On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs
Abstract
:1. Introduction
- and .
2. Applications of Topological Indices
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals, Total π electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Rücker, G.; Rücker, C. On topological indices, boiling points, and cycloalkanes. J. Chem. Inf. Comp. Sci. 1999, 39, 788–802. [Google Scholar]
- Aledo, J.A.; Diaz, L.G.; Martinez, S.; Valverde, J.C. Predecessors and gardens of Eden in sequential dynamical systems over directed graphs. Appl. Math. Nonlinear Sci. 2018, 3, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y. Perturbation results for the Estrada index in weighted networks. J. Phys. A Math. Theor. 2011, 44, 88–98. [Google Scholar] [CrossRef]
- Akhter, S.; Imran, M. The sharp bounds on general sum-connectivity index of four operations on graphs. J. Inequal. Appl. 2016, 2016, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Akhter, S.; Imran, M. Computing the forgotten topological index of four operations on graphs. AKCE Int. J. Graphs Comb. 2017, 14, 70–79. [Google Scholar] [CrossRef]
- Akhter, S.; Imran, M.; Gao, W.; Farahani, R. On topological indices of honeycomb networks and graphene networks. Hac. J. Math. Stat. 2018, 47, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Akhter, S.; Imran, M.; Raza, Z. Bounds for the general sum-connectivity index of composite graphs. J. Inequal. Appl. 2017, 2017, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Abbas, T.; Khalid, W. Multiplicative topological descriptors of Silicon carbide. Appl. Math. Nonlinear Sci. 2019, 4, 181–190. [Google Scholar]
- Berhe, M.; Wang, C. Computation of certain topological coindices of graphene sheet and C4C8 (S) nanotubes and nanotorus. Appl. Math. Nonlinear Sci. 2019, 4, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Aamir, M.; Iqbal, Z.; Ishaq, M.; Aslam, A. On irregularity measures of some dendrimers structures. Mathematics 2019, 7, 271. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Iqbal, Z.; Ishaq, M.; Aslam, A.; Aamir, M.; Binyamin, M.A. Bounds on topological descriptors of the corona product of f-sum of connected graphs. IEEE Access 2019, 7, 26788–26796. [Google Scholar] [CrossRef]
- Gao, W.; Iqbal, Z.; Ishaq, M.; Aslam, A.; Sarfraz, R. Topological aspects of dendrimers via distance-based descriptors. IEEE Access 2019, 7, 35619–35630. [Google Scholar] [CrossRef]
- Goyal, S.; Garg, P.; Mishra, V.N. New composition of graphs and their Wiener indices. Appl. Math. Nonlinear Sci. 2019, 4, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I. Degree-based topological indices. Croat. Chem. Acta 2013, 86, 351–361. [Google Scholar] [CrossRef]
- Hayat, S.; Imran, M. Computation of topological indices of certain networks. Appl. Math. Comput. 2014, 240, 213–228. [Google Scholar] [CrossRef]
- Imran, S.; Siddiqui, M.K.; Imran, M.; Nadeem, M.F. Computing topological indices and polynomials for line graphs. Mathematics 2018, 6, 137. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Siddiqui, M.K.; Abunamous, A.A.E.; Adi, D.; Rafique, S.H.; Baig, A.Q. Eccentricity based topological indices of an oxide network. Mathematics 2018, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Akhter, S. Degree-based topological indices of double graphs and strong double graphs. Discret. Math. Algorithm. Appl. 2017, 9, 1750066. [Google Scholar] [CrossRef]
- Iqbal, Z.; Ishaq, M.; Aslam, A.; Gao, W. On eccentricity-based topological descriptors of water-soluble dendrimers. Z. Naturforsch 2018, 74, 25–33. [Google Scholar] [CrossRef]
- Iqbal, Z.; Aamir, M.; Ishaq, M.; Shabri, A. On theoretical study of Zagreb indices and Zagreb polynomials of water-soluble perylenediimide-cored dendrimers. J. Inform. Math. Sci. 2018, 10, 647–657. [Google Scholar]
- Knor, M.; Škrekovski, R.; Tepeh, A. Convexity result and trees with large Balaban index. Appl. Math. Nonlinear Sci. 2018, 3, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-B.; Ali, B.; Malik, M.A.; Siddiqui, H.M.A.; Imran, M. Reformulated Zagreb indices of some derived graphs. Mathematics 2019, 7, 366. [Google Scholar] [CrossRef] [Green Version]
- Shirakol, S.; Kalyanshetti, M.; Hosamani, S.M. QSPR analysis of certain distance based topological indices. Appl. Math. Nonlinear Sci. 2019, 4, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Quraish, M. Some invariants of flower graph. Appl. Math. Nonlinear Sci. 2018, 3, 427–432. [Google Scholar]
- Ashrafi, A.R.; Doslić, T.; Hamzeh, A. The Zagreb coindices of graph operations. Discret. Appl. Math. 2010, 158, 1571–1578. [Google Scholar] [CrossRef] [Green Version]
- Azari, M.; Iranmanesh, A. Computing the eccentric-distance sum for graph operations. Discret. Appl. Math. 2013, 161, 2827–2840. [Google Scholar] [CrossRef]
- Basavanagoud, B.; Gao, W.; Patil, S.; Desai, V.R.; Mirajkar, K.G.; Pooja, B. Computing first Zagreb index and F-index of new C-products of graphs. Appl. Math. Nonlinear Sci. 2017, 2, 285–298. [Google Scholar] [CrossRef] [Green Version]
- De, N.; Nayeem, S.M.A.; Pal, A. The F-coindex of some graph operations. SpringerPlus 2016, 5, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalifeha, M.H.; Yousefi-Azaria, H.; Ashrafi, A.R. The first and second Zagreb indices of some graph operations. Discret. Appl. Math. 2009, 157, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Hosamani, S.M.; Awati, V.B.; Honmore, R.M. On graphs with equal dominating and c-dominating energy. Appl. Math. Nonlinear Sci. 2019, 4, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wang, C.; Wang, S. Hamilton-connectivity of interconnection networks modeled by a product of graphs. Appl. Math. Nonlinear Sci. 2018, 3, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.; Zhang, Y.; Li, M. Spectra of subdivision vertex-edge join of three graphs. Mathematics 2019, 7, 171. [Google Scholar] [CrossRef] [Green Version]
- Indulal, G. Spectrum of two new joins of graphs and infinite families of integral graphs. Kragujevac J. Math. 2012, 36, 133–139. [Google Scholar]
- Albertson, M.O. The Irregularity of a graph. Ars Comb. 1997, 46, 219–225. [Google Scholar]
- Furtula, A.; Gutman, I. A forgotten topological index. J. Math. Chem. 2015, 53, 1184–1190. [Google Scholar] [CrossRef]
- Shirdel, G.H.; Pour, H.R.; Sayadi, A.M. The hyper-Zagreb index of graph operations. Iran. J. Math. Chem. 2013, 4, 213–220. [Google Scholar]
- Ediz, S. On the reduced first Zagreb index of graphs. Pac. J. Appl. Math. 2016, 8, 99–102. [Google Scholar]
- Furtula, B.; Gutman, I.; Ediz, S. On difference of Zagreb indices. Discret. Appl. Math. 2014, 178, 83–88. [Google Scholar] [CrossRef]
- Todeschini, R.; Ballabio, D.; Consonni, V. Novel molecular descriptors based on functions of new vertex degrees. In Novel Molecular Structure Descriptors-Theory and Applications I; Gutman, I., Furtula, B., Eds.; University Kragujeva: Kragujevac, Serbia, 2010; pp. 73–100. [Google Scholar]
- Todeschini, R.; Consonni, V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 2010, 64, 359–372. [Google Scholar]
- Ranjini, P.S.; Lokesha, V.; Usha, A. Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 2013, 1, 116–121. [Google Scholar]
- Usha, A.; Ranjini, P.S.; Lokesha, V. Zagreb co-indices, augmented Zagreb index, redefined Zagreb indices and their polynomials for phenylene and hexagonal squeeze. In Proceedings of the International Congress in Honour of Dr. Ravi. P. Agarwal, Bursa, Turkey, 23–26 June 2014; pp. 23–26. [Google Scholar]
- Milićević, A.; Nikolić, S.; Trinajstić, N. On reformulated Zagreb indices. Mol. Divers. 2004, 8, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Fajtlowicz, S. On conjectures of Graffiti-II. Congr. Numer. 1987, 60, 187–197. [Google Scholar]
- Estrada, E. Atom-bond connectivity and the energetic of branched alkanes. Chem. Phys. Lett. 2008, 463, 422–425. [Google Scholar] [CrossRef]
- Vukičević, D.; Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 2009, 46, 1369–1376. [Google Scholar] [CrossRef]
- Gutman, I.; Furtula, B.; Elphick, C. Three new/old vertex-degree-based topological indices. MATCH Commun. Math. Comput. Chem. 2014, 72, 617–632. [Google Scholar]
- Gao, W.; Siddiqui, M.K.; Naeem, M.; Rehman, N.A. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures. Molecules 2017, 22, 1496. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Wu, P.; Zhang, X.; Dimitrov, D.; Liu, J. On the maximum ABC index of graphs with prescribed size and without pendent vertices. IEEE Access 2018, 6, 27604–27616. [Google Scholar] [CrossRef]
- Imran, M.; Siddiqui, M.K.; Naeem, M.; Iqbal, M.A. On topological properties of symmetric chemical structures. Symmetry 2018, 10, 173. [Google Scholar] [CrossRef]
- Gao, W.; Siddiqui, M.K.; Imran, M.; Jamil, M.K.; Farahani, M.R. Forgotten topological index of chemical structure in drugs. Saudi Pharm. J. 2016, 24, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Das, K.C.; Yurttas, A.; Togan, M.; Cevik, A.S.; Cangul, I.N. The multiplicative Zagreb indices of graph operations. J. Inequal. Appl. 2013, 90, 1–14. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guirao, J.L.G.; Imran, M.; Siddiqui, M.K.; Akhter, S. On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs. Symmetry 2020, 12, 1026. https://doi.org/10.3390/sym12061026
Guirao JLG, Imran M, Siddiqui MK, Akhter S. On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs. Symmetry. 2020; 12(6):1026. https://doi.org/10.3390/sym12061026
Chicago/Turabian StyleGuirao, Juan L. G., Muhammad Imran, Muhammad Kamran Siddiqui, and Shehnaz Akhter. 2020. "On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs" Symmetry 12, no. 6: 1026. https://doi.org/10.3390/sym12061026
APA StyleGuirao, J. L. G., Imran, M., Siddiqui, M. K., & Akhter, S. (2020). On Valency-Based Molecular Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs. Symmetry, 12(6), 1026. https://doi.org/10.3390/sym12061026