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Abstract: In this paper, we investigate the popular Miller–Rabin primality test and study its
effectiveness. The ability of the test to determine prime integers is based on the difference of the
number of primality witnesses for composite and prime integers. Let W(n) denote the set of all
primality witnesses for odd n. By Rabin’s theorem, if n is prime, then each positive integer a < n is a
primality witness for n. For composite n, the power of W(n) is less than or equal to ϕ(n)/4 where
ϕ(n) is Euler’s Totient function. We derive new exact formulas for the power of W(n) depending on
the number of factors of tested integers. In addition, we study the average probability of errors in the
Miller–Rabin test and show that it decreases when the length of tested integers increases. This allows
us to reduce estimations for the probability of the Miller–Rabin test errors and increase its efficiency.

Keywords: prime numbers; primality test; Miller–Rabin primality test; strong pseudoprimes;
primality witnesses

1. Introduction

The MillerRabin primality test is an algorithm that checks whether a given number is prime or
composite. Its original version, due to Gary L. Miller, was deterministic and relied on the unproved
extended Riemann Hypothesis [1]. Michael O. Rabin modified it to obtain a probabilistic algorithm [2].

Definition 1. Let m be a positive integer represented as m = 2s · u where u is odd. We introduce two auxiliary
functions bin(m) = s and odd(m) = u.

Definition 2. Let n be an odd natural, n > 9. An integer a, 1 ≤ a < n, is called a primality witness for n if it
is co-prime to n and one of the following conditions holds:

1. aodd(n−1) ≡ 1 mod n,
2. aodd(n−1)2i ≡ −1 mod n for some i, 0 ≤ i < bin(n− 1),

(1)

(We replaced original Rabin’s definition of the compositeness witnesses by the opposite relation).
For generality, we count 1 and n− 1 as primality witnesses and call them trivial witnesses since they
satisfy (1) for any n.

Let W(n) denote the set of all primality witnesses for n. The Rabin theorem [2] asserts that if
number n is prime then each non-zero integer, a < n is a primality witness for n, and therefore,
the number of all witnesses |W(n)| = n− 1. For composite n, it satisfies inequality |W(n)| ≤ ϕ(n)/4
where ϕ(n) is Euler’s totient function. Since Rabin did not consider 1 as a witness, then he stated the
strict inequality |W(n)| < ϕ(n)/4.
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Later, Gary Miller [1] developed a primality test that takes any integer a, 1 < a < n, checks if a is
not a factor of n (otherwise, n is trivially composite), and whether a is a primality witness for n, that
is, lies in the set W(n). If the answer is positive, then n is probable prime with probability exceeding
3/4. If we need in a more exact result, we should repeat this procedure several times taking different
numbers a < n.

The researchers refer to this algorithm as to the Miller and Rabin primality test. We abbreviate it
to MR test.

Definition 3. Parameters a which are used in Miller’s algorithm are called bases. They are chosen randomly
from interval [1; n− 1]. If, for a given odd integer, n relation (1) holds at a base a, we say, n passes the MR test
at base a. Otherwise, we call a a compositeness witness for n and deduce that n is certainly composite.

The probability of error after k successful iterations becomes less than 1/4k. The only type of error
in the Rabin’ procedure is defining a composite integer as prime.

More details on the Miller–Rabin test can be found in Chapter 3 of text-book [3] by Crandall and
Pomerance. We abbreviate Miller–Rabin test as MR test.

Definition 4. Composite integers qualifying by MR test as probable prime at a base a are called strong
pseudoprimes relative to base a. Composite integers being probably prime relative to all a from a set A of bases
are called strong probable prime relative to set of bases A.

Investigation of pseudoprime integers has a long history in the Computational Number Theory.
We outline main advantages in this direction in the next section.

2. Some History Remarks

Fist attempts to find fast primality algorithms were based on Fermat’s Little Theorem asserting
that for prime n and for any positive integer a, the following relation holds

an ≡ a mod n (2)

Indeed, many composite integers do not satisfy (2) and can be discarded after the first check.
Composite n that satisfy (2) are called Fermat pseudoprimes relative to base a.

It is important to note that all strong pseudoprimes relative to a base a are also Fermat
pseudoprimes relative to a.

We can decrease the number of false decisions by Fermat’s test by checking the relation (2) with
several different a. However, this does not allow us to completely avoid false conclusions since
so-called Carmichael numbers exist.

Integer n is called a Carmichael number if it satisfies (2) for all a. Carmichael numbers appear
relatively rarely and the least Carmichael number is 561 = 3 · 7 · 11. It is known that Carmichael
numbers are exactly those integers which satisfy Korselt’s criterion:

Korselt Criterion (1899). A positive compositeinteger n is a Carmichael number if and only if n is
square-free, and for all prime divisors p of n, it is true that p− 1|n− 1.

One of the interesting problems is to find for a given odd integer n the least witness. In 1994 Alford,
Granville and Pomerance proved [4] that such witnesses exceed (log n)1/(3 log log log n) for infinitely
many n. We also show that there are finite sets of odd composites which do not have a reliable witness,
namely a common witness for all of the numbers in the set.

MR test discards a Carmichael number n, if the base was chosen from [1; n− 1]\W(n).
Let us fix a base a and let na be a least composite integer that the MR Test accepts at the base a.

Then, any odd n < na for which a is a primality witness, is definitely prime. This means that when we
know na, we can definitely check any n < na for primality using only one round of the MR procedure.
The corresponding integer na is small. But if we take a set A of several different bases a and find a
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least composite nA for which all a ∈ A are primality witness, this nA can be very large. Candidates for
bases a can be any positive integers that are not squares. However, historically, candidates for special
bases are chosen from the set of primes.

Let Pk denote the set of the first k primes Pk = {2, 3, 5, 7, . . . , pk}, and let ψk be a least strong
pseudoprime relative to Pk for a k ≥ 1. Function ψk is well defined and is exponentially computable.
Its computation began already 40 years ago.

First four values of ψk have been found by C. Pomerance, J. Selfridge, and S.Waggstaff [5] in 1980.
A systematic calculation of ψk for larger k has been initiated by J. Jaeschke [6] who elaborated

basic algorithms helpful for searching for strong pseudoprimes of different forms. In 1993 Jaeschke
calculated ψk for 5 ≤ k ≤ 8 and proposed upper bounds for ψk at 9 ≤ k ≤ 11.

F. Arnault in papers [7,8] described another algorithm to search for Carmichael numbers and
strong pseudoprimes integers.

Jaeschke’ hypothesis have been improved in 2001 by Z. Zang [9] who constructed a lesser 19-digits
decimal integer Q11 = 3825123056546413051 bounding above ψ11. Z.Zang conjectures that values ψk
for 9 ≤ k ≤ 11 are equal to each other and coincide with Q11.

In 2012 J. Jiang and Y. Deng [10] confirmed Zang’s Hypothesis by showing that
Q11 = ψ9 = ψ10 = ψ11.

The last record is reached by J. Sorenson and J. Webster [11] in 2016 . They found ψ12 and ψ13,
where ψ13 = 3317044064679887385961981 ≈ 3.3 · 1024. So at the moment we can successfully determine
prime integers less than 3.3 · 1024 by only 13 rounds of the MR test. But this bound is much less than
integers used in Cryptography. For example, DSS algorithm uses prime integers of length 256 bits
(≈80 decimal digits).

Another branch of investigations in connected with the problem of distribution of Fermat
pseudoprimes and strong pseudoprimes. Let F(n) denote set

F(n) = {a mod n : an−1 ≡ 1 mod n}.

Clearly, F(n) ⊇W(n).
In 1985 P. Erdos and C. Pomerance [12] studied an asymptotic behavior of average function

A(x) =
1
x ∑

n≤x

′|F(n)|

where sum is counted over odd integers. They showed using complex number-theoretical calculations
that A(x) is a growing function bounded below by x15/23.

Our average function Avg(x) looks close to A(x) but we show that for almost all composite n
W(n) consists of only two elements 1 and n− 1 and function Avg(x) tends to zero with x tending
to infinity.

Average number of errors in the MR test was also studied in 1993 by I. Damgard, P. Landrock and
C Pomerance. In paper [13] they studied an average probability of the false decision by the MR test in
the following procedure:

Fix k > 0 and t > 0 and choose randomly k-bit odd integer n. Check it with t rounds of MR test
with randomly chosen bases from [1; n− 1]. If n was discarded during the procedure (that is, found
a 6∈W(n)), take another n. Continue until n was found passed t rounds. Let pk,t be the probability that
the procedure returns a composite integer.

The authors found explicit upper bounds for various k and t. In particular they proved that
pk,1 ≤ k242−

√
k for k ≥ 2. Their results show that the probability of false decisions of the MR test

depends on the length of tested numbers and it decreases if the length of the numbers increases.
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3. Counting Number of Witnesses

In this section we deduce exact formulas for the number of primality witnesses for different types
of composite integers.

We begin our investigation with a little proposition improving Rabin’s estimate.

Theorem 1. If a ∈W(n), then n− a ∈W(n).

Proof. Let k = ordn(a). If k is odd, then aodd(n−1) mod n = 1, and (n − a)odd(n−1) ≡ −1 mod n,
therefore, n− a is also a witness.

If k is even, then ak/2 ≡ −1 mod n. If k/2 is even, then (n − a)k/2 ≡ ak/2 ≡ −1 mod n, and
(n− a) is a witness.

Finally, if k/2 is odd, then (n− a)k/2 ≡ −ak/2 ≡ 1 mod n. Since k/2 | odd(n− 1), then aodd(n−1) ≡
1 mod n, and (n− a) again is a witness.

This completes the proof.

Corollary 1. (The Improved Rabin Theorem). Let n be a natural, and A be an arbitrary set of bases less than n,
co-prime to n, such that for any a ∈ A, n− a is not in A. If all bases a ∈ A are primality witnesses of n, then n
is probable prime with probability of error less than or equal to 1/16k.

Indeed, when we found a primality witness a for integer n, we get two primality witnesses for n,
namely, a and n− a. So, this reduces the probability of error by a factor of 42 = 16.

Let Nw(n) = |W(n)| be the power of number of primality witnesses W(n). As mentioned earlier,
for prime n Nw(n) = n− 1, and for composite n Nw ≤ ϕ(n)/4.

Below we estimate function Nw(n) more exactly. First we formulate a theorem restricting possible
witnesses for a composite n.

Theorem 2. Let n = u · v for co-prime factors u and v (possibly, composite), and a ∈W(n). Then,

1. ordu(a) | GCD(ϕ(u), (u− ϕ(u))v− 1),
2. ordv(a) | GCD(ϕ(v), (v− ϕ(v))u− 1),
3. bin(ordu(a)) = bin(ordv(b)).

(3)

Proof. 1. Since a is a primality witness for n then an−1 ≡ 1 mod n and an−1 ≡ 1 mod u. Besides,
n− 1 = uv− 1 = ϕ(u)v + (u− ϕ(u))v− 1, so

1 ≡ an−1 ≡ aϕ(u)v+(u−ϕ(u))v−1 ≡ a(u−ϕ(u))v−1 mod u,

since aϕ(u) ≡ 1 mod u by Euler’s Theorem.
2. By symmetry.
3. If ordu(a) is odd, then aodd(n−1) ≡ 1 mod n (otherwise, a satisfies the second clause of the MRT,

and ordu(a) should be even). Then aodd(n−1) ≡ 1 mod v and ordv(a) is odd.
If bin(ordu(a)) = i for 0 < i < bin(n − 1), then a is a witness by second clause of the MRT,

so aodd(n−1)2i−1 ≡ −1 mod n, aodd(n−1)2i−1 ≡ −1 mod v, and aodd(n−1)2i ≡ 1 mod v, so ordv(a) =

odd(n− 1)2i and bin(ordv(a)) is equal to i.
The theorem is proved.

Example 1. Let n = 15 · 19 = 285, and a ∈W(n). By Theorem 2:

1. ordu(a) | GCD(ϕ(u), (u− ϕ(u))v− 1) = GCD(8, 132) = 4,
2. ordv(a) | GCD(ϕ(v), (v− ϕ(v))u− 1) = GCD(18, 14) = 2,
3. bin(ordu(a)) = bin(ordv(b)).
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So, possible a satisfies (ordu(a), ordv(a)) = (1, 1), or, (ordu(a), ordv(a)) = (2, 2), so n = 285 has only
trivial witnesses 1 and n− 1.

Theorem 3. Let n = pk be a degree of prime p, then Nw(n) = p− 1.

Proof. Let a be a witness for n = pk, then orda(n) | GCD(ϕ(n), n− 1) = GCD(pk−1(p− 1), pk − 1) =
p− 1.

Besides, any a satisfying ap−1 mod n = 1 is a witness of n. Indeed, let ap−1 mod n = 1. Then,
m = ordn(a) is a factor of n− 1 = pk − 1. Let n− 1 = 2s · t for odd t, therefore, m = 2s1 · t1, where
s1 ≤ s and t1 is a factor of t.

If s1 = 0, then at1 mod n = 1, at mod n = 1 and a is a witness by the first clause of the MRT.
Otherwise, let 0 ≤ r ≤ s1 be such that at12r ≡ −1 mod n. Then at2r ≡ −1 mod n and a is a witness by
the second clause of the MRT. This completes the proof.

We call integer n semiprime if it is a product of two distinct primes n = pq, p < q. Semiprimes are
close to primes, and we prove below that they have a maximal number of primality witnesses among
composite numbers.

Theorem 4. Number of witnesses of semiprime n = pq is equal to

Nw(pq) = (odd(d))2 · (4bin(d) + 2)/3, (4)

where d = GCD(p− 1, q− 1).

We begin with example of application of this formula.

Example 2. Let n = 11 · 31 = 341. Then d = GCD(p− 1, q− 1) = 10 = 5 · 21, odd(d) = 5, s = bin(d) =
1. By the theorem,

Nw(31) = 52 · (4 + 2)/3 = 50.

Proof. Let d = GCD(p− 1, q− 1). Applying Theorem 2 to n = pq we obtain

1. ordp(a)|d, ordq(a)|d,
2. bin(ordu(a)) = bin(ordv(b)).

We distribute all n-witnesses a into s + 1 classes Wi, 0 ≤ i ≤ s, where class Wi consists of a with
bin(ordp(a)) = bin(ordq(a)) = i.

Class W0 contains such a that both ordp(a) and ordq(a) are odd. Let a ∈ W0, and (i, j) =

(ordp(a), ordq(a)). Numbers i and j are factors of u = odd(d) by the choice of a. Conversely, each
integer a < n satisfying ordp(a) | u, ordq(a) | u, is a witness of n and lies in W0.

Let fix a pair (i, j), i|d, j|d. By Euler’s theorem, in Zp there are exactly ϕ(i) elements of
multiplicative order i, and in Zq there are ϕ(j) elements of multiplicative order j, so, there exist
exactly ϕ(i) · ϕ(j) pairs (x, y), 0 < x < p, 0 < y < q, such that (ordp(x), ordq(y)) = (i, j). But for each
such pair (x, y) there exists a unique a < n with (a mod p, a mod q) = (x, y), so there is a injective
correspondence between witnesses a of n with odd orders ordp(a), ordq(a), and pairs (x, y) with x|u,
y|u. Therefore, the power of W0 is equal to

|W0| = ∑
x|u, y|u

ϕ(x) · ϕ(y) =

∑
x|u

ϕ(x)

∑
y|u

ϕ(y)

 = u2,

since by a known theorem of Euler for any natural m ∑v|m ϕ(v) = m.
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The next class W1 has the same power u2 since is consists of witnesses a with bin(ordp(a)) =

bin(ordq(a)) = 1, and
|W1| = ∑

x|d, y|d
ϕ(2x) · ϕ(2y) = u2,

since ϕ(2z) = ϕ(z) for odd z.
The power of class Wi is equal to

∑
x|d, y|d

ϕ(2ix) · ϕ(2iy) = 4i−1u2.

Therefore, the number of all witnesses Nw(n) = u2(1+ 1+ 4+ . . . + 4s−1) = u2 · (4s + 2)/3. This
completes the proof.

Corollary 2. (Rabin’s theorem for semiprimes). The number of witnesses of n = pq, p ≤ q, is less or equal to
ϕ(n)/4.

Proof. If p = q, then Nw(n) = p− 1 by Theorem 3, and ϕ(n)/4 = p(p− 1)/4, so Nw(n) < ϕ(n)/4 at
p ≥ 5.

Let p < q. Ratio Nw(n)/n reaches its maximum when GCD(p− 1; q− 1) = p− 1, q = 2p− 1,
and bin(p− 1) = 1. Indeed, odd(n) is diminishing in two times when bin(p− 1) is added by 1, and
the whole expression in (4) becomes less. Then, max odd(d) = (p− 1)/2, so

max Nw(pq) = Nw(p(2p− 1)) =
(p− 1)2

2
=

ϕ(n)
4

.

Example 3. Let n = 7 · 13 = 91. Nw(91) = 32 · 2 = 18 = ϕ(91)/4.

Now we study function Nw(n) at products of k distinct primes. The general result for such
products is formulated below:

Theorem 5. Let n = p1 · p2 · . . . pk be the product of k distinct primes. Then

Nw(n) = u1 · u2 · . . . · uk ·
(

1 +
2ks − 1
2k − 1

)
, where

s = min{bin(d1), bin(d2), . . . , bin(dk)}, di = GCD

(
pi − 1; ∏

j 6=i
pj − 1

)
,

ui = odd(di).

Let us begin with an example n = 7 · 13 · 31 = 2821. The corresponding restrictions are
listed below:

1. ordp(a) | d1 = GCD(p− 1; qr− 1) = 6, u1 = 3,
2. ordq(a) | d2 = GCD(q− 1; pr− 1) = 12, u2 = 3,
3. ordr(a) | d3 = GCD(r− 1; pq− 1) = 30, u3 = 15,
4. bin(ordp(a)) = bin(ordq(b)) = bin(ordr(b)).

Since s = min{bin(d1), bin(d2), bin(d3)} = min{1, 2, 1} = 1, we obtain

Nw(2821) = 3 · 3 · 15
(

1 +
23 − 1
23 − 1

)
= 270
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(compare with ϕ(n)/4 = 6 · 12 · 30/4 = 540).

Proof. Let ui = odd(di) and k-tuple (x1, x2, . . . , xk) contains components xi | ui, 1 ≤ i ≤ k. There are
ϕ(x1) · . . . · ϕ(xk) witnesses of n with ordpi (a) = xi for 1 ≤ i ≤ k. So,

|W0| = ∑
(x1,x2,...,xk),xi |ui

ϕ(x1) · . . . · ϕ(xk) =

=

∑
x|u1

ϕ(x)

 ·
∑

x|u2

ϕ(x)

 . . .

∑
x|uk

ϕ(x)

 = u1 · u2 · . . . · uk.

As in the previous theorem, the power of class W1 is equal to power of W0 = u1 · u2 · . . . · uk,
while the power of the each further class Wi+1 is equal to the power of the previous one multiplied by
ϕ(2k) = 2k−1 since each additive ϕ(2ix1) · . . . · ϕ(2ixk) in the previous class corresponds to additive
ϕ(2i+1x1) · . . . · ϕ(2i+1xk) and their ratio ri is

ri =
ϕ(2i+1x1) · . . . · ϕ(2i+1xk)

ϕ(2ix1) · . . . · ϕ(2ixk)
= 2k.

The proof is complete.

4. Frequency Function

In this part we introduce a notion of frequency function that characterizes the probability to find at
one attempt a primality witness for a given integer n.

Let define frequency function Fr(n) as follows

Fr(n) =
Nw(n)
ϕ(n)

.

According to Rabin’s theorem, Fr(n) = 1 for prime n, and Fr(n) ≤ 1/4 for composite n. We study
distribution of values Fr(n) for semiprime integers n = pq, p < q.

1. We begin our research with case q − 1 = k(p − 1) for k ≥ 2. Numbers of this type appear
frequently among strong pseudoprimes. Let rewrite p and q in form p = 2su + 1, q = 2sku + 1, where
u is odd, s ≥ 1, and consider different s:

Case 1. s = 1, u = odd(d) = (p− 1)/2, Nw(pq) = 2u2 = (p− 1)2/2,

Fr(n) =
(p− 1)2/2

(p− 1)(q− 1)
=

2u2

2u · 2ku
=

1
2k

.

Function Fr(n) reaches its maximum 1/4 at k = 2: (p, q) = (2u + 1, 4u + 1). Since, both p and q are
prime then u ≡ 0 mod 3, so (p, q) = (6t + 1, 12t + 1), t ≥ 1. Such pairs form a sequence

(7, 13), (19, 37), (31, 61), (37, 73), . . . .

Case 2. s = 2, u = odd(d) = (p− 1)/4, Nw(pq) = 6u2, and

Fr(n) =
6u2

(p− 1)(q− 1)
=

6u2

4u · 4ku
=

3
8k

.

Maximum of Fr(n) is now 3/16 = 0.1875 at k = 2.
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Case 3. s ≥ 1, At arbitrary s we have

Fr(n) =
(1 + (4s − 1)/3)u2

(p− 1)(q− 1)
=

(1 + (4s − 1)/3)u2

2su · 2sku
=

1
3ku2 · 22s−1 +

1
3k

.

Thus, function Fr(n) at semiprimes n = pq, q− 1 = k(p− 1), is located in the interval

1
3k

< Fr(n) ≤ 1
2k

, k ≥ 2. (5)

2. Now, we turn to a common case n = pq:

p = 1 + k1u, q = 1 + k2u, GCD(k1, k2) = 1, u = t2s, t odd.

For such n
Nw(n) = t2(4s + 2)/3, ϕ(n) = k1k2t24s, Fr(n) =

4s + 2
3k1k2 · 4s .

So,
1

3k1k2
< Fr(n) ≤ 1

2k1k2

Conclusion. Function Fr(n) at semiprimes n = pq depends mostly on values k1 and k2 in
representation p = k1u + 1, q = k2u + 1. Fr(n) takes maximal values close to 1/4 only at small k1

and k2. This completely corresponds to experimental data. Among values ψk the most expected are
pseudoprimes of form u = (u + 1)(2u + 1) with minimal values k1 = 1 and k2 = 2.

An important question connecting with efficiency of MRT is the average frequency of witnesses
for composite numbers. As earlier, we study this problem for semiprime integers.

Let fix any prime p and a board B. We count average frequency of integers pq, q > p, pq ≤ B.
For convenience, we assume that B = p(p + (p− 1)k) for a positive k ∈ Z.

For simplicity we explain all deductions at example p = 11. Every prime q has d = GCD(p−
1, q− 1) equal either 2, or 10.

Let d = 10. Corresponding q lie in the set {21, 31, 41, 51, 61, 71, 81, 91, 101, . . . , 10k + 11}, where
10k + 11 = B/p. Each third integer in the sequence is a multiple of 3, some others are multiples of 7, 11
etc. Since q should be prime we need to remove them from the sequence. The rest consists of integers

QB = {31, 41, 61, 71, 101, 113 . . .}. (6)

We assume that primes q ∈ QB are distributed uniformly in the interval [1, B/p]. Then the
average frequency can be estimated as

Avg(Fr(n)) ≈ 1
k

(
1
4
+

1
6
+ . . . +

1
2k

)
=

1
2k

(
1 +

1
2
+

1
3
+ . . . +

1
k

)
(we remind that Fr(p(i(p− 1) + p) = 1/2(i + 1)).

The expression in the last brackets is a partial sum of the Harmonic Series. Its value is

k

∑
i=1

1
i
<

k+1

∑
i=1

1
i
= ln k + γ + εn,

where γ = 0.5772... is the Euler—Mascheroni constant and limk→∞ εn = 0. Constant γ and additive εn

can be ignored so

Avg(Fr(n)) <
ln k
2k
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Since (p− 1)k + 1 = B/p, then k > B/p2 − 1 and ln k < ln B, so

Avg(Fr(n)) <
ln B

2(B− p2)
· p2 (7)

Let us move now to primes q of type d = GCD(p− 1, q− 1) = 2. They lie in the sequence

q ∈ {13, 15, 17, 19, 23, , 25, 27, 29, . . . , 2m + 1}

where 2m + 1 = B/p, q = 2i + 1, GCD(i, 5) = 1. When we remove composite integers, the rest
contains at least half members.

Integers n = pq with GCD(p − 1, q − 1) = 2 have only trivial witnesses 1 and n − 1 so their
frequency function takes values

Fr(n) =
2

(p− 1)(q− 1)
.

Assuming that such n are distributed uniformly in the interval [p2; B] we estimate the average
frequency by expression

Avg(Fr) ≈
(

2 ∑
p≤k≤m

1
(p− 1)(2k + 1)

)
/
(

2m + 1− p
2

)
<

4
(2m + 1− p)(p− 1)

· 1
2
·

m

∑
i=(p+1)/2

1
i
<

2
(2m + 1− p)(p− 1)

· ln m

Substituting in the last expression 2m + 1 = B/p we get

Avg(Fr) <
2p ln B

(B− p2)(p− 1)
(8)

Expressions (7) and (8) give upper bounds for two types of integers n = pq. In the second case
the estimation is lesser so average estimation for the united class of all n = pq ≤ B, p < q, can be set
by the upper bound of (7). This assertion does not depend on a special p = 11 so we can state the
following theorem.

Theorem 6. Let p be a prime and B satisfy B > p2. Then the average frequency of witnesses in the class of
semiprimes n = pq ≤ B, q > p, has an upper bound

Avg(Fr(n)) <
p2 ln B

2(B− p2)

Note than limit of the average function is 0 as B → ∞. This explains the phenomenon that the
number of false conclusions in the Miller–Rabin test decreases when length of tested integers increases.

5. Numbers with Maximal Frequency of Witnesses

In this section we study composite n with maximal frequency Fr(n) = 1/4. Let n = p1 p2 . . . pk be
the product of k different primes.

We begin with case k = 2. As we see from the previous section, integers n = pq have maximal
frequency only in case when q = 2p− 1. Such pairs appear comparatively often, and their quantity is
diminishing together with their size.

Table 1 contains number of semiprimes with maximal frequency in intervals [(i − 1) · 105; i ·
105; ], 1 ≤ i < 10.



Symmetry 2020, 12, 890 10 of 12

Table 1. Distribution of semiprimes with maximal frequency below 106.

1 2 3 4 5 6 7 8 9 10

670 494 448 412 424 386 393 358 370 343

Case k = 3 is more interesting. In order function Fr(pqr) reached its maximum = 0.25, we need
satisfaction of four requirements:

1. GCD(p− 1; qr− 1) = p− 1,
2. GCD(q− 1; pr− 1) = q− 1,
3. GCD(r− 1; pq− 1) = r− 1.
4. bin(p− 1) = bin(q− 1) = bin(r− 1) = 1.

(9)

Such triples exist, and an example of it was already given in Rabin’s paper [2] n = 487 · 1531 ·
2683 = 2000436751. Rabin himself estimated Fr(n) as 0.2493, but the difference is due to the fact that
he did not include 1 in the list of witnesses.

Such triples appear much more seldom and have a form

n = (2k1 + 1)u · (2k2 + 1)u · (2k3 + 1)u for u ∈ N.

We arranged the search of such triples at a computer and found 160 such integers not exceeding
2 · 1014. The least triple we found is

n = 19 · 199 · 271 = 1024651.

The largest found triple has a form n = (u + 1)(3u + 1)(5u + 1) at u = 24102:

n = 24103 · 72307 · 120511 = 21002 84533 02331.

Let us study the form 〈u, 3u, 5u〉 and find restrictions on u in order to n = (u + 1)(3u + 1)(5u + 1)
satisfies first 3 conditions of (9). The first requirement is satisfied automatically. The second and third
requirement are listed below:

(3u + 1)− 1 | (u + 1)(5u + 1)− 1 → u ≡ 0 mod 3.

(5u + 1)− 1 | (u + 1)(3u + 1)− 1 → 3u + 4 ≡ 0 mod 5,

so u = 6 + 15t for t ≥ 1. If we add requirements p ≡ q ≡ r ≡ 3 mod 4 we obtain

15t + 7 ≡ 3 mod 4 → t ≡ 1 mod 4, u = 6 + 15(1 + 4t1) = 21 + 60t1.

Let now consider products of k primes where k ≥ 4. The maximum of frequency of such products
is 1/2k−1, since it is reached when for any i ≤ k (pi − 1)/2 is odd, and (pi − 1) | ∏(pj 6=i − 1). Then,

Fr(p) = 2 ·
k

∏
i=1

pi − 1
2

=
ϕ(n)
2k−1 .

A quick search of tuples n = pqrt below 1012 gave 70 examples of them. The least 4-tuple was

n = 19 · 31 · 127 · 547 = 40917241,

while the largest was
n = 19 · 127 · 14071 · 29347 = 99 64281 70081.
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Some computational results on distribution of strong semiprime integers can be found in [14].

6. Conclusions

In this section we will summarize the main results of the paper.

1. We found exact formulas for the number of witnesses for composite n with different number
of factors.

2. We introduced the frequency function Fr(n) characterizing the probability to find at one attempt
a primality witness for a given n and found exact bounds for distribution of this function for
semiprime integers n.

3. Like as Damgard, Landrock, and Pomerance in [13], we studied an average values of Fr(n) at
intervals [1; x] for semiprime integers n = pq, n ≤ x,with fixed p and showed that it bounded
above by p2 log x/2(x− p2).
Since such integers have maximal values of F(n) among all composites, this opens a way in
future investigations to find exact upper bounds for average values of frequency function among
all k-bit odd integers for any k.

4. Finally, we described possible forms of composites with maximal values of frequency function
for products of k distinct primes at k ≥ 2 and using computer calculations found their examples
and their quantity at initial intervals of set of all naturals.
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