1 = 2n − 1, m2 = 2n,

and m3 = 2n+1 − 1 represent the channel order of the modules with a value of n ≥ 3. These shares were

concatenated to generate a cipher-image. In this scenario, the order of the moduli represents the

public key (pk), while the value of n represents the secret key (sk), which must be kept as confidential

Figure 4. Proposed conceptual framework. RNS, residue number system; CNN, convolutional
neural network.

4.4. Design of RNS Pixel-Bitstream Encoder for Image Encryption

For the RNS encryption process, the moduli set {2n
− 1, 2n, 2n+1

− 1} is suggested to establish
bitstream shares for each pixel present in the patched brain image dataset, where m1 = 2n

− 1, m2 = 2n,
and m3 = 2n+1

− 1 represent the channel order of the modules with a value of n ≥ 3. These shares
were concatenated to generate a cipher-image. In this scenario, the order of the moduli represents the
public key (pk), while the value of n represents the secret key (sk), which must be kept as confidential
as possible. In this scheme, a maximum cryptographic key length (λ = 4048 bits) was used for
each modulo-channel to prevent adversarial forces such as brute-force, statistical, chosen plaintext,
and chosen ciphertext attacks, because lower bit-length keys no longer provide enough strong security
requirements. Designing a pixel bitstream encoder requires three parallel RNS modulo-processors,
as illustrated in Figure 5. With the help of fast adders, each processor performs modular arithmetic
operation regarding the arbitrary value of each corresponding mi modulus with the aid of carry save
adders (CSA) and carry propagate adders (CPA), respectively.

Symmetry 2020, 12, x FOR PEER REVIEW 8 of 23

as possible. In this scheme, a maximum cryptographic key length (λ = 4048 bits) was used for each

modulo-channel to prevent adversarial forces such as brute-force, statistical, chosen plaintext, and

chosen ciphertext attacks, because lower bit-length keys no longer provide enough strong security

requirements. Designing a pixel bitstream encoder requires three parallel RNS modulo-processors,

as illustrated in Figure 5. With the help of fast adders, each processor performs modular arithmetic

operation regarding the arbitrary value of each corresponding mi modulus with the aid of carry save

adders (CSA) and carry propagate adders (CPA), respectively.

Figure 5. General architecture of RNS encoder.

Considering the above moduli set, to encode a pixel-bitstream X, we shall compute residues ri

of each modulo-processor using Equation (3). This RNS system’s dynamic range M [60] is determined

using Equation (2) as follows:

𝑀 = ∏ 𝑚 = (2𝑛 − 1)(2𝑛)(2𝑛+1 − 1)

3

𝑖=1

𝑀 = 23𝑛+1 − 22𝑛 + 2𝑛

(4)

The value of M indicates that pixel X is a (3n + 1)-bit integer. The expanded form of binary X is

defined in Equation (5) as follows:

𝑋 = 𝑥3𝑛𝑥3𝑛−1𝑥3𝑛−2 … 𝑥1𝑥0 (5)

where xi is either 0 or 1. Therefore, ri’s can be computed based on the following assumptions:

i. r2 is the n least significant bit (LBS) of integer X and is computed directly from modulo −2n

processor.

ii. For r1 and r3, X is partitioned into two n-bit blocks, Z1 and Z2, and one (n + 1)-bit block Z3, where

𝒁𝟏 = ∑ 𝒙𝒋𝟐𝒋−𝟐𝒏+𝟏

𝟑𝒏

𝒋=𝟐𝒏

𝒁𝟐 = ∑ 𝒙𝒋𝟐𝒋−𝒏

𝟐𝒏−𝟏

𝒋=𝒏

𝒁𝟑 = ∑ 𝒙𝒋𝟐𝒋

𝒏−𝟏

𝒋=𝟎

 (6)

This implies that

𝑋 = 𝑍1 + 2𝑛𝑍2 + 22𝑛𝑍3 (7)

As established in assumption (i), the most straightforward residue to be obtained is r2 in relation

to modulo −2n, that is, r2 = Z1. The only requirement here is the determination of the values |2i|m and

Figure 5. General architecture of RNS encoder.

Considering the above moduli set, to encode a pixel-bitstream X, we shall compute residues ri of
each modulo-processor using Equation (3). This RNS system’s dynamic range M [60] is determined
using Equation (2) as follows:

M =
3∏

i = 1
m = (2n

− 1)(2n)
(
2n+1

− 1
)

M = 23n+1
− 22n + 2n

(4)

Symmetry 2020, 12, 836 9 of 24

The value of M indicates that pixel X is a (3n + 1)-bit integer. The expanded form of binary X is
defined in Equation (5) as follows:

X = x3nx3n−1x3n−2 . . . x1x0 (5)

where xi is either 0 or 1. Therefore, ri’s can be computed based on the following assumptions:

i. r2 is the n least significant bit (LBS) of integer X and is computed directly from modulo
−2n processor.

ii. For r1 and r3, X is partitioned into two n-bit blocks, Z1 and Z2, and one (n + 1)-bit block
Z3, where

Z1 =
3n∑

j = 2n
x j2 j−2n+1

Z2 =
2n−1∑
j = n

x j2 j−n

Z3 =
n−1∑
j = 0

x j2 j


(6)

This implies that
X = Z1 + 2nZ2 + 22nZ3 (7)

As established in assumption (i), the most straightforward residue to be obtained is r2 in relation
to modulo −2n, that is, r2 = Z1. The only requirement here is the determination of the values |2i|m and
then the summation of the results with a reduction relative to modulus [61,62]. Two cases are to be
considered here:

4.4.1. Case 1: Modulo −2n
− 1

Encoding modulo −2n
− 1 processor yields residue r1 as follows:

r1 = |X|2n−1 = |Z1 + 2nZ2 + 22nZ3|2n−1
= ||Z1|2n−1 + |Z22n

|2n−1 + |Z322n
|2n−1|2n−1

= |Z1 + Z2 + Z3|2n−1

(8)

4.4.2. Case 2: Modulo −2n+1
− 1

Similarly, encoding modulo −2n+1
− 1 processor yields residue r3 as follows:

r3 = |X|2n+1−1 = |Z1 + 2nZ2 + 22nZ3|2n+1−1
= ||Z1|2n+1−1 + |Z22n

|2n+1−1 + |Z322n
|2n+1−1|2n+1−1

= |Z1 + 2nZ2 + 2n−1Z3|2n+1−1

(9)

Example: Given the moduli set {2n
− 1, 2n, 2n+1

− 1} where n = 3 and a pixel value X = 123 (i.e.,
1111011 in binary). Then, the encoding process is as follows:

X = 123, which is equivalent to binary 1111011 (7-bit). From the design of our pixel-bitstream
encoder, it was established that X = (3n + 1)-bit integer. As our secret key n = 3, we partition X into
3-bit blocks and 1-bit blocks starting from least significant bit (LSB).

Thus, Z1 = 011, Z2 = 111, and Z3 = 1.
Therefore, r2 = Z1 = 3 (011). Using Equations (8) and (9),

r1 = |Z1 + Z2 + Z3|2n−1 = |123|23−1 = |3 + 7 + 1|7 = 4 (100)

r3 = |Z1 + 2nZ2 + 2n−1Z3|2n+1−1 = |123|24−1
= |3 + 23(7) + 22(1)|15 = |3 + 56 + 4|15 = |63|15 = 3(011)

Symmetry 2020, 12, 836 10 of 24

This implies that encoded pixel X contains 11100011 bits.
The hardware design of the encoder is realized using four fast adders: two carry save adders

(CSAs) and two carry propagate adders (CPAs). CSAs perform 3-bit additions, while CPAs perform
2-bit additions, as shown Figure 6.

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 23

then the summation of the results with a reduction relative to modulus [61,62]. Two cases are to be

considered here:

4.4.1. Case 1: Modulo −2n − 1

Encoding modulo −2n – 1 processor yields residue r1 as follows:

𝑟1 = |𝑋|2𝑛−1 = |𝑍1 + 2𝑛𝑍2 + 22𝑛𝑍3|2𝑛−1

= ||𝑍1|2𝑛−1 + |𝑍2. 2𝑛|2𝑛−1 + |𝑍3. 22𝑛|2𝑛−1|2𝑛−1

= |𝑍1 + 𝑍2 + 𝑍3|2𝑛−1

(8)

4.4.2. Case 2: Modulo −2n + 1 − 1

Similarly, encoding modulo −2n + 1 – 1 processor yields residue r3 as follows:

𝑟3 = |𝑋|2𝑛+1−1 = |𝑍1 + 2𝑛𝑍2 + 22𝑛𝑍3|2𝑛+1−1

= ||𝑍1|2𝑛+1−1 + |𝑍2. 2𝑛|2𝑛+1−1 + |𝑍3. 22𝑛|2𝑛+1−1|2𝑛+1−1

= |𝑍1 + 2𝑛𝑍2 + 2𝑛−1𝑍3|2𝑛+1−1

(9)

Example: Given the moduli set {2n − 1, 2n, 2n + 1 − 1} where n = 3 and a pixel value X = 123 (i.e.,

1111011 in binary). Then, the encoding process is as follows:

X = 123, which is equivalent to binary 1111011 (7-bit). From the design of our pixel-bitstream

encoder, it was established that X = (3n + 1)-bit integer. As our secret key n = 3, we partition X into 3-

bit blocks and 1-bit blocks starting from least significant bit (LSB).

Thus, Z1 = 011, Z2 = 111, and Z3 = 1.

Therefore, r2 = Z1 = 3 (011). Using Equations (8) and (9),

𝑟1 = |𝑍1 + 𝑍2 + 𝑍3|2𝑛−1 = |123|23−1 = |3 + 7 + 1|7 = 4 (100)

𝑟3 = |𝑍1 + 2𝑛𝑍2 + 2𝑛−1𝑍3|2𝑛+1−1 = |123|24−1

= |3 + 23(7) + 22(1)|15 = |3 + 56 + 4|15 = |63|15 = 3(011)

This implies that encoded pixel X contains 11100011 bits.

The hardware design of the encoder is realized using four fast adders: two carry save adders

(CSAs) and two carry propagate adders (CPAs). CSAs perform 3-bit additions, while CPAs perform

2-bit additions, as shown Figure 6.

Figure 6. Hardware design of pixel encoder. CSA, carry save adder; CPA, carry propagate adder.

A CSA takes as input three operands, as shown in Figure 6: Z1, Z2, and Z3, and produces two

outputs: a partial-sum (PS) and a partial-carry (PC), which must be fed into a CPA so that the

carriages are propagated to produce an encoded result [61]. The architectural complexity area (A)

Figure 6. Hardware design of pixel encoder. CSA, carry save adder; CPA, carry propagate adder.

A CSA takes as input three operands, as shown in Figure 6: Z1, Z2, and Z3, and produces two
outputs: a partial-sum (PS) and a partial-carry (PC), which must be fed into a CPA so that the carriages
are propagated to produce an encoded result [61]. The architectural complexity area (A) and time
delay (D) imposed on ri’s residues are calculated as follows from the above pixel-bitstream encoder:

A = [CSA1 + CSA2 + CPA1 + CPA2]AFA
= [(n− 1) + (n + 1) + (n− 1) + (n + 1)]AFA = 4nAFA

(10)

D = [CSA2 + 2 ∗CPA2]DFA
= [(n + 1) + 2(n + 1)]DFA = (3n + 3)DFA

(11)

4.5. Deep CNN Architecture, Training, and Classification

The simple architecture (Figure 3), which corresponds to a linear stack of several convolutional
layers, accompanied by ReLU activation, brightness normalization, and overlapping layers of pooling,
remains the commonly used deep CNN configuration in computer vision. However, various
improvements were made to the above-mentioned architecture in terms of parameter optimization,
regularization, and structural reformation to mention but a few, through the redesign of its processing
units and the construction of new blocks. In view of the above, the more recent innovations in deep
CNN architecture are related to depth and spatial exploitation [40,41]. In spatial exploitation-based
architecture, different sizes of spatial filters that correlate to different levels of granularity were
utilized to improve the performance of deep CNN. In this respect, smaller size filters extract
fine-grained features, while larger size filters extract coarse-grained features from the input data [63,64].
Meanwhile, depth-based architectures were designed on the assumption that deep CNN produces a
better approximation of nonlinear mapping with improved feature representation when the depth of
the model is increased [65,66]. A typical depth-based deep CNN is cascaded networks. The cascaded
deep CNN is a novel depth-based deep CNN architecture, which consists of multiple concatenated
stacked CNNs, each predicting a specific aspect of input image features. This architecture has been
exploited by various researchers to achieve high classification and segmentation performance using

Symmetry 2020, 12, 836 11 of 24

MRI brain datasets with improved feature representations [44,67–72]. This motivates our choice of
cascaded deep CNN.

Specifically, this study adopted two-pathway cascaded feed-forward deep CNNs. In this
architecture, the input patch goes through two different pathways of convolutional operations.
High-level features were extracted in each of these pathways, which were trained simultaneously.
The first pathway consists of smaller 7 × 7 stacked receptive fields, while the second one consists of
larger 15 × 15 stacked receptive fields, as shown in Figure 7. The input to the proposed design was M
×M pixels of 2D patches, where M = 64. The first deep CNN was fed into the first hidden layer of the
second CNN with a larger input with dimensions of 53 × 53, before feeding its output with dimensions
of 24 × 24. We supplied the first CNN output directly to the first hidden layer of the second CNN for
our classification mission and concatenated their outputs after each convolutional layer with softmax
activation [67]. To prevent overfitting, two fully connected layers and a dropout layer were used for
the training and classification. As a recent regularization technique, dropout layer stochastically adds
noise to the hidden layer computation by multiplying individual hidden or input neurons by zero (i.e.,
masking) with a certain probability (normally 0.5) independently during the training update [67,73].
Following Krizhevsky et al.’s [74] recommendation, we also used data augmentation methods to
improve the overall accuracy of the proposed cascaded deep CNN classifier, contrary to Zeiler and
Fergus’s argument [75] that augmentation did not significantly improve the accuracy of deep CNNs.
We use stochastic gradient descent (SGD) with momentum training algorithm to minimize the negative
log-probability of each class and set the maximum training iterations to 500 epochs. The training rate
of 150, 225, 350, and 450 epochs was initialized to 0.1 and subsequently dropped by a factor of 10,
respectively, while retaining a weight decay value of 0.0005, a momentum of 0.9, and a batch size
of 10,000. The proposed cascaded model was implemented using MATLAB software installed on a
graphics processing unit (GPU)-based processor with a speed of 2.70 GHz and 8.00 GB of random
access memory (RAM). In terms of processing speed and memory utilization GPU-base processors are
effective. They are up to 100 times faster than their counterparts based on CPU, and have been used in
studies such as [76,77] to achieve reduced processing time.

Symmetry 2020, 12, x FOR PEER REVIEW 11 of 23

faster than their counterparts based on CPU, and have been used in studies such as [76] and [77] to

achieve reduced processing time.

Because of the large number of parameters involved in the training of the proposed model, the

privacy and confidentiality of our experimental dataset after the successful initial implementation of

the proposed model are considered. To guarantee that the proposed cascaded deep CNN’s

parameters do not compromise the privacy of important image features in the dataset, the model is

equipped with adversarial examples in an iterative way. Adversarial examples are counterfactual

examples, with the intention of deceiving, not interpreting, by the deep learning model. This is

tackled in two ways. In the unencrypted image patches, a random noise (error) is applied to each

pixel to obscure the features present in them to generate adversarial training samples. Second, by

multiplying each module with a random noise (error), the pixel bitstream encoder automatically

generates a confusion moduli set. The confusion moduli collection was then used to construct

adversarial training samples alongside the longer key length proposed in Section 4.4 for the

encrypted image patch. Specifically, an integer random noise (eI) was applied to each pixel value (I)

in the images for the unencrypted patches. Here, the value of eI = 5, and it was chosen such that

Equation (12) holds true.

𝐼𝑖 + 𝑒𝐼𝑚𝑖 ≤
𝑀 − 225

3
, 𝑓𝑜𝑟 𝑒𝐼 = [0,9) 𝑎𝑛𝑑 𝑖 = 1,2, … (12)

where mi is modulus and M is the system dynamic range defined in Equation (2). Also, the pixel-

bitstream encoder was designed to choose a floating-point random noise (eM) from the value range

between [0.1, 0.9) to create a confusion moduli set (mi’) such that mi’ < mi and confusion dynamic

range, M’ ≤ M–225. The encoder was set to select eM = 0.9 in this study, thus ensuring that the resulting

mi’ is relatively co-prime.

Figure 7. Cascaded deep CNN architecture.

5. Experimental Results and Discussion

5.1. Implementation of the Proposed Pixel-Bitstream Encoder and Encryption Time Analysis

The proposed pixel-bitstream encoder architecture was implemented on a pure adder-based

Virtex-4 XC4VSX25 FPGA and Spartan-3 XC3S200 FPGA with varying frequencies: 353.4 MHz, 292.8

MHz, 275.8 MHz, and 231.3 MHz, respectively, for n ≥ 3. All other simulations were done on the

recent version of MATLAB software. At first, a single registered and segmented image of dimension

256 × 256 pixels was used to quantitatively evaluate the performance of the pixel-bitstream encoder

Figure 7. Cascaded deep CNN architecture.

Because of the large number of parameters involved in the training of the proposed model,
the privacy and confidentiality of our experimental dataset after the successful initial implementation
of the proposed model are considered. To guarantee that the proposed cascaded deep CNN’s parameters

Symmetry 2020, 12, 836 12 of 24

do not compromise the privacy of important image features in the dataset, the model is equipped with
adversarial examples in an iterative way. Adversarial examples are counterfactual examples, with the
intention of deceiving, not interpreting, by the deep learning model. This is tackled in two ways. In the
unencrypted image patches, a random noise (error) is applied to each pixel to obscure the features
present in them to generate adversarial training samples. Second, by multiplying each module with
a random noise (error), the pixel bitstream encoder automatically generates a confusion moduli set.
The confusion moduli collection was then used to construct adversarial training samples alongside
the longer key length proposed in Section 4.4 for the encrypted image patch. Specifically, an integer
random noise (eI) was applied to each pixel value (I) in the images for the unencrypted patches.
Here, the value of eI = 5, and it was chosen such that Equation (12) holds true.

Ii + eImi ≤
M− 225

3
, f or eI = [0, 9) and i = 1, 2, . . . (12)

where mi is modulus and M is the system dynamic range defined in Equation (2).
Also, the pixel-bitstream encoder was designed to choose a floating-point random noise (eM) from the
value range between [0.1, 0.9) to create a confusion moduli set (mi’) such that mi’ < mi and confusion
dynamic range, M’ ≤M–225. The encoder was set to select eM = 0.9 in this study, thus ensuring that
the resulting mi’ is relatively co-prime.

5. Experimental Results and Discussion

5.1. Implementation of the Proposed Pixel-Bitstream Encoder and Encryption Time Analysis

The proposed pixel-bitstream encoder architecture was implemented on a pure adder-based
Virtex-4 XC4VSX25 FPGA and Spartan-3 XC3S200 FPGA with varying frequencies: 353.4 MHz,
292.8 MHz, 275.8 MHz, and 231.3 MHz, respectively, for n ≥ 3. All other simulations were done on the
recent version of MATLAB software. At first, a single registered and segmented image of dimension 256
× 256 pixels was used to quantitatively evaluate the performance of the pixel-bitstream encoder using
standard metrics such as correlation analysis and histogram. All 576,000 patches with dimensions of
64 × 64 pixels were encoded by the pixel-bitstream encoder at the interval of 10,000 patches. Figure 8
indicates that approximately 15 s is required to encode all patches by the encoder. The encoding time,
which increases progressively from 10,000 patches, reached the peak at 430,000 patches in 14.54 s.
Therefore, an increment in the number of patches does not significantly increase the time spent by the
encoder to encode.

Symmetry 2020, 12, x FOR PEER REVIEW 12 of 23

using standard metrics such as correlation analysis and histogram. All 576000 patches with

dimensions of 64 × 64 pixels were encoded by the pixel-bitstream encoder at the interval of 10000

patches. Figure 8 indicates that approximately 15 s is required to encode all patches by the encoder.

The encoding time, which increases progressively from 10,000 patches, reached the peak at 430000

patches in 14.54 s. Therefore, an increment in the number of patches does not significantly increase

the time spent by the encoder to encode.

Figure 8. Encoding time for patches in seconds.

5.2. Analysis of Pixel-Bitstream Encoder Performance

The performance analysis of the pixel-bitstream encoder was carried out in two ways: design

analysis and cipher-image analysis.

5.2.1. Design Analysis

For the analysis of encoder design, critical path delay was utilized. Out of the three channels in

the proposed special moduli set, modulo −2n+1 − 1 is the critical channel where the system spent most

of its processing time owing to expensive computation resulting from addition operator. Table 1

shows the efficiency relation between the proposed pixel-bitstream encoder and the state-of-the-art

binary-to-residue converter regarding critical path delay. The proposed pixel-bitstream encoder was

first of all implemented on pure adder-based Virtex-4 XC4VSX25 field programmable-gate array

(FPGA) for different values of the critical path: 25 − 1, 26 − 1, 29 – 1, and 212 − 1 bits. With a maximum

frequency of 353.4 MHz, 292.8 MHz, 275.8 MHz, and 231.3 MHz, respectively, the timing efficiency

of the proposed design was very good when the value of n = 4, 5, 8, and 11. The same implementation

was repeated on Spartan-3 XC3S200 FPGA. Owing to the lack of integrated block random access

memory (BRAM) count, however, the encoder could only be implemented with a maximum

frequency of 383.4 MHz and 258.1 MHz for two critical paths (25 − 1 and 26 − 1 bits) when the value of

n = 4 and 5, respectively. Meanwhile, the unexpected problem that was found is that the proposed

encoder’s critical path delay for the value of n = 3 (24 − 1 bits) on FPGAs is 42.4% better than the read

only memory (ROM)-based implementation. This explains the reason that it was able to encode all

the image patches at approximately 15 s, as shown in Figure 7. From Table 1, it is clear that the best

performance improvement of the proposed pixel-bitstream encoder for Virtex-4 FPGA is 23.5% when

the value of n = 8. For Spartan-3 FPGA, the best performance improvement is 15.3% when the value

of n = 4. While the time delay of the critical path decreases progressively for the latter, it increases

progressively for the former and reached the peak at n = 8 before diminishing. By implication, it is

not effective to implement the proposed encoder on FPGAs for applications requiring a large value

of n owing to the computational complexity of the 2n+1 − 1 module and lack of integrated BRAM count.

In fact, it is not desirable to use external ROMs, as they are considerably slower than the built-in ones.

Figure 8. Encoding time for patches in seconds.

Symmetry 2020, 12, 836 13 of 24

5.2. Analysis of Pixel-Bitstream Encoder Performance

The performance analysis of the pixel-bitstream encoder was carried out in two ways: design
analysis and cipher-image analysis.

5.2.1. Design Analysis

For the analysis of encoder design, critical path delay was utilized. Out of the three channels
in the proposed special moduli set, modulo −2n+1

− 1 is the critical channel where the system spent
most of its processing time owing to expensive computation resulting from addition operator. Table 1
shows the efficiency relation between the proposed pixel-bitstream encoder and the state-of-the-art
binary-to-residue converter regarding critical path delay. The proposed pixel-bitstream encoder was
first of all implemented on pure adder-based Virtex-4 XC4VSX25 field programmable-gate array
(FPGA) for different values of the critical path: 25

− 1, 26
− 1, 29 – 1, and 212

− 1 bits. With a maximum
frequency of 353.4 MHz, 292.8 MHz, 275.8 MHz, and 231.3 MHz, respectively, the timing efficiency of
the proposed design was very good when the value of n = 4, 5, 8, and 11. The same implementation
was repeated on Spartan-3 XC3S200 FPGA. Owing to the lack of integrated block random access
memory (BRAM) count, however, the encoder could only be implemented with a maximum frequency
of 383.4 MHz and 258.1 MHz for two critical paths (25

− 1 and 26
− 1 bits) when the value of n = 4 and

5, respectively. Meanwhile, the unexpected problem that was found is that the proposed encoder’s
critical path delay for the value of n = 3 (24

− 1 bits) on FPGAs is 42.4% better than the read only
memory (ROM)-based implementation. This explains the reason that it was able to encode all the
image patches at approximately 15 s, as shown in Figure 7. From Table 1, it is clear that the best
performance improvement of the proposed pixel-bitstream encoder for Virtex-4 FPGA is 23.5% when
the value of n = 8. For Spartan-3 FPGA, the best performance improvement is 15.3% when the value
of n = 4. While the time delay of the critical path decreases progressively for the latter, it increases
progressively for the former and reached the peak at n = 8 before diminishing. By implication, it is
not effective to implement the proposed encoder on FPGAs for applications requiring a large value
of n owing to the computational complexity of the 2n+1

− 1 module and lack of integrated BRAM
count. In fact, it is not desirable to use external ROMs, as they are considerably slower than the built-in
ones. Therefore, for applications requiring a small value of n, for example, digital image processing,
the ROM-based platform is adequate and can deliver better performance than those based on adder.
On the other hand, for applications that require a larger value for n, our proposed pixel-bitstream
encoder is preferable.

Table 1. Critical path delay of the proposed converter.

Virtex-4 FPGA Delay in Seconds Spartan-3 FPGA Delay in Seconds

n Critical Path
(2n+1

− 1)
Proposed
Encoder

State-of-the-Art
(2)

%
Improvement

Proposed
Encoder

State-of-the-Art
(2)

%
Improvement

4 25
− 1 23.7 25.6 7.4 25.5 30.1 15.3

5 26
− 1 29.9 33.7 11.3 35.2 39.7 11.3

8 29
− 1 37.1 48.5 23.5 - - -

11 212
− 1 56.8 68.3 16.8 - - -

5.2.2. Cipher Image Analysis

Figure 9 indicates the plain normalized brain image and its corresponding encrypted image,
otherwise called the cipher image. The analysis of the cipher image is based on only two metrics: the
histogram and the correlation coefficient. For other metrics to evaluate an encryption algorithm’s
efficiency, such as mean square error (MSE), peak signal-to-noise ratio (PSNR), and entropy, see the
literature [22,26,78,79] for examples.

Symmetry 2020, 12, 836 14 of 24

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 23

Therefore, for applications requiring a small value of n, for example, digital image processing, the

ROM-based platform is adequate and can deliver better performance than those based on adder. On

the other hand, for applications that require a larger value for n, our proposed pixel-bitstream

encoder is preferable.

Table 1. Critical path delay of the proposed converter.

 Virtex-4 FPGA Delay in Seconds Spartan-3 FPGA Delay in Seconds

n
Critical Path (2n+1 −

1)

Proposed

Encoder

State-of-the-Art

(2)
% Improvement

Proposed

Encoder

State-of-the-Art

(2)
% Improvement

4 25 − 1 23.7 25.6 7.4 25.5 30.1 15.3

5 26 − 1 29.9 33.7 11.3 35.2 39.7 11.3

8 29 − 1 37.1 48.5 23.5 - - -

11 212 − 1 56.8 68.3 16.8 - - -

5.2.2. Cipher Image Analysis

Figure 9 indicates the plain normalized brain image and its corresponding encrypted image,

otherwise called the cipher image. The analysis of the cipher image is based on only two metrics: the

histogram and the correlation coefficient. For other metrics to evaluate an encryption algorithm’s

efficiency, such as mean square error (MSE), peak signal-to-noise ratio (PSNR), and entropy, see the

literature [22,26,78,79] for examples.

5.2.3. Histogram Analysis

The image histogram refers to a graph showing the number pixels in an image at each of the

various intensity values present in the image. An image histogram, in other words, is a graphical

representation of the distribution of pixel intensity in a grayscale or coloured image [80]. It is a pixel

intensity plot against pixel count, where the x-axis indicates the gray level and the y-axis indicates

the number of pixels. Figure 10 shows histograms of both a plain normalized brain image and its

corresponding cipher image already shown in Figure 9. The histograms were generated using the

‘imhist’ function of MATLAB software. For analyzing the output of an encryption algorithm,

similarity or otherwise in the histogram shapes between the plain image and its corresponding

cypher image can be exploited. If these shapes are fully, somewhat, or partially similar, then the

performance of an encryption algorithm is poor; otherwise, it is good. Clearly, different histogram

shapes were returned for the plain brain image and its corresponding cipher image, hence encryption

has taken place. We can, therefore, deduce that a successful encryption system was modelled for the

normalized dyslexia-associated MRI dataset.

(a) (b)

Figure 9. Plain image and cipher image comparison: (a) plain brain image and (b) cipher image.

5.2.3. Histogram Analysis

The image histogram refers to a graph showing the number pixels in an image at each of the
various intensity values present in the image. An image histogram, in other words, is a graphical
representation of the distribution of pixel intensity in a grayscale or coloured image [80]. It is a pixel
intensity plot against pixel count, where the x-axis indicates the gray level and the y-axis indicates
the number of pixels. Figure 10 shows histograms of both a plain normalized brain image and its
corresponding cipher image already shown in Figure 9. The histograms were generated using the
‘imhist’ function of MATLAB software. For analyzing the output of an encryption algorithm, similarity
or otherwise in the histogram shapes between the plain image and its corresponding cypher image
can be exploited. If these shapes are fully, somewhat, or partially similar, then the performance
of an encryption algorithm is poor; otherwise, it is good. Clearly, different histogram shapes were
returned for the plain brain image and its corresponding cipher image, hence encryption has taken
place. We can, therefore, deduce that a successful encryption system was modelled for the normalized
dyslexia-associated MRI dataset.

Symmetry 2020, 12, x FOR PEER REVIEW 14 of 23

Figure 9. Plain image and cipher image comparison: (a) plain brain image and (b) cipher image.

(a) (b)

Figure 10. Comparison of histograms: (a) plain brain image and (b) cipher image.

5.2.4. Correlation Coefficient Analysis

For determining the correlation coefficient between these images, the analysis of the intensity

and direction of the relationship between adjacent pixels in both plain image and corresponding

encrypted image may be used. By definition, the correlation coefficient (r) given in Equation (13) is

the ratio of the covariance between the adjacent pixels in a plain and cipher image to the square root

of the product of each of these pixels [81], where the value of r = −1 ≤ r ≤ 1 and r2 ≤ 1.

𝑟 =
𝐶𝑜𝑣(𝑥, 𝑦)

√𝐼𝑝(𝑥) ∗ 𝐼𝑐(𝑦)
 (13)

where x is a pixel from plain image and y is a pixel from the corresponding cipher image; and Ip and

Ic are functions with a condition that, if r = 1, there is a strong direct or positive connection between

the two pictures, which means there has been no encryption. If r = −1, however, the inverse or negative

correlation is ideal, suggesting strong encryption. Further, r = 0 connotes that there is no linear

correlation, however, there might be a non-linear correlation between the two images. Using

Equation (13), the correlation coefficient between Figure 9a,b was found to be −0.0073. Meanwhile, to

ensure poor correlation of all portions of our brain image dataset before classification, we obtain five

randomly selection adjacent portions from Figure 9a,b for correlation analysis, as shown in Table 2.

The purpose of this task is to ensure that the CNN classifier, which we assumed to be a cloud-based

third party platform, does not gain partial access that may be used to guess the encoded information

using the dictionary of known cipher-text attacks.

Table 2. Summary of correlation analysis.

Adjacent Portions Correlation Coefficient (r)

Portion1 −0.0293

Portion2 0.0082

Portion3 −0.0275

Portion4 −0.0111

Portion5 −0.0659

Whole Images −0.0073

From the results presented in Table 2, we can conveniently conclude that our proposed pixel-

bitstream encoder achieved better encryption with normalized brain images. While all other adjacent

portions, including the whole image, showed negative correlation coefficient values, only adjacent

portion 2 showed positive correlation coefficient value. Meanwhile, the value is insufficient and

insignificant to gain partial access into that portion of the coded information.

Figure 10. Comparison of histograms: (a) plain brain image and (b) cipher image.

5.2.4. Correlation Coefficient Analysis

For determining the correlation coefficient between these images, the analysis of the intensity and
direction of the relationship between adjacent pixels in both plain image and corresponding encrypted
image may be used. By definition, the correlation coefficient (r) given in Equation (13) is the ratio of the

Symmetry 2020, 12, 836 15 of 24

covariance between the adjacent pixels in a plain and cipher image to the square root of the product of
each of these pixels [81], where the value of r = −1 ≤ r ≤ 1 and r2

≤ 1.

r =
Cov(x, y)√
Ip(x) ∗ Ic(y)

(13)

where x is a pixel from plain image and y is a pixel from the corresponding cipher image; and Ip

and Ic are functions with a condition that, if r = 1, there is a strong direct or positive connection
between the two pictures, which means there has been no encryption. If r = −1, however, the inverse
or negative correlation is ideal, suggesting strong encryption. Further, r = 0 connotes that there is
no linear correlation, however, there might be a non-linear correlation between the two images.
Using Equation (13), the correlation coefficient between Figure 9a,b was found to be −0.0073.
Meanwhile, to ensure poor correlation of all portions of our brain image dataset before classification,
we obtain five randomly selection adjacent portions from Figure 9a,b for correlation analysis, as shown
in Table 2. The purpose of this task is to ensure that the CNN classifier, which we assumed to be a
cloud-based third party platform, does not gain partial access that may be used to guess the encoded
information using the dictionary of known cipher-text attacks.

Table 2. Summary of correlation analysis.

Adjacent Portions Correlation Coefficient (r)

Portion1 −0.0293
Portion2 0.0082
Portion3 −0.0275
Portion4 −0.0111
Portion5 −0.0659

Whole Images −0.0073

From the results presented in Table 2, we can conveniently conclude that our proposed
pixel-bitstream encoder achieved better encryption with normalized brain images. While all other
adjacent portions, including the whole image, showed negative correlation coefficient values, only
adjacent portion 2 showed positive correlation coefficient value. Meanwhile, the value is insufficient
and insignificant to gain partial access into that portion of the coded information.

5.3. Analysis of the Proposed Cascaded Deep CNN Classifier Performance

The proposed cascaded deep CNN classifier’s performance was quantitatively evaluated using
deep model evaluation metrics based on stratified 10-fold cross validation (CV). These include the
accuracy, sensitivity, specificity, and area under receiver operating characteristics (ROC) curve, each
of which is derived directly from a confusion matrix (Figure 11) and defined in Equations (14)–(16).
In particular, stratified 10-fold cross validation was chosen so that the average response value for all
folds was approximately equal [12].

Symmetry 2020, 12, 836 16 of 24

Symmetry 2020, 12, x FOR PEER REVIEW 15 of 23

5.3. Analysis of the Proposed Cascaded Deep CNN Classifier Performance

The proposed cascaded deep CNN classifier’s performance was quantitatively evaluated using

deep model evaluation metrics based on stratified 10-fold cross validation (CV). These include the

accuracy, sensitivity, specificity, and area under receiver operating characteristics (ROC) curve, each

of which is derived directly from a confusion matrix (Figure 11) and defined in Equations (14)–(16).

In particular, stratified 10-fold cross validation was chosen so that the average response value for all

folds was approximately equal [12].

Figure 11. Confusion matrix.

True positive (TP) is situation where the test dataset yields a correct or positive result for subjects

with dyslexia, while true negative (TN) is a scenario when the test dataset yields a correct or negative

output for subjects without dyslexia. All false positives (FP) and false negatives (FN) lead to errors of

Type I and Type II, respectively.

1. Accuracy: Accuracy tests the percentage of dyslexic subjects correctly classified as positive. For

computation of the classifier accuracy, Equation (14) is used.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (14)

2. Sensitivity: Sensitivity is a measure of the percentage of dyslexic subjects that is correctly

classified or predicted to be positive by the classifier. It is also known as the true positive rate

(TPR) or recall. For the computation of sensitivity, Equation (15) is used.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15)

3. Specificity: Specificity, or the true negative rate (TNR), tests the percentage of correctly classified

non-dyslexic subjects. This indicates accuracy in identifying non-dyslexic subjects [82], as shown

in Equation (16).

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (16)

4. ROC and Area under ROC (AUC): The receiver operating characteristics (ROC) curve plots the

sensitivity curve against specificity, and thus provides a representation of the trade-off between

correctly classified positive instances and incorrectly classified negative instances [83]. Area

under ROC (AUC) is computed directly from this curve.

To test the output of the proposed cascaded deep CNN as defined in Section 4.5, all 576,000 brain

image patches were used. This sample comprises 243,200 with dyslexia biomarkers and 332,800

controls. The classification was made before and after pixel-bitstream encoding. To ensure that the

proposed deep cascaded architecture learns pattens without compromising the privacy of the

encrypted patches, the kernel size in the first pathway was reduced to 3 × 3 with a stride (2,2), while

the kernel size in the second pathway was reduced to 7 × 7 with a stride (2,2). This arrangement

Figure 11. Confusion matrix.

True positive (TP) is situation where the test dataset yields a correct or positive result for subjects
with dyslexia, while true negative (TN) is a scenario when the test dataset yields a correct or negative
output for subjects without dyslexia. All false positives (FP) and false negatives (FN) lead to errors of
Type I and Type II, respectively.

1. Accuracy: Accuracy tests the percentage of dyslexic subjects correctly classified as positive.
For computation of the classifier accuracy, Equation (14) is used.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

2. Sensitivity: Sensitivity is a measure of the percentage of dyslexic subjects that is correctly classified
or predicted to be positive by the classifier. It is also known as the true positive rate (TPR) or
recall. For the computation of sensitivity, Equation (15) is used.

Sensitivity =
TP

TP + FN
(15)

3. Specificity: Specificity, or the true negative rate (TNR), tests the percentage of correctly classified
non-dyslexic subjects. This indicates accuracy in identifying non-dyslexic subjects [82], as shown
in Equation (16).

Speci f icity =
TN

TN + FP
(16)

4. ROC and Area under ROC (AUC): The receiver operating characteristics (ROC) curve plots the
sensitivity curve against specificity, and thus provides a representation of the trade-off between
correctly classified positive instances and incorrectly classified negative instances [83]. Area under
ROC (AUC) is computed directly from this curve.

To test the output of the proposed cascaded deep CNN as defined in Section 4.5, all 576,000 brain
image patches were used. This sample comprises 243,200 with dyslexia biomarkers and 332,800 controls.
The classification was made before and after pixel-bitstream encoding. To ensure that the proposed
deep cascaded architecture learns pattens without compromising the privacy of the encrypted patches,
the kernel size in the first pathway was reduced to 3 × 3 with a stride (2,2), while the kernel size in the
second pathway was reduced to 7 × 7 with a stride (2,2). This arrangement allows augmentation to be
performed on the encrypted data directly. In each case, 70% (403,200) of patches were used for training,
15% (86,400) of patches were used for each of the validation and testing, respectively. The experiment
was simulated on MATLAB (R2017 b) software installed on a 2.70 GHz and 8.00 GB RAM GPU-based
processor, at various training iterations: 150, 225, 350, 450, and 500 epochs, respectively. We decided to
set a baseline of 50% accuracy level for the classification of the encrypted brain images owing to the
disorganization of original pixels’ bitstream. Table 3 shows the summary of the classification results

Symmetry 2020, 12, 836 17 of 24

before and after encoding after 50 repeated stratified 10-fold CVs. The choice of our 50 runs for CV
was intended to reduce the bias of the classifier (both overfitting and underfitting) and to minimize
uncertainty, thus producing more reliable predictions.

Table 3. Classification results before and after encoding (mean ± SD after 50 repeated 10-fold cross
validation (CV)).

Before Encoding After Encoding

Training
Iterations

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

150 57.47 ± 2.58 40.19 ± 2.13 53.62 ± 2.33 39.66 ± 2.09 33.28 ± 2.51 37.18 ± 2.85
225 59.13 ± 3.76 61.23 ± 3.72 54.91 ± 3.19 58.39 ± 3.44 58.72 ± 3.06 53.31 ± 3.41
350 70.68 ± 4.02 65.29 ± 2.97 66.84 ± 2.88 63.42 ± 3.19 61.97 ± 2.89 62.00 ± 2.99
450 80.22 ± 4.46 71.33 ± 3.85 72.53 ± 4.12 68.99 ± 3.87 67.81 ± 4.73 68.03 ± 3.96
500 84.56 ± 4.91 76.25 ± 4.64 78.21 ± 4.33 73.19 ± 4.18 70.33 ± 4.46 71.43 ± 4.11

From Table 3, the best training was achieved at 500 epochs iterations before and after encoding
using pixel-bitstream encoder with the highest classification accuracy of 84.56% ± 4.91% and 73.19%
± 4.18%, respectively. However, the poor classification accuracy was observed at 150 epoch training
iterations. Meanwhile, the classifier performed better than chance (50% baseline) before encoding,
but poorly for the encoded images at the same iterations with a value 39.66% ± 2.09% which is
significantly below the set baseline. This implies that, for the proposed cascaded deep CNN to reach
promising performance of clinical relevance, the number of training iterations must be sufficiently large.

Expectedly, the classifier shows better accuracy, sensitivity, and specificity for image patches before
encoding with the pixel-bitstream encoder, although the classifier still maintained good performance
above chance in those metrics at the following iterations: 225, 350, 450, and 500, respectively. The reason
for this may be the distortion in the pixels’ bits that represent the biomarkers under study, although
the position of pixel collection representing biomarkers to be classified is conserved after RNS
encryption. By extension, the classifier was able to learn these features. Advantageously, the concept
of homomorphic encryption, which allows computations to be performed directly on the encrypted
data, was successfully demonstrated. Figure 12 shows the ROC curve for the best training iteration
after encoding. From this curve, the value of AUC is 0.76, which is significantly high.

Symmetry 2020, 12, x FOR PEER REVIEW 16 of 23

allows augmentation to be performed on the encrypted data directly. In each case, 70% (403,200) of

patches were used for training, 15% (86,400) of patches were used for each of the validation and

testing, respectively. The experiment was simulated on MATLAB (R2017 b) software installed on a

2.70 GHz and 8.00 GB RAM GPU-based processor, at various training iterations: 150, 225, 350, 450,

and 500 epochs, respectively. We decided to set a baseline of 50% accuracy level for the classification

of the encrypted brain images owing to the disorganization of original pixels’ bitstream. Table 3

shows the summary of the classification results before and after encoding after 50 repeated stratified

10-fold CVs. The choice of our 50 runs for CV was intended to reduce the bias of the classifier (both

overfitting and underfitting) and to minimize uncertainty, thus producing more reliable predictions.

Table 3. Classification results before and after encoding (mean ± SD after 50 repeated 10-fold cross

validation (CV)).

Before Encoding After Encoding

Training Iterations Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

150 57.47 ± 2.58 40.19 ± 2.13 53.62 ± 2.33 39.66 ± 2.09 33.28 ± 2.51 37.18 ± 2.85

225 59.13 ± 3.76 61.23 ± 3.72 54.91 ± 3.19 58.39 ± 3.44 58.72 ± 3.06 53.31 ± 3.41

350 70.68 ± 4.02 65.29 ± 2.97 66.84 ± 2.88 63.42 ± 3.19 61.97 ± 2.89 62.00 ± 2.99

450 80.22 ± 4.46 71.33 ± 3.85 72.53 ± 4.12 68.99 ± 3.87 67.81 ± 4.73 68.03 ± 3.96

500 84.56 ± 4.91 76.25 ± 4.64 78.21 ± 4.33 73.19 ± 4.18 70.33 ± 4.46 71.43 ± 4.11

From Table 3, the best training was achieved at 500 epochs iterations before and after encoding using

pixel-bitstream encoder with the highest classification accuracy of 84.56% ± 4.91% and 73.19% ± 4.18%,

respectively. However, the poor classification accuracy was observed at 150 epoch training iterations.

Meanwhile, the classifier performed better than chance (50% baseline) before encoding, but poorly for the

encoded images at the same iterations with a value 39.66% ± 2.09% which is significantly below the set

baseline. This implies that, for the proposed cascaded deep CNN to reach promising performance of

clinical relevance, the number of training iterations must be sufficiently large.

Expectedly, the classifier shows better accuracy, sensitivity, and specificity for image patches before

encoding with the pixel-bitstream encoder, although the classifier still maintained good performance

above chance in those metrics at the following iterations: 225, 350, 450, and 500, respectively. The reason

for this may be the distortion in the pixels’ bits that represent the biomarkers under study, although the

position of pixel collection representing biomarkers to be classified is conserved after RNS encryption. By

extension, the classifier was able to learn these features. Advantageously, the concept of homomorphic

encryption, which allows computations to be performed directly on the encrypted data, was successfully

demonstrated. Figure 12 shows the ROC curve for the best training iteration after encoding. From this

curve, the value of AUC is 0.76, which is significantly high.

Figure 12. Receiver operating characteristics (ROC) curve at a training iteration of 500 epochs after
encoding. AUC, area under ROC.

Symmetry 2020, 12, 836 18 of 24

Most of the biomarker features in this study that distinguish between dyslexic and control subjects
can be found in the regions of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF),
which constitute the brain’s phonological and cognitive sub-systems. By this, our results are consistent
with those of Tamboer et al. [11], Cui et al. [84], and Sarah et al. [85]. Although Plonski et al. [12] and
Plonski et al. [52] have argued that discriminating dyslexia biomarker features are traceable to the
geometric properties of the human brain cortex, this study does not consider the geometric properties
of cerebral cortex during the feature extraction stage.

While existing machine learning algorithms such as artificial neural network (ANN), support
vector machine (SVM), and K-nearest neighbour (K-NN) used by earlier studies relied on error-prone,
time-consuming, hand-crafted features selection mechanisms to discriminate between the dyslexic
group and normal subjects, cascaded deep CNN extracts high-level features directly from the given
dataset. Hence, this study corroborates Spoon et al.’s [86] research by illustrating the use of a deep
learning algorithm to classify learning disability. We also clearly demonstrated the possibility of
distinguishing biomarkers of dyslexia from an encrypted MRI dataset—a concept we described as
CryptoDL. Meanwhile, we found that larger percentage of developmental dyslexia classification
studies, particularly machine learning algorithms, assessing classifier performance based on accuracy,
sensitivity, and specificity metrics only. These metrics are not sufficient. For instance, accuracy, which
is the most frequently used, becomes subject to bias in a situation of missing values or when one of
the classes to be predicted over-dominates the dataset that is, imbalanced class distribution [87,88].
This kind of scenario is inevitable when analyzing data relating to learning disability, hence the need
for more sophisticated evaluation metrics.

The proposed approach is compared against three recent studies based on privacy-preservation
classification with homomorphic encryption, and the performance is shown in Table 4. All the deep
learning classifiers used, including the proposed cascaded deep CNN, are shown to be above the
baseline of 50% performance accuracy on the encrypted image datasets. The highest classification
accuracy was achieved by Sirichotedumrong et al. [35], with an accuracy of 86.99%, while the lowest
classification accuracy was achieved by Tanaka [89], with an accuracy of 56.80%. The reason for this is
associated with overlapping of the classifier’s block of adaptation layers with the adjacent encrypted
block from the type of image encryption algorithm adopted. All pixel-based algorithms, including the
proposed approach, show relatively high performance accuracies, as the location of pixel collections
representing important features or biomarkers in the image is conserved regardless of the fact that the
bitstream has been modified for each pixel. Compared with the Chao et al. method [25], our proposed
method performs better as a result of a very high computational complexity of polynomial activation
function, which limits the computable depth of multiplication capability.

Table 4. Performance comparison with existing privacy-preservation methods. MRI, magnetic
resonance imaging; CNN, convolutional neural network.

Author(s) and
Year

Image Encrypted
Algorithm

Deep Learning
Classifier Used

Source of
Dataset Used

Accuracy
(%)

Reference
No.

Tanaka (2018) Block-based Pyramidal Residue
Network CIFER Dataset 56.80 [89]

Sirichotedumrong
et al. (2019) Pixel-based ResNet-18 CIFER Dataset 86.99 [35]

Chao et al. (2019) - CaRENets MNIST Dataset 73.10 [25]

Proposed Pixel-based Two-Pathway
Cascaded Deep CNN

Kaggle Brain
MRI Dataset 73.19 -

Finally, owing to the computational overhead of the large numbers of parameters used,
our proposed approach performs comparatively inferior to that of Sirichotedumrong et al. [35].
Therefore, approaches to tackle the optimization of parameters for the proposed cascaded deep CNN
represent a subject for potential investigation.

Symmetry 2020, 12, 836 19 of 24

5.4. Summary of Discussion

The RNS encryption scheme used to build the pixel-bitstream encoder is a pixel-based encryption
scheme that allows the proposed cascaded deep CNN classifier to learn features over the encrypted
training neuroimaging dataset and to predict dyslexia cases using the encrypted test dataset.
The outcomes of the classification are also in encoded form. The RNS-based encryption scheme
is homomorphic in terms of arbitrary addition, subtraction, and multiplication operations that could
be performed directly without decrypting the data. Both theoretical architectural analysis and FPGA
implementation of our proposed pixel-bitstream encoder showed that, after encoding, the location of the
array of pixels representing a particular biomarker of dyslexia is preserved. Consequently, the design has
helped the proposed deep CNN classifier to achieve reasonably high accuracy, sensitivity, and specificity,
as illustrated in Table 3.

Evidence from histograms and correlation analyses shows that the proposed pixel-bitstream
encoder architecture implemented on a pure adder-based FPGA is not only time-efficient, but also
enhances the encoding of clearly defined neuroimaging datasets into their corresponding cipher
images. It is also evident from our study that classification accuracy is proportional to the number
of training iterations (epochs) for the encrypted dataset, implying that the proposed cascaded deep
CNN better learns appropriate encrypted biomarkers (features) with the increasing number of
training cycles. Meanwhile, in accordance with earlier studies [11,12,52,84] on the classification of
developmental dyslexia using machine learning techniques, our report also asserts that volumetric
and geometric properties of essential tissues in the brain’s phonological and cognitive sub-systems
constitute distinguishing variables for dyslexia cases with or without data encryption.

6. Conclusions

In this study, we suggest a method for the safe detection of biomarkers for dyslexia from
brain MRI datasets (neuroimaging dataset). Our approach utilized an RNS special moduli set to
design an adder-based, pixel-bitstream encoder to convert a 7-bit grayscale normalized dyslexia
biomarkers-associated image dataset to cipher images before subjecting them to deep learning using
cascaded deep convolutional neural network. Theoretically, we were able to show that the proposed
pixel-bitstream encoder has an area complexity of 4n AFA and a total time delay of (3n + 3) DFA

when the value of n ≥ 3. FPGA implementation of the proposed encoder revealed that the encoder
was able to save up to 42.4% energy compared with ROM-based implementation, with a decrease
in critical path delay value of 23.5% compared with the state-of-the-art binary-to-residue converter
equivalent. When used for the encryption process, the proposed encoder achieved approximately 15 s
time for the creation of cipher images for all image patches segmented during the pre-processing phase.
The correlation between the plain normalized brain and cipher images was found to range between
−0.0073 and 0.0082 with completely different histogram shapes.

The analysis of the proposed cascaded deep CNN classifier shows that efficient classification
results can be achieved without revealing the secret of the dataset used. This supports the existing
concept of CryptoNets, a situation where machine learning or deep learning algorithms are specifically
applied to encrypted data [20,24], and privacy-preserving classification based on homomorphic
cryptosystem [19,88]. Although our results have shown better classification outcomes without
encoding the dataset, optimal accuracy and better prediction output can be achieved when the number
of training iterations is sufficiently large, with or without encoding the image patches. This should be
accompanied by careful selection of other deep model parameters.

In the meantime, the dyslexia-related dataset was chosen for our analysis owing to the effects
of dyslexia on the victim individual’s life and culture as a whole. Future work should concentrate
on the analysis of the proposed classifier using more sophisticated metrics. Further, evaluating the
homomorphic capability and asymptotic efficiency of the proposed pixel-bitstream encoder will be an
added advantage.

Symmetry 2020, 12, 836 20 of 24

Author Contributions: Conceptualization, O.L.U.; Methodology, O.L.U. and R.C.M.; Software, O.L.U.; Validation,
O.L.U. and R.C.M.; Formal Analysis, R.C.M.; Investigation, O.L.U.; Resources, O.L.U. and R.C.M.; Data Curation,
O.L.U.; Writing—Original Draft Preparation, O.L.U.; Writing—Review and Editing, R.C.M.; Visualization, O.L.U.;
Supervision, R.C.M.; Project Administration, R.C.M.; Funding Acquisition, R.C.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by Universiti Kebangsaan Malaysia (UKM), UKM Grant Code: GGP-2019-023.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Shen, D.; Wu, G.; Suk, H. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19,
221–248. [CrossRef] [PubMed]

2. Biomarker Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual
framework. Clin. Pharmacol. Ther. 2001, 69, 89–95.

3. Sharin, U.; Abdullah, S.N.H.S.; Omar, K.; Adam, A.; Sharis, S. Prostate Cancer Classification Technique on
Pelvis CT Images. Int. J. Eng. Technol. 2019, 8, 206–213.

4. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z.
Med. Phys. 2019, 29, 102–127. [CrossRef] [PubMed]

5. Elnakib, A.; Soliman, A.; Nitzken, M.; Casanova, M.F.; Gimel’farb, G.; El-Baz, A. Magnetic resonance imaging
findings for dyslexia: A review. J. Biomed. Nanotechnol. 2014, 10, 2778–2805. [CrossRef] [PubMed]

6. Sun, Y.F.; Lee, J.S.; Kirby, R. Brain imaging findings in dyslexia. Pediatr. Neonatol. 2010, 51, 89–96. [CrossRef]
7. Casanova, M.F.; El-Baz, A.; Elnakib, A.; Giedd, J.; Rumsey, J.M.; Williams, E.L.; Andrew, E.S. Corpus callosum

shape analysis with application to dyslexia. Transl. Neurosci. 2010, 1, 124–130. [CrossRef]
8. Farr, L.; Mancho-For, N.; Montal, M. Estimation of Brain Functional Connectivity in Patients with Mild

Cognitive Impairment. Brain Sci. 2019, 9, 350. [CrossRef]
9. Wajuihian, S.O.; Naidoo, K.S. Dyslexia: An overview. Afr. Vis. Eye Health 2011, 70, 89–98. [CrossRef]
10. Yuzaidey, N.A.M.; Din, N.C.; Ahmad, M.; Ibrahim, N.; Razak, R.A.; Harun, D. Interventions for children

with dyslexia: A review on current intervention methods. Med. J. Malays. 2018, 73, 311–320.
11. Tamboer, P.; Vorst, H.C.M.; Ghebreab, S.; Scholte, H.S. Machine learning and dyslexia: Classification of

individual structural neuro-imaging scans of students with and without dyslexia. NeuroImage Clin. 2016, 11,
508–514. [CrossRef] [PubMed]

12. Płoński, P.; Gradkowski, W.; Altarelli, I.; Monzalvo, K.; van Ermingen-Marbach, M.; Grande, M.; Hein, S.;
Marchewka, A.; Bogorodzki, P.; Ramus, F.; et al. Multi-parameter machine learning approach to the
neuroanatomical basis of developmental dyslexia. Hum. Brain Mapp. 2017, 38, 900–908. [CrossRef] [PubMed]

13. Ravi, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.-Z. Deep Learning for
Health Informatics. IEEE J. Biomed. Health Inform. 2017, 21, 4–21. [CrossRef] [PubMed]

14. Dash, S.; Acharya, B.R.; Mittal, M.; Ajith, A.; Kelemen, A. Deep Learning Techniques for Biomedical and Health
Informatics; Springer: Berlin/Heidelberg, Germany, 2020.

15. Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.A. Integrating Online and Offline 3D Deep Learning for Automated
Polyp Detection in Colonoscopy Videos. IEEE J. Biomed. Health Inform. 2016, 2194, 1–11.

16. Oyedotun, O.K.; Olaniyi, E.O. Deep Learning in Character Recognition Considering Pattern Invariance
Constraints. Int. J. Syst. Appl. 2015, 7, 1–10. [CrossRef]

17. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115,
211–252. [CrossRef]

18. Ren, J. Investigation of Convolutional Neural Network Architectures for Image-based Feature Learning and
Classification; University of Washington: Bothell, WA, USA, 2016.

19. Zhu, Q.; Lv, X. 2P-DNN: Privacy-Preserving Deep Neural Networks Based on Homomorphic Cryptosystem.
arXiv 2018, arXiv:1807.08459.

20. Pengtao, X.; Bilenko, M.; Finley, T.; Gilad-Bachrach, R.; Lauter, K.; Naehrig, M. Crypto-Nets: Neural Networks
over Encrypted Data. arXiv 2014, arXiv:1412.6181.

21. Mahmood, A.; Hamed, T.; Obimbo, C.; Dony, R. Improving the Security of the Medical Images. Int. J. Adv.
Comput. Sci. Appl. 2013, 4, 137–146. [CrossRef]

http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28301734
http://dx.doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
http://dx.doi.org/10.1166/jbn.2014.1895
http://www.ncbi.nlm.nih.gov/pubmed/25992418
http://dx.doi.org/10.1016/S1875-9572(10)60017-4
http://dx.doi.org/10.2478/v10134-010-0017-8
http://dx.doi.org/10.3390/brainsci9120350
http://dx.doi.org/10.4102/aveh.v70i2.102
http://dx.doi.org/10.1016/j.nicl.2016.03.014
http://www.ncbi.nlm.nih.gov/pubmed/27114899
http://dx.doi.org/10.1002/hbm.23426
http://www.ncbi.nlm.nih.gov/pubmed/27712002
http://dx.doi.org/10.1109/JBHI.2016.2636665
http://www.ncbi.nlm.nih.gov/pubmed/28055930
http://dx.doi.org/10.5815/ijisa.2015.07.01
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.14569/IJACSA.2013.040922

Symmetry 2020, 12, 836 21 of 24

22. Al-Haj, A.; Abandah, G.; Hussein, N. Crypto-based algorithms for secured medical image transmission.
IET Inf. Secur. 2015, 9, 365–373. [CrossRef]

23. Gatta, M.T.; Al-Latief, S.T.A. Medical image security using modified chaos-based cryptography approach.
J. Phys. Conf. Ser. 2018, 1003, 1–6. [CrossRef]

24. Dowlin, N.; Gilad-Bachrach, R.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. CryptoNets: Applying neural
networks to Encrypted data with high throughput and accuracy—Microsoft research. In Proceedings of the
33rd International Conference on Machine Learning, New York, NY, USA, 24 February 2016; pp. 1–12.

25. Chao, J.; Badawi, A.A.; Unnikrishnan, B.; Lin, J.; Mun, C.F.; Brown, J.M.; Campbell, J.P.; Chiang, M.;
Kalpathy-Cramer, J.; Chandrasekhar, V.R.; et al. CaRENets: Compact and Resource-Efficient CNN for
Homomorphic Inference on Encrypted Medical Images. arXiv 2019, arXiv:1901.10074.

26. Koppu, S.; Viswanatham, V.M. A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid
Chaotic Magic Transform. Model. Simul. Eng. 2017, 2017, 1–13. [CrossRef]

27. Zhu, C.; Wang, G.; Sun, K. Cryptanalysis and Improvement on an Image Encryption Algorithm Design
Using a Novel Chaos Based S-Box. Symmetry 2018, 10, 399. [CrossRef]

28. Safari, A.; Kong, Y. Four tap Daubechies filter banks based on RNS. In Proceedings of the IEEE
2012 International Symposium on Communications and Information Technologies (ISCIT), Gold Coast, QLD,
Australia, 2–5 October 2012; pp. 952–955.

29. Bankas, E.K.; Gbolagade, K.A. A New Efficient RNS Reverse Converter for the 4-Moduli Set. Int. J. Comput.
Electr. Autom. Control Inf. Eng. 2014, 8, 328–332.

30. Navin, A.H.; Oskuei, A.R.; Khashandarag, A.S.; Mirnia, M. A Novel Approach Cryptography by using
Residue Number System. In Proceedings of the ICCIT, 6th International Conference on Computer Science
and Convergence Information Technology IEEE, Seogwipo, Korea, 29 November–1 December 2011.

31. Abdul-mumin, S.; Gbolagade, K.A. Mixed Radix Conversion based RSA Encryption System. Int. J.
Comput. Appl. 2016, 150, 43–47. [CrossRef]

32. Alhassan, S.; Gbolagade, K.A. Enhancement of the Security of a Digital Image using the Moduli Set. J. Adv.
Res. Comput. Eng. Technol. 2013, 2, 2223–2229.

33. Youssef, M.I.; Eman, A.E.; Elghany, M.A. Multi-Layer Data Encryption using Residue Number System in
DNA Sequence. Int. J. Comput. Appl. 2012, 45, 19–24.

34. Youssef, M.I.; Emam, A.E.; Saafan, S.M.; Elghany, M.A.B.D. Secured Image Encryption Scheme Using both
Residue Number System and DNA Sequence. Online J. Electron. Electr. 2013, 6, 656–664.

35. Sirichotedumrong, W.; Maekawa, T.; Kinoshita, Y.; Kiya, H. Privacy-Preserving Deep Neural Networks with
Pixel-based Image Encryption Considering Data Augmentation in the Encrypted Domain. In Proceedings of
the IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 1–5.

36. Liu, X.; Zou, Y.; Kuang, H.; Ma, X. Face Image Age Estimation Based on Data Augmentation and Lightweight
Convolutional. Symmetry 2020, 12, 146. [CrossRef]

37. Fukushima, K. Neocognition: A self. Biol. Cybern. 1980, 202, 193–202. [CrossRef]
38. Yadav, S.S.; Jadhav, S.M. Deep convolutional neural network based medical image classification for disease

diagnosis. J. Big Data 2019, 6, 1–18. [CrossRef]
39. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
40. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A Survey of the Recent Architectures of Deep Convolutional

Neural Networks. arXiv 2019, arXiv:1901.06032. [CrossRef]
41. Khan, A.; Sohail, A.; Ali, A. A New Channel Boosted Convolutional Neural Network using Transfer Learning.

arXiv 2018, arXiv:1804.08528.
42. Rahman, A.; Muniyandi, R.C. An Enhancement in Cancer Classification Accuracy Using a Two-Step Feature

Selection Method Based on Artificial Neural Networks with 15 Neurons. Symmetry 2020, 12, 271. [CrossRef]
43. Niethammer, M.; Styner, M.; Aylward, S.; Zhu, H.; Oguz, I.; Yap, P.-T.; Shen, D. Information Processing in

Medical Imaging. In Proceedings of 25th International Conference, IPMI 2017; Hutchison, D., Ed.; Springer:
Boone, NC, USA, 2017.

44. Cole, J.H.; Poudel, R.P.K.; Tsagkrasoulis, D.; Caan, M.W.A.; Steves, C.; Spector, T.D.; Montana, G.
Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker.
Neuroimage 2017, 1–25. [CrossRef]

45. Hesamifard, E.; Takabi, H.; Ghasemi, M. CryptoDL: Deep Neural Networks over Encrypted Data. arXiv
2017, arXiv:1711.05189.

http://dx.doi.org/10.1049/iet-ifs.2014.0245
http://dx.doi.org/10.1088/1742-6596/1003/1/012036
http://dx.doi.org/10.1155/2017/7470204
http://dx.doi.org/10.3390/sym10090399
http://dx.doi.org/10.5120/ijca2016911455
http://dx.doi.org/10.3390/sym12010146
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1186/s40537-019-0276-2
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.3390/sym12020271
http://dx.doi.org/10.1016/j.neuroimage.2017.07.059

Symmetry 2020, 12, 836 22 of 24

46. Chervyakov, N.I.; Lyakhov, P.A.; Valueva, M.V.; Valuev, G.V.; Kaplun, D.I.; Efimenko, G.A.; Gnezdilov, D.V.
Area-Efficient FPGA Implementation of Minimalistic Convolutional Neural Network Using Residue Number
System. In Proceedings of the IEEE 23rd Conference of Frust Association, Bologna, Italy, 13–16 November
2018; pp. 112–118.

47. Dimauro, G.; Impedovo, S.; Pirlo, G. A New Technique for Fast Number Comparison in the Residue Number
System. IEEE Trans. Comput. 1993, 42, 608–612. [CrossRef]

48. Gbolagade, K.A.; Cotofana, S.D. An O(n) Residue Number System to Mixed Radix Conversion Technique.
In Proceedings of the IEEE Conference on Very Large Scale Integration, Taipei, Taiwan, 24–27 May 2009;
pp. 521–524.

49. Abdul-mumin, S.; Gbolagade, K.A. An Improved Residue Number System Based RSA Cryptosystem. Int. J.
Emerg. Technol. Comput. Appl. Sci. 2017, 20, 70–74.

50. Lotfinejad, M.M.; Mosleh, M.; Noori, H. A novel generic three-moduli set and its optimum arithmetic
residue to binary converters. In Proceedings of the 2010 the 2nd International Conference on Computer and
Automation Engineering (ICCAE), Singapore, 26–29 February 2010; pp. 112–116.

51. Cao, B.; Srikanthan, T.; Chang, C.H. Design of residue-to-binary converter for a new 5-moduli superset
residue number system. In Proceedings of the 2004 IEEE International Symposium on Circuits and Systems,
Vancouver, BC, Canada, 23–26 May 2004.

52. Płoński, P.; Gradkowski, W.; Marchewka, A.; Jednoróg, K.; Bogorodzki, P. Dealing with the heterogeneous
multi-site neuroimaging data sets: A discrimination study of children dyslexia. In Brain Informatics and
Health. BIH 2014, Lecture Notes in Computer Science, 8609; Ślȩzak, D., Tan, A.H., Peters, J.F., Schwabe, L., Eds.;
Springer: Cham, Switzerland, 2014.

53. Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical Surface-Based Analysis: I. Segmentation and Surface
Reconstruction. Neuroimage 1999, 9, 179–194. [CrossRef]

54. Sun, X.; Shi, L.; Luo, Y.; Yang, W.; Li, H.; Liang, P.; Li, K.; Mok, V.C.T.; Chu, W.C.W.; Wang, D.
Histogram—Based normalization technique on human brain magnetic resonance images from different
acquisitions. Biomed. Eng. Online 2015, 14, 1–17. [CrossRef] [PubMed]

55. Kleesiek, J.; Urban, G.; Hubert, A.; Schwarz, D.; Maier-Hein, K.; Bendszus, M.; Briller, A. Neuroimage Deep
MRI brain extraction: A 3D convolutional neural network for skull stripping. Neuroimage 2016, 129, 460–469.
[CrossRef] [PubMed]

56. Im, K.; Raschle, N.M.; Smith, S.A.; Ellen, G.P.; Gaab, N. Atypical Sulcal Pattern in Children with Developmental
Dyslexia and At-Risk Kindergarteners. Cereb. Cortex 2016, 26, 1138–1148. [CrossRef] [PubMed]

57. Tamboer, P.; Scholte, H.S.; Vorst, H.C.M. Dyslexia and voxel-based morphometry: Correlations between
five behavioural measures of dyslexia and gray and white matter volumes. Ann. Dyslexia 2015, 65, 121–141.
[CrossRef]

58. Zhang, L.; Wang, X.; Penwarden, N.; Ji, Q. An Image Segmentation Framework Based on Patch Segmentation
Fusion. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong,
China, 20–24 August 2006; pp. 1–5.

59. Alkinani, M.H.; El-Sakka, M.R. Patch-based models and algorithms for image denoising: A comparative
review between patch-based images denoising methods for additive noise reduction. EURASIP J. Image
Video Process. 2017, 58, 1–27. [CrossRef]

60. Parhami, B. Digital/analog arithmetic with continuous-valued residues. In Proceedings of the 2009 Conference
Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
1–4 November 2009.

61. Omondi, A.; Premkumar, B. Residue Number Systems: Theory and Implementation. In Covent Garden,
London; Imperial College Press: London, UK, 2007.

62. Jaberipur, G.; Belghadr, A.; Nejati, S. Impact of diminished-1 encoding on residue number systems arithmetic
units and converters. Comput. Electr. Eng. 2019, 75, 61–76. [CrossRef]

63. Shin, H.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional
Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer
Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [CrossRef]

64. Kafi, M.; Maleki, M.; Davoodian, N. Research in Veterinary Science Functional histology of the ovarian
follicles as determined by follicular fluid concentrations of steroids and IGF-1 in Camelus dromedarius.
Res. Vet. Sci. 2015, 99, 37–40. [CrossRef]

http://dx.doi.org/10.1109/12.223680
http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1186/s12938-015-0064-y
http://www.ncbi.nlm.nih.gov/pubmed/26215471
http://dx.doi.org/10.1016/j.neuroimage.2016.01.024
http://www.ncbi.nlm.nih.gov/pubmed/26808333
http://dx.doi.org/10.1093/cercor/bhu305
http://www.ncbi.nlm.nih.gov/pubmed/25576531
http://dx.doi.org/10.1007/s11881-015-0102-2
http://dx.doi.org/10.1186/s13640-017-0203-4
http://dx.doi.org/10.1016/j.compeleceng.2019.01.023
http://dx.doi.org/10.1109/TMI.2016.2528162
http://dx.doi.org/10.1016/j.rvsc.2015.01.001

Symmetry 2020, 12, 836 23 of 24

65. Bengio, Y. Deep Learning of Representations: Looking Forward. In Statistical Language and Speech Processing.
SLSP 2013, Lecture Notes in Computer Science, 7978; Dediu, A.H., Martín-Vide, C., Mitkov, R., Truthe, B., Eds.;
Springer: Berlin/Heidelberg, Germany, 2013.

66. Nguyen, Q.; Mukkamala, M.C.; Hein, M. Neural Networks Should be Wide Enough to Learn Disconnected
Decision Regions. arXiv 2018, arXiv:1803.00094.

67. Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.; Larochelle, H.
Brain Tumor Segmentation with Deep Neural Networks. Med. Image Anal. 2017, 35, 18–31. [CrossRef]

68. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.;
Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
Med. Image Anal. 2017, 36, 61–78. [CrossRef]

69. Dou, Q.; Chen, H.; Yu, L.; Zhao, L.; Qin, J.; Wang, D.; Mok, V.C.T.; Shi, L.; Heng, P. Automatic Detection of
Cerebral Microbleeds from MR Images via 3D Convolutional Neural Networks. IEEE Trans. Med. Imaging
2016, 35, 1182–1195. [CrossRef]

70. Dou, Q.; Yu, L.; Chen, H.; Jin, Y.; Yang, X.; Qin, J.; Heng, P. 3D deeply supervised network for automated
segmentation of volumetric medical images. Med. Image Anal. 2017, 41, 40–54. [CrossRef] [PubMed]

71. Payan, A.; Montana, G. Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural
networks. arXiv 2015, arXiv:1502.02506.

72. Amerineni, R.; Gupta, R.S.; Gupta, L. CINET: A Brain-Inspired Deep Learning Context—Integrating Neural
Network Model for Resolving Ambiguous Stimuli. Brain Sci. 2020, 10, 64. [CrossRef] [PubMed]

73. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

74. Krizhevsky, A.; Sustskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks.
Commun. ACM 2017, 84–90. [CrossRef]

75. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision – ECCV
2014. Lecture Notes in Computer Science, 8689; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer:
Cham, Germany.

76. Maroosi, A.; Muniyandi, R.C. Accelerated Execution of P Systems with Active Membranes to solve the
N-Queens Problem. Theor. Comput. Sci. 2014, 551, 39–54.

77. Maroosi, A.; Muniyandi, R.C.; Sundararajan, E.; Zin, A.M. Parallel and Distributed Computing Models on a
Graphics Processing Unit to Accelerate Simulation of Membrane Systems. Stimul. Model. Pract. Theory 2014,
47, 60–78.

78. Othman, A.; Muniyandi, R.C. Elliptic Curve Diffie-Hellman Random Keys Using Artificial Neural Network
and Genetic Algorithm for Secure Data over Private Cloud. Inf. Technol. J. 2016, 15, 77–83. [CrossRef]

79. Zhou, Y.; Panetta, K.; Agaian, S. An image scrambling algorithm using parameter based M-sequences.
In Proceedings of the 2008 International Conference on Machine Learning and Cybernetics, Kunming, China,
12–15 July 2008.

80. Somaraj, S.; Hussain, M.A. A Novel Image Encryption Technique Using RGB Pixel Displacement for Color
Images. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC),
Bhimavaram, India, 27–28 February 2016.

81. Wang, Y.; Wong, K.W.; Liao, X.; Xiang, T.; Chen, G. A chaos-based image encryption algorithm with variable
control parameters. Chaos Solitons Fractals 2009, 41, 1773–1783. [CrossRef]

82. Macaš, M.; Novak, D.; Kordik, P.; Lhotska, L.; Vyhnalek, M.; Brzezny, R. Dyslexia Detection from Eye
Movements Using Artificial Neural Networks. In Proceedings of the European Medical and Biological
Engineering Conference, Prague, Czech Republic, 20–25 November 2005; pp. 1–10.

83. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional
neural networks. Neural Netw. 2018, 106, 249–259. [CrossRef] [PubMed]

84. Cui, Z.; Xia, Z.; Su, M.; Shu, H.; Gong, G. Disrupted white matter connectivity underlying developmental
dyslexia: A machine learning approach. Hum. Brain Mapp. 2016, 37, 1443–1458. [CrossRef] [PubMed]

85. Sarah, B.; Nicole, C.; Ardag, H.; Madelyn, M.; Holland, S.K.; Tzipi, H. An fMRI Study of a Dyslexia Biomarker.
J. Young Investig. 2014, 26, 1–4.

86. Spoon, K.; Crandall, D.; Siek, K. Towards Detecting Dyslexia in Children’s Handwriting Using Neural
Networks. In Proceedings of the International Conference on Machine Learning AI for Social Good Workshop,
Long Beach, CA, USA, 15 June 2019; pp. 1–5.

http://dx.doi.org/10.1016/j.media.2016.05.004
http://dx.doi.org/10.1016/j.media.2016.10.004
http://dx.doi.org/10.1109/TMI.2016.2528129
http://dx.doi.org/10.1016/j.media.2017.05.001
http://www.ncbi.nlm.nih.gov/pubmed/28526212
http://dx.doi.org/10.3390/brainsci10020064
http://www.ncbi.nlm.nih.gov/pubmed/31991649
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.3923/itj.2016.77.83
http://dx.doi.org/10.1016/j.chaos.2008.07.031
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30092410
http://dx.doi.org/10.1002/hbm.23112
http://www.ncbi.nlm.nih.gov/pubmed/26787263

Symmetry 2020, 12, 836 24 of 24

87. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 1–54.
[CrossRef]

88. Bost, R.; Popa, R.A.; Tu, S.; Goldwasser, S. Machine Learning Classification over Encrypted Data.
In Proceedings of the NDSS Conference, San Diego, CA, USA, 8–11 February 2015; pp. 1–14.

89. Tanaka, M. Learnable Image Encryption. In Proceedings of the IEEE International Conference on Consumer
Electronics-Taiwan (ICCE-TW), Taichung, Taiwan, 19–21 May 2018; pp. 1–2.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s40537-019-0192-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Overview of Deep CNN for Image Dataset Classification
	Background of Residue Number System and Image Encryption
	Materials and Methods
	Participants
	Brain Images Acquisition and Pre-Processing
	Proposed Conceptual Framework for Secure Brain Image Classification
	Design of RNS Pixel-Bitstream Encoder for Image Encryption
	Case 1: Modulo -2n - 1
	Case 2: Modulo -2n+1 - 1

	Deep CNN Architecture, Training, and Classification

	Experimental Results and Discussion
	Implementation of the Proposed Pixel-Bitstream Encoder and Encryption Time Analysis
	Analysis of Pixel-Bitstream Encoder Performance
	Design Analysis
	Cipher Image Analysis
	Histogram Analysis
	Correlation Coefficient Analysis

	Analysis of the Proposed Cascaded Deep CNN Classifier Performance
	Summary of Discussion

	Conclusions
	References

