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Abstract: In this paper, we use g-derivative operator to define a new class of g-starlike functions
associated with k-Fibonacci numbers. This newly defined class is a subclass of class A of normalized
analytic functions, where class A is invariant (or symmetric) under rotations. For this function class
we obtain an upper bound of the third Hankel determinant.
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1. Introduction and Definitions

The calculus without the notion of limits is called quantum calculus; it is usually called g-calculus
or g-analysis. By applying g-calculus, univalent functions theory can be extended. Moreover,
the g-derivative, such as the g-calculus operators (or the g-difference) operator, are used to developed
a number of subclasses of analytic functions (see, for details, the survey-cum-expository review article
by Srivastava [1]; see also a recent article [2] which appeared in this journal, Symmetry).

Ismail et al. [3] instigated the generalization of starlike functions by defining the class of g-starilke
functions. A firm footing of the usage of the g-calculus in the context of Geometric Functions Theory
was actually provided and the basic (or g-) hypergeometric functions were first used in Geometric
Function Theory by Srivastava (see, for details [4]). Raghavendar and Swaminathan [5] studied
certain basic concepts of close-to-convex functions. Janteng et al. [6] published a paper in which the
(9) generalization of some subclasses of analytic functions have studied. Further, g-hypergeometric
functions, the g-operators were studied in many recent works (see, for example, [7-9]). The g-calculus
applications in operator theory could be found in [4,10]. The coefficient inequality for g-starlike and
g-close-to-convex functions with respect to Janowski functions were studied by Srivastava et al. [8,11]
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recently, (see also [12]). Further development on this subject could be seen in [7,9,13,14]. For a
comprehensive review of the theory and applications of the g-derivative (or the g-difference) operator
and related literature, we refer the reader to the above-mentioned work [1].

We denote by A the class of functions which are analytic and having the form:

f(z)=z+ i anz" 1)
n=2

in the open unit disk U given by
U={z:2€C and |z] <1}
and normalized by the following conditions:
£(0)=0=f(0)—1.
The subordinate between two functions f and g in U, given by:
f=g or f(z)<g(z),
if an analytic Schwarz function w exists in such way that
w(0)=0 and |w(z)| <1,

so that
fz) =g(w(z))
In particular, the following equivalence also holds for the univalent function g

f(z) <g(z) (z€U) = f(0) =g(0) and f(U) C g(U).

Next by the P class of analytic functions, p(z) in U is denoted, in which normalization conditions
are given as follow:

p(z)=1+ i cnz" )
n=1

such that
R(p(z)) >0 (Vzel).

Let k be any positive real number, then we define the k-Fibonacci number sequence {F , };
recursively by

Fk,O =0, Fk,l =1 and Fk,n+1 = ka,n + Fk,nfl for n 2 1. 3)

The n'* k-Fibonacci number is given by

Fin k=T 7 _7?,
’ ViZ+4
where
7= v @
If
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then we have (see also [15])
Pin = (Fen-1+ Foni) T (neN; N:={1,2,3,---}). ®)
Definition 1. Let g € (0,1) then the g-number [A], is given by

1—q)L
1—g

n—1
La=1+q+a+ - +q""  (A=neN).
k=0

(Ae©)

(A, =

Definition 2. The g-difference (or the q-derivative) Dy operator of any given function f is defined, in a given
subset of C, of complex numbers by

(Dof) (2) = { =gz (z#0)

led to the existence of the derivative f' (0).

From Definitions 1 and 2, we have

lim (Dyf) (z) = tim LE L) _ g

g—1— g=1- (1—9q)z

for a differentiable function f. In addition, from (1) and (2), we observe that

(Dyf) (z) =1+ i ], a,z" L. (6)
n=2

In the year 1976, it was Noonan and Thomas [16] who concentrated on the function f given in (1)
and gave the qth Hankel determinant as follows.
Let n 2 0 and g € N. Than the qth Hankel determinant is defined by

an Ap+1 - - - Opgg-1
An+1

Hq (n) =
lanrq,l . . . . un+2(q—1)

Several authors studied the determinant Hy (1). In particular, sharp upper bounds on H; (2)
were obtained in such earlier works as, for example, in [17,18] for various subclasses of the normalized
analytic function class A. It is well-known for the Fekete-Szeg functional |a3 — 3| that

‘ﬂg*a%‘ = Hz (1)

Its worth mentioning that, for a parameter u which is real or complex, the generalization the
functional |a3 — ‘ua%| is given in aspects. In particular, Babalola [19] studied the Hankel determinant
Hj (1) for some subclasses of A.

In 2017, Giiney et al. [20] explored the third Hankel determinant in some subclasses of A
connected with the above-defined k-Fibonacci numbers. A derivation of the sharp coefficient bound
for the third Hankel determinant and the conjecture for the sharp upper bound of the second Hankel
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determinant is also derived by them, which is employed to solve the related problems to the third
Hankel determinant and to present an upper bound for this determinant.

Motivated and inspired by the above-mentioned work and also by the recent works of
Giiney et al. [20] and Ugar [12], we will now define a new subclass SL(k,q) of starlike functions
associated with the k-Fibonacci numbers. We will then find the Hankel determinant Hj (1) for the
newly-defined functions class SL(k, ).

Definition 3. Let P (B) (0 < B < 1) denote the class of analytic functions p in U with
p(0)=1 and R(p(z)) > B.

Definition 4. Let the function p be said to belong to the class k-Py (z) and let k be any positive real number if

2Pk (2)
PO = Tt - @ @

where Py (z) is given by
1+ 7222

R ®

Pr (2)
and T is given in (4).
Remark 1. For g = 1, it is easily seen that
p(z) < P (2) .
Definition 5. Let k be any positive real number. Then the function f be in the functions class SL(k, q) if and
only if

z 2P (2)

O R (e e A ©)

where Py (z) is given in (8).

Remark 2. For g4 =1, we have

Z}(;S) < i (2).-

We recall that when the f belongs to the class A of analytic function then it is invariant
(or symmetric) under rotations if and only if the function f.(z) given by

fe(z) = e f(2%) (¢ €R)

is also in A. A functional Z( f) defined for functions f is in A is called invariant under rotations in A if
fc € Aand Z(f) = Z(f,) for all ¢ € R. It can be easily checked that the functionals |aya3 — a4, |Hp,1|
and |Hj 1| considered for the class SL(k, q) satisfy the above definitions.

Lemma 1 (see [21]). Let
p(z) =1+ciz+ 2> +...

be in the class P of functions with positive real part in U. Then

ok €2 (keN). (10)



Symmetry 2020, 12, 1043

If |c1| = 2, then

1%

e = pE = (x=9D),

1—xz x:E

Conversely, if p(z) = p1(z) for some |x| = 1, then c; = 2x and

2 2
o, ldl
(8)) 5 :2 5

Lemma 2 (see [22]). Let p € P with its coefficients cy as in Lemma 1, then
’C3 —2c100 + cﬂ <2.
Lemma 3 (see [23]). Let p € P with its coefficients cy as in Lemma 1, then
lc1ca — 3] = 2.
Lemma 4 (see [20]). If the function f given in the form (1) belongs to class SLX, then
|an| < |77<‘n_1 Fien,

where Ty is given in (4). Equality holds true in (14) for the function g given by

z

B 1—kTiz — T2z

o0
=) T Fen",
n=1

8k (2)

which can be written as follows:
8 (2) =2+ T2+ (R +1) (Tk+1) 2+ - -

2. Main Results

50f17

(11)

(12)

(13)

(14)

(15)

Here, we investigate the sharp bounds for the second Hankel determinant and the third Hankel
determinant. We also find sharp bounds for the Fekete-Szego functional |az — /\a%| for a real number

A. Throughout our discussion, we will assume that g € (0,1).

Theorem 1. Let the function f € A given in (1) belong to the class SL(k,q). Then

1
—d < —— 0@+ 1)%+ (|B k% + || ) 16K2 ) T2,
s = ] £ g { QU1+ (181 + 16y1) 16} 7
where
Q= (q+¢*+7°)
By= (@t D' 0 (2 r6q-3) 14 (g-1) (20 -3)

€= 15 @+ 17 |2 -1 0 (3+ 3 -1)) (4+17]

and Ty is given in (4).

(16)

(17)
(18)

(19)
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6of 17
Proof. If f € SL(k,q), then it follows from the definition that
z(Dof) (2) .
I 2 G (2),
) q(2)
where 2 (2)
= Pk \z
z) = —.
N (E RN 1E
For a given f € SL(k, q), we find for the function p(z), where
plz)=1+piztpz®+--,
- (D)
z\Dyf) (2) _ ._ 2
W —p(Z) .—1+P12+P22 +--,
where
p=i).
If
p(z) <4 (2),
then there is an analytic function w such that
lw(z)|S|z] in U
and
p(z) = q(w(z))
Therefore, the function g(z), given by
1t w(z)
g(z)—m—1+clz+czz+ (Vzel), (20)

is in the class P. It follows that

and

TwE) =1+ 1 (1 +1) praciz

1 o d\ ., a o _ 2
+ 3@+ P (=3 |2+ L+ [0 - DAk +260) | 2

1 ~ c3 1 . .
y (q+1) Pra <Cs —c102 + 41> + 3 (g+1) {(q — 1)?’%,1 + 2pk,2} c1 (21)
Cy — ﬁ

2
: ( 2) + @+ D) {17 B +4Papia (- 1) +4ps) S+
=p(2).

—+

From (5), we find the coefficient fy ,, of the function 4 given by

Pion = (Fgn—1+ Fony1) T(

This shows the following relevant connection § with the sequence of k-Fibonacci numbers:
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G(w(z)) =1+ i (g+1)kTrc1z +

1 c% c%
Z(l]'f'l)k'ﬁ( C2—? +T6(q+1)

: ((qfl)k2+2<2+k2>> Tkz] 2+

Lg+1km o
Z(’J+) kle—aet g

(22)
1 2 1
+8(q+1){(q1)k2+2<2+k2)}ﬁ2c1<cz621>+64(q+1)
@12 +4(2+8) (g - 1) +4 (R +3) Jrde] 2+ -
If
p(z)=1+piz+pz+---,
then, by (21) and (22), we find that
- q+1 kﬁcl
n=("3")"% )
S O P B SR 422+ T2 2
=10+ (ki (=2 |+ L) {@-DR+22+R)} 7, 4)
kTx 3
ps=(q+1) 2<c3—c1c2+41> +{@-DeT2+2(2+8) 72}
| _ﬁ CJ+£{( —1)2k2+4<2+k2>( _1) (25)
275 )8 Tea WM 1
+4 (k2+3)}k’rk3]
Moreover, we have
Z(qu)(z)i 2\ .2
W_1+qazz+q{(1+q)a3—a2}z
+{Qa4—q(2+q)a2a3+qa§}z3+---
=1+piz+ppz®+--
and
azzﬂ
q
_aptp
B= "1
7°(q+1)
P@a+1)p3—pia+1)+2+9) (mp2g+p3)

P?+1)Q

Therefore, we obtain
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2 q+1 2 Q C% ?
-4 q 2) C1 (C1C2 — C3) + Z Cy — E
Q 1o (gt 4
2 2 n
301 9 5.4 3, T
+{5qk A (Z 2) + Bykoch 4 Cglc }Fk,n

2
— {qu3cl <c2 - Cl) + Bgk>ci + quBC%} Xpn + Bgktcl + CokPct

7

2

where
&= @+ 1P (-1 {2+ 1))

This can be written as follows:

5 9 6/+1>4C‘%
7?2 (q+1)°Q

+
2\ (24K%) | kT
-{Q—qz(qﬂ)z}C%(Q—z)( 1 )}Fk,i

+1\* 2
+ q2 (q2> szl (C1C2 — C3) — ZZ (q + 1)4 k2C1 +

1 k2 1\? 2
(1) e 8 (13 o)
3 K2

+35 @ +1) { (k2+2){Q—q (q+1) }kxkn—4}

6

2 2 2 n

“ 301 g 5 4 3 4 7;1(
( 2) {Eqk > (cz 2) + Bgk’ci + Cgk Cl}Fk,n

‘a2a4 - a%‘ =

Q

(q+1) ol

{qu3 ( - 2) + Bkct + qu3c‘11} X + Boktcl + CokPct
It is known that
T Fk n—1 Fk n—1
v N = - = — 1 d = .
neN, Ty - ks Xion P A E | Tk|

Applying (27) together with (11)—(13), we get

8 of 17

(26)

(27)
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Tk

A< Tk
apay — a3 <
| ] ?(q+1)"Q
2 2 n
3\ e+ |7
{Q-7* (9 +1) }61<c 4> 1 P
+1)* 1 +1
i (T5) #lallae - al - 32 (130 @[

G

Q (q+1 2 4 g+1
+<z) -5 ) g

4
ok? [g+1\? 2l |3 +1\?
(q> ‘Cz| Cz*El + g 2(q2>
lc1]?

+

4 2

2
Q- g+ e, — (137 kZ}

52 3¢ C% 5 4 sal T
Cr — E qu Cy — E + qu Cl + qu Cl Fk,n
3 |C% % 5. |4 3. |4 4 2

From (27), we obtain

1 1 1\°
() {o(5h) - o(55) - i =0

and ,
(’Hl> {; (k2+2) {Q—qz (q+1)2}kxk,n _kz} 0,

2

which, for sufficiently large #, yields
le1l =1y € [0,2].

After some computations, we can find that

2 2
q 2 (g+1)
S (g+1)k + Q-

(g +1)° y?
Gk 8‘ (2‘2)

2
q 4.2
— 1)*k
yrg[%é]{g(ﬁ ) k7Y +

yt+

1 4
_@Q (q + 1) kxk,n

B

&K

7 \2

2
yYe) (”7> {1—kxen} + (16|Bq|k4 + 16|Cq|k2) {1—kxg)-

As a result of the following limit formula:

( ) ( (& +2){Q—q*(q+1) }kxkn—k2>}y (2_
3y

2
= L) i — |Balky i — Gl i + By lity* + 1€ K2y

9o0f17
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(P oo foe]

2 C2 T
Eqk?’ a <cz— 2) + Bkt +qu3c‘11] 7]

lim
n—oo

:0,

Fk,n

and by using (27), we get

lim [max {q2 (T) 2k2y+‘ 4 (q+1)k2+g(q+1)

n—oo | ye(0,2]
4 2(q+1)° _ f 3 2
y*+ Qk 5 2 7 T3 (g+1)

1
_aQ (q + 1)4 kxk,n
g<k2+z){g— 2(g+1)* ha, — K2 3 1/ 2 U japel
13 q° (9 +1)" thag, y N
2
(2= %) 2 = Byl 2 — Cg Py i + 1By Ky +1C K%y
= Q(q+1)> T2 + (|By|K* +|Cq|)16K> T2

We thus find that

7= { Q@+ 1)+ (1B +1¢g)16k } T2

s <

If, in (20), we set

g(z)= 1_§ =142z+4222+---,
then, by putting ¢; = ¢ = c3 = 2 in (26), we obtain

U

20
’ P?(q+1)7%Q

o204 — o {Qa+1)7+ (B2 + ¢y )16k | 77

This completes the proof of Theorem 1. [J
Remark 3. In the next result, for simplicity, we take the values of Sq, Eq and Mq as given by

S;=q(1+9)Q,

ﬁq—{q<1+q)—q(2+q)+9}(“1) (?)—f(”’;l)zk%?
{9Q—q (2+q)}(‘T)Z{(q—l)k2+z(z+k2)}]

;y(”’;l) {a=1F = -1) (2+8) K}

3k
L
16

and
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Theorem 2. Let the function f € A given in (1) belong to the class SL(k, q). Then
2 (3, 2is 1 ) 1
|aza3 — ag| = 5 <4kq (g+1)?|T |+§\{Mq+ (1+k )zq}‘kxk,ﬁikwq\ T

Proof. Let f € SL(k,q) and let p € P be given in (2). Then, from (23)—(25) and

Zqu(fzgz)_1+quz+{<q+q2)ﬂ3_qa%}zz

+{Qa4_(2‘7+q2>a2a3+qa§}z3+...
=l+piz+pz+---,

we have
1
a2a3 — a4 = 5, HqQ—qz (2+‘7)}P1P2
+{a(1+q)—q2+q)+Qkpl -0’ (1 +q)ps],

which, together with (27), yields

|ﬂzﬂ3 - 04\ =

+ % (q+1)2 {; (4*k2) (CZ - Cj) + <3k2+2) Cz} kclxk’n
+16(¢1+1)2{(4—k2) <Cz—cj> —3k2cZ}C1—qB(q+1)

oo g)ars s (8)2) 7

kn

(29)

—% {My+ (1+8) £} kg + %kﬁq .

Now, applying the triangle inequality in (10)—(13), we get

‘13 o 2, 7 2
(4+1) 02—5 c1k” + 5 (g +1)" (c1c2 — c3)

q
_ < L
|axas — a4l 3
7
4

Sq

f7n+

(@4 1ktn + L (04 12k (4= 1) 20— (4= ) e

(+1) (3k2 + 4) €102 (9 + 1) kxy.

\
‘&w “;‘Qm S‘Qﬁ)

T g+ 02k (4 ) x— (4 )] + (g 412

.‘(3k2+2k)xkn—3k2 —”L<q+1) (g—1) (2 |21| >k2|c|

e [{Ma (1) £33 {atgr (1) £} o 551651
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In addition, by using (27), we have

and 3
qz (q+ 1) (3k+2) kxg, — 32 > 0

for 0 < k < 1 and sufficiently large n. Therefore, we have got a function of the variable |¢1| =: y € [0, 2]
and, after some computations, we can find that

3

max {f (q+1)% {kxk,n + % (k(4=R) 20— (4-#)) y} -+
k(a8 m (1-02)) o |3 {Me o+ (149) £}

7 T (q+1) (3K 43K) 2, — 3 + ‘2 {My+ (1+2) £,}

1
ka,n + ’2k£q

|

1
ke + ‘zkz,, .

As a result of the following limit relation:

3 3 3 3
lim “6 (q+1) (Cz - 621> o1k + i (g+1)* (c1c2 — ¢3) — i (‘1 +1)°

n—o0

KTk

(3k2+4) c162+ = {Mﬂ+<1+kz) ﬁ"}] fkn

=0

and, by means of (27), we have
Jim Lrg[gé] {q: (q+1)° {kxk,n + % (k (4= #) xen — (4= 1)) y} - Z% (9+1)*
k(4= = (4 8)) 2 T (g1 (39 26 -2

{Mq+(1+k)£q}kxkn+ kﬁq]
1>2 (36 +3K) T — 362} + %H +(1+#) £ }‘ka,nJr%k\ﬁq’
+3

(57) {
_ P <1>2{ ((R1) Tev k) } 45 [{ Mg+ (1+8) 24} e + 5K 14
(%) (-

3KT2) +; { (1+k2) L‘quxk,nJrzk\Eq\)

=3¢ (erl) kI T + ; [{ Mg+ (1402) £} R + %k|£q\

If, in the formula (20) , we set

1
g(z) = 1f§:1+22—|—222—0—~~~,

then, by putting ¢; = ¢ = ¢3 = 21in (26), we obtain

oaes s = § {5 G0+ 2 01 1 M+ (102) £+ 1291}
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This completes the proof of Theorem 2. []

Theorem 3. Let the function f € A given in (1) belong to the class SL(k,q). Then

s {|g(1?’>2+‘2(q2 )+q<q+ )‘}k2+q(q+1)

(g +1)
Proof. Let f € SL(k,q) and let p € P given in (2). Then, from (23)—(25) and

Zqu(fzgz):1+quz+{<q+q2)ﬂ3_qa%}zz

+{Qa4_(2”/+q2)a2a3+qa§}z3+...
=1+piz+p+---,

a3 — Aa3] < (30)

we have

a3 — Ad3| = qz(llﬂ) [1+]02|a+0)] p+ap|.

Therefore, we obtain

‘aa—/\a%‘ _qz(ll—i—q) (1-A%(1+9)) < > <KClT> ]
+q{ xﬁ(z—— } -1 +22+) 7}
=¢wﬁhﬁ(1+bﬂu+qﬂ2%241ﬁ+q[qzlezﬁ)
+q(q;1)c%(q—1)k277<+2(2+k2)773] .

Thus, by applying (27), we have

a2l Tk 1+4\? C% g+1.¢
% Aaz‘_q2(1+q)g 2 Teta(— )4

~{(q—1)k2+2(2+k2 fkn:| ( (
11

[w—1%?+%2+kﬂnn+q(q

where
G =1+ 2% (1+4).

Now, by applying the triangle inequality in (10)—(13), we have
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T 1+q q+1 i 1)k 2
q2(1+q)“g( : > ( >4 (- 1)k +22+1)]
T 1+ +1
z P(zq) b, +a (T ) @laf, e (1)
2 q+1 G
SR o () e
I R S g(1+q)2k2c2+i(q+1)c2 [(q—l)k2+2(2+k2)]
72 (1+9q) ' 16 !
T 1+ +1
T g<2q) aly, +a (1) G- DR L,
q(qg+1) 2 q+1 _d
+ 7] 2(2+k)xkn+’q(4>k“cz > ||

which, after some computations, yields
1+q g+1 2
— L

—ch:q)%\qwf)\wq(w\

in which we have set y = 2. As a result of the following limit formula:

+1
ot g (1) @+

maXx

Xien +
yel02] y k.n

Zxk/n

kak,n + 4(4 + 1)xk,nr

G (1;‘7) 42 +q(‘ﬁz—1> Zj{(q—l)kz—i-Z(Z—i—kz)} J:rk”

Xk,n

lim
n—oo

:O,

which, by applying (27), yields

o8] 2 o [{Rlo a4 4 (1) + B}

+q(g+1)].

This completes the proof of Theorem 3. []

Theorem 4. Let the function f € A given in (1) belong to the class SL(k, q). Then

6

k
7*(1+4)3Q
T22(2+q)k® + (59 + 7)k

2¢%(1+49)Q

|H3(1)| < [(29 + (9 + 1)KPI{16 | By | K* + 16 |Cy | K*}

My + (14 ) L i + KL

Proof. Let f € SL(k,q). Then as we know that

ap dp as
H3(1) = | ay a3 ay | = as(aay —a3) — ag(ay — aza3) + as(a3 — a3),
as ag 4ds

where a; = 1 so, we have

[H3(1)] £ las| |a204 — 3| + [ag] lag — az05] + |as] a5 — o3| (1)
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Thus, by using Lemma 4, Theorems 1-3, as well as the formula (31), we find that
[Ha(1)] £ 2(F gk® + 4¥gk* + 4Y k> +T) T, (32)

where

Fq:

40 X2+49)  (q+3)(q+1)*  (q+1), @+
22Q {1+ o 4 +< 7 >+ 164°

L g (T @9, 4)
7 P(1+9)29  242(Q+1) 242Q 2q 2

q
(g+1) Xg2+q)  (g+3)(g+1)? q+1 +1\*
{H o ap o ( ) }

+2q(Q+1)

1 1 Xq(5Q+7))_q+1((q+1)(q+3) 4)
Yq_q2+(9+1) (4+ 242Q 2q 2q P

3(5q+7) 74, (2 4 )
* 24>°Q +2!12(Q+1) +q(1+q

_— 1

T +9)PQ

2(2+q)k® + (59 +7)k
2¢%(1+9)Q

-

(20+ (q+1)k) (16]B] k* +16 ¢y K2)

’{Mq (1+k*)Lg}kxy,, +kLg|,

and

Xo=q"+4+2.

This completes the proof of Theorem 4. O

3. Conclusions

A new subclass of analytic functions associated with k-Fibonacci numbers has been introduced by
means of quantum (or g-) calculus. Upper bound of the third Hankel determinant has been derived for
this functions class. We have stated and proved our main results as Theorems 14 in this article.

Further developments based upon the the g-calculus can be motivated by several recent
works which are reported in (for example) [24,25], which dealt essentially with the second and
the third Hankel determinants, as well as [26-29], which studied many different aspects of the
Fekete-Szegt problem.
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