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Abstract: The goal of this article is to compare the observability properties of the class of linear control
systems in two different manifolds: on the Euclidean space Rn and, in a more general setup, on a
connected Lie group G. For that, we establish well-known results. The symmetries involved in this
theory allow characterizing the observability property on Euclidean spaces and the local observability
property on Lie groups.
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1. Introduction

For general facts about control theory, we suggest the references, [1–5], and for general
mathematical issues, the references [6–8].

In the context of this article, a general control system Σ can be modeled by the data
Σ = (M, D, h, N). Here, M is the manifold of the space states, D is a family of differential equations on
M, or if you wish, a family of vector fields on the manifold, h : M→ N is a differentiable observation
map, and N is a manifold that contains all the known information that you can see of the system
through h. Normally, dim(N) ≤ dim(M). One of the main problems here is to find topological,
algebraic, and differentiable properties to impose on Σ, to recover the dynamics on M, through
the partial information given by h.

The indistinguishable equivalence relation associated with the data permit decomposing
the manifold into subsets where two points in the same set can not be distinguishable for D and
h in N. More precisely, given two distinguishable states x, y ∈ M, there exist positive times t1, ..., tl > 0
with t = t1 + ...+ tl and a concatenation ϕt = ϕt1 ◦ ...◦ ϕtl of flows associated with vector fields
X1, ..., Xl ∈ D such that:

h(ϕt(x)) 6= h(ϕt(y)).

The system is said to be observable if any indistinguishable class is a singleton set. In other words,
any two points of M are distinguishable by Σ.

The goal of this article is just to compare the observability properties of the class of linear
control systems in two different manifolds: on the Euclidean space Rn and, in a more general setup,
on a connected Lie group G. The symmetries involved in this theory allow:

1. characterizing the observability property on Rn and also
2. characterizing the local observability property on G. After that, it is possible to get the global

observability property on G through the fixed points of the drift vector field of the system.

In order to compare both systems, we establish well-known observability results in both cases.
We cite the corresponding references.
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Linear control systems on Rn appear in many applications [9–18] for a related control system.
Markus in [12] extended this notion from Rn to a matrix group. Finally, in [19], the authors introduced
the class of linear control system on any Lie group. In the references [18–35], the authors addressed
relevant problems for this class of systems.

Furthermore, in [26], the author showed that each affine control system that generates a
finite-dimensional Lie algebra on a connected manifold is diffeomorphic to a linear control system on
a Lie group, or on a homogeneous space. This result shows the relevance of this class of systems on
applications.

The article is organized as follows. In Section 2, we recall the notion of linear control systems ΣRn

on Euclidean spaces. We establish the main observability results for ΣRn and the special symmetry
contained in the data of the system, which completely determine this property. We finish the section
with a couple of concrete examples. One of them is motivated by an example appearing in the book
by Pontryagin [4]. Section 3 introduces the linear control system on connected Lie groups G. We
show the face of the solution of this system and the notion of local observability and the (global)
observability, and its main results appear in [27,28]. Before giving examples, we establish an algorithm
to compute the relevant algebraic tools to decide the observability for the linear control system with
observation ΣOG . We finish the section with a couple of examples. Finally, in the Appendix A, we give a
short review on Lie theory to make the article more self-contained, [29].

2. Linear Control Systems on Euclidean Spaces

To introduce the definition of the linear control system on Euclidean spaces in this first section,
we introduce elementary dynamic system notions about two classes of dynamics: linear and invariant.

Let us denote by R the set of real numbers. The Euclidean space Rn = {x = (x1, ..., xn) : xi ∈ R}
is generated by the basis vectors:

ei = (0, ..., 1
(i)

, ..., 0) = (
∂

∂xi
)0, i = 1, ..., n.

As an analytical differentiable manifold, the tangent space TxRn of Rn at the state x ∈ Rn is given
by the vector space generated by:

(
∂

∂xi
)x : i = 1, ..., n,

where the vector ( ∂
∂xi

)x is obtained by the translation of ei by x.
A linear control system on Rn essentially controls the behavior of a linear differential equation

(linear vector field) through a number of constant vector fields, i.e., invariant (by translation) vector
fields on Rn.

In the sequel, we consider gl(n,R) the vector space of real matrices of order n. Any element
A ∈ gl(n,R) determines a linear differential equation

·
x(t) = Ax(t) with x(0) = x0 as the initial

condition. The corresponding solution reads as x(t) = etA x0, where eA = Σ∞
j=0

Aj

j! and A0 = Id is
the identity map on Rn. Therefore, A induces the linear vector field:

x A−→ ·
x(t) = Ax(t) ∈ Tx(t)Rn

Then, the flow of the linear vector field XA defined by A reads as:

XA
t : Rn → Rn, XA

t (x) = etAx, t ∈ R.

On the other hand, any vector b = (b1, ..., bi, ..., bn) ∈ Rn defines an invariant vector field Xb

on Rn by:

Xb(x) = Σn
i=0bi(

∂

∂xi
)x ∈ TxRn,
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the solution of which is determined by its flows Xb
t (x) = x + tb, parallel lines to the line generated by b.

A linear control system on the Euclidean space Rn is defined by the family of ordinary
differential equations:

ΣRn :
·
x(t) = Ax(t) + Bu, u ∈ U , (1)

parametrized by the controls u ∈ U . Here, x ∈ Rn, A ∈ gl (n,R) is a square real matrix of order n, B is
an n×m real matrix, and U = L1

loc (R, Ω) is the family of admissible control functions. The set Ω ⊂ Rm

is closed, and 0 ∈ int(Ω). In other words, U is the space of locally integrable measure functions
u : R→ Ω.

Consider a state x0 ∈ Rn and a control u ∈ U . The associated solution of ΣRn with these two
parameters reads as:

ϕu
t (x0) = etA

(
x0 +

∫ t

0
e−τA B u (τ) dτ

)
.

In fact, ϕu
t (x0) is the only absolutely continuous function satisfying the Cauchy problem: [30]

·
ϕu

t (x0) = Aϕu
t (x0) + Bu, ϕu

0 (x0) = x0,

The solution set {ϕu
t (x0) : t ∈ R} describes a curve in Rn in which elements are reached by x0

through the specific dynamics u of ΣRn in positive and negative time. More generally, the positive
orbit of ΣRn starting on any initial condition x0 is given by:

S (x0) = {ϕu
t (x0) : 0 ≤ t, u ∈ U} .

Thus, S (x0) is the set of the states of Rn that can be reached from x0 in positive time by using all
the control functions u ∈ U .

2.1. Observability

A linear control system with observation ΣORn is a linear control system on Rn given by the
data contained in Formula (1) and the observation map h : Rn → Rs. Here, s ≤ n and h is a linear
transformation [30,31].

Our interest is in analyzing the observability property of ΣORn and a special symmetry property
of the pair (A, h) determining this notion . All the results in this section are very well known [30].
However, we need to include them in order to compare with the Lie group case.

In the sequel, we introduce the ΣORn -indistinguishable relationship in Rn. This equivalence relation
allows us to decompose the space of states into equivalence classes, which contain those elements that
cannot be distinguished from each other in Rs by the observation map h : Rn → Rs through every
positive dynamic of ΣORn . Precisely, we denote by C the matrix of h in the canonical basis. The linear
map h does not distinguish the state x1 from x0 through any positive dynamic of ΣORn , meaning that
for any control u ∈ U and for each time t ≥ 0:

Cϕu
t (x1) = Cϕu

t (x0) .

This condition is equivalent to:

C(etA
(

x0 +
∫ t

0
e−τA B u (τ) dτ

)
) = C(etA

(
x1 +

∫ t

0
e−τA B u (τ) dτ

)
)⇔

CetAx0 = CetAx1, for each t ≥ 0
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in particular, when t = 0, Cx0 = Cx1.i Recall that the kernel and the image of h, given respectively
by:

Ker(h) = {x ∈ Rn : h(x) = 0} , Im(h) = {y ∈ Rs : ∃x ∈ Rn with y = h(x)}

are subspaces of Rn.

Definition 1. Let ΣORn be a linear control system with observation:

1. Two states x0, x1 ∈ Rn are indistinguishable for ΣORn , denoted as x0 Ix1, if:

x1 − x0 ∈ Ker
(

C etA
)

, ∀ t ≥ 0

2. ΣORn is said to be observable from x ∈ Rn if the equivalence class I(x) of x is {x}.
3. ΣORn is said to be observable if it is observable from x for each x ∈ Rn.

The main results of this section show that the observability property of linear control systems
with observation totally depends on a symmetric matrix built with A and C. The next result shows
some very well-known properties of I (0) , which determine completely the observability property
of the system; see [30,31]. Since the proof is simple, we include it because it will inspire obtaining
symmetric properties on the Lie group case.

Proposition 1. Let ΣORn be a linear control system with observation. Then,

1. I is an equivalence relation;
2. I (0) = ∩

t ≥ 0
Ker

(
CetA);

3. I (x) = x + I (0).

Proof. To prove the first item, we use the fact that for any t ≥ 0, the set Ker
(
CetA) ⊂ Rn is a vector

subspace. It follows that xIx and also xIy imply yIx. Thus, I is reflexive and symmetric. Now, assume
x0 Ix1 and x1 Ix2. The equality:

x2 − x0 = (x1 − x0) + (x2 − x1) ∈ Ker
(

C(etA)
)

, ∀ t ≥ 0

shows that I is also transitive.
To prove 2, consider x ∈ I (0) . By definition, the analytical curve γ(t) = C(etA)x = 0 for any

t ≥ 0. Taking the first derivative of γ, we obtain:

(
d
dt
)t C(etA)x = CA(etA)x = 0.

When t = 0, we get x ∈ Ker(CA). By taking the derivative of CA(etA)x = 0 at t = 0, we obtain
CA2x = 0. Continuing this process, we obtain:

I(0) ⊂ ⋂n−1
j=0 Ker

(
CAj

)
.

On the other hand, if x ∈ ⋂n−1
j=0 Ker

(
CAj), it follows immediately that:

x ∈ Ker
(

C etA
)

, ∀ t ≥ 0.

In fact, from the Cayley–Hamilton theorem [30], Al ∈ Span
{

A1, A2, ..., An−1} for l ≥ n. Since,
Ker

(
CAj) x = 0, for j = 1, ..., n− 1, the conclusion follows from the definition of the exponential map

etA = Σ∞
j=0

tj

j! Aj and A0 = Id.
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Finally, let x ∈ Rn be arbitrary by fixing y ∈ I(x). By definition:

y− x ∈ Ker
(

C(etA)
)

, ∀ t ≥ 0.

Thus,
y− x ∈ I (0) ⇔ y ∈ x + I (0)⇒ I(x) ⊂ x + I(0).

Let y ∈ I(0). Since, y = (x + y)− x ∈ I(0); then (x + y) + Ix; therefore, x + y ∈ I(x), concluding
the proof.

From the previous proposition, any indistinguishable equivalence class I(x) depends just on x
and I (0) . Therefore, we get the main results of this section:

Theorem 1. Let ΣORn be a linear control system with observation:

ΣORn is observable ⇔ I(0) = {0} .

2.2. The Symmetric Matrix Determining Observability on Rn

Next, we show that the observability property of a linear system with observation depends
strongly on the symmetric Gramian observability matrix, [30]

G0 (T) =
∫ T

0
eτA∗C∗CeτA dτ,

where P∗ denotes the transpose of the matrix P.

Theorem 2. Let ΣORn be a linear control system with observation. Therefore, for any T > 0:

I (0) = Ker G0 (T) .

Proof. The proof is independent of T. If x ∈ Ker G0, hence x∗G0 x = 0. Thus,

x∗(
∫ T

0
eτA∗C∗CeτA dτ)x =

∫ T

0

∥∥∥CeτAx
∥∥∥2

dτ = 0.

Since the application CeτAx : [0, T]→ Rn is analytical, the continuous function
∥∥CeτAx

∥∥2 must

be null on the interval [0, T]. In fact, if there exists τ with
∥∥CeτAx

∥∥2
> 0, by continuity, there exits

ε > 0 and a neighborhood (τ − ε, τ + ε) where
∥∥CetAx

∥∥2
> 0. Hence,

∫ T

0

∥∥∥CeτAx
∥∥∥2

dτ > 0

and we have a contradiction. Therefore,

γ (τ) = CeτAx = 0 , 0 ≤ τ ≤ T.

However, γ is an analytical application, which vanishes on the open set (0, T). Therefore, γ

must be null on the whole real line. In particular, CetAx = 0 , for each t ∈ R. As before, we obtain
x ∈ I (0) .

Reciprocally, if x is indistinguishable from the origin,

G0 x =
∫ T

0
eτA∗C∗CeτA dτ =

∫ T

0
eτA∗C∗0 dτ = 0,
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and the proof is complete.

Remark 1. Since for any T > 0, the matrix G0 (T) is symmetric, it is possible to consider its orthogonal space:

Ker G0 (T)
⊥ = Im G0 (T) .

In particular, Im G0 (T) is the space of the observable states of the system. On the other hand,
any x ∈ Rn has a unique decomposition:

x = x0 + xI , x0 ⊥ xI

where x0 is the observable component of x and xI is the non-observable part.
To analyze observability through the Gramian matrix, you need to compute an integral. However,

it is possible to avoid this calculus through the following algebraic characterization.

Theorem 3. Let ΣORn be a linear control system with observation. Denote by O ∈ Msn×n (R) the matrix:

O = (C CA CA2...CAn−1)Transposed.

Then, I (0) = Ker(O).

Proof. The proof follows directly from:

x ∈ I (0)⇔ CAjx = 0, j = 0, 1, .., n− 1 ⇔ CetAx = 0, ∀ t ≥ 0.

As a consequence of the previous analysis, we obtain the following directly:

Corollary 1. Let ΣORn be a linear control system with observation and T > 0. The following are equivalent:

1. ΣORn is observable;
2. G0 (T) is invertible for any T > 0;
3. Rank(O) = n.

2.3. Examples

The first example shows that it is possible to build trajectories through the observation function
when the system is observable. This means, in this case, that it is possible to determine the solutions of
the system on Rn just with s < n parameters.

Example 1. From an observation function, recover the optimal trajectories of the following problem:

Stopping a train at the railway station in the shortest time.

This very famous optimal problem appears in the book [4]. We extend this model with a couple
of observation maps.

Let us consider a railway modeled by the real line and without friction. We denote by x(t)
the distance between the train and the origin 0 ∈ R considered as the station. Then, we get on R2

the linear control system:

ΣR2 :

(
ẋ(t)
ẏ(t)

)
=

(
0 1
0 0

)(
x(t)
y(t)

)
+

(
0
1

)
u(t), u ∈ U .
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In fact, from Newton’s law, F = Mu, where the function u is the acceleration. Of course,
we can consider M = 1, then we get:

·
x(t) = y(t) is the velocity and

·
y(t) = u(t) the acceleration.

The train is controlled by the admissible class of control U = L1
loc (R, Ω = [−1, 1]) , and the set

U = {u : R→ Ω, u is locally integrable} .

Here, −1 ≤ u(t) ≤ 1 with 1 and −1 representing the maximum and minimum possible
accelerations and breaking, respectively. It is interesting to observe the geometric meaning of
the problem: to solve it, we need first to associate with any initial state z0 = (x0, y0) ∈ R2 a curve
solution of the system ΣR2 transporting z0 to the origin (0, 0).

Rank(O) =
(

0 1
1 0

)
= 2. On the other hand, the Lyapunov spectrum SpecLy(A) of A, built

with the real parts of the eigenvalues of A is equal to {0} . According to Example 3.2.16 in the book
of Colonius and Kliemann [1], the system is controllable, which means that given any two points of
the plane, each of them can be reached from the other through a solution of the system in positive
time. In particular, the optimal problem is well posed. Hence, from a trivial computation, we know
that for any state z, there exists u ∈ U and a +time t > 0 such that ϕu

0 (z0) = z0 and ϕu
t (z0) =

(0, 0). However, we do not know what is the curve that does the job. Worst, among all the curves
transporting z0 to the origin, how doe we compute the trajectory with the shortest time? Fortunately,
by the Pontryagin maximum principle [4], the optimal control u∗ exists, and its optimal value belongs
to the boundary ∂Ω = {−1, 1} . Furthermore, according to this principle, the optimal trajectories are
concatenations with at most one change (i.e., the dimension of the manifold n minus one), of two main
curves: the solutions of u = −1 and u = 1. Each of the differential equations induced by these special
controls decomposes the plane into (parallel) parabolas with respect to the y-axis, solving the problem
completely. It is worth saying that this principle [4] won a relevant prize in Russia. Just observe that
you reduce the possible values of the optimal trajectory from the interval [−1, 1] to the discrete set
{−1, 1} ; from non-numerable infinity values to two possibilities.

Now, we apply the observability results to show that for the train problem, it is more relevant
to know the first variable rather than the second one, i.e., knowing the distances gives you more
information than the velocities.

1. Consider ΣR2 and h = π1 : R2 → R, h(x, y) = x the projection on the first variable. A simple
computation shows that Rank(O) = 2. In fact,

C = (1 0), A =

(
0 1
0 0

)
, CA = (0 1) then O =

(
1 0
0 1

)
.

According to Theorem 3, the system is observable.
2. Consider now the same system ΣR2 and h = π2 : R2 → R with h(x, y) = y the projection on

the second variable. In this case:

C = (0 1), CA = (0 0) then O =

(
0 0
1 0

)
.

and Rank(O) = 1. Therefore, the system is not observable. Furthermore, I(0, 0) coincides with
the x-axis. For any z ∈ R2, I(z) = z +R.

Geometrically, this situation can be explained as follows. In the case of π1, any two states
with different first coordinates can be distinguished directly from their own observable function.
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Therefore, take any two states with the first coordinate equal to zero. By applying simultaneously
the solutions coming from u = 1 to these two initial conditions, the projection of both curves will
coincide. Now, by considering u = −1, the projections of the curves will give different trajectories on
the x-axis. Therefore, the system is observable since I(0) = {0} .

In the case of π2, consider two different states on the x-axis. The projections to the y-axis of the
mentioned parabolas with u = 1 and u = −1, will coincide. Therefore, I(0) = x-axis, and the system
is not observable. In particular, through the knowledge of the velocities, it is not possible to recover
the solution in the manifold. More precisely, contrary to the first case, here we cannot determine
the initial condition and therefore all the trajectory!

Example 2. The next example corresponds to a linearization of a non-linear control system modeling the attitude
of a satellite in orbit around the Earth (see [2]) with different observation maps.

Let ΣRn be a linear control system with:

A =


0 1 0 0

3β2 0 0 2β

0 0 0 1
0 −2β 0 0

 , B =


0 0
1 0
0 0
0 1

 , β 6= 0.

1. Consider the linear transformation h with matrix C =

(
1 0 0 0
0 0 1 0

)
. A simple computation

shows that O is invertible. Hence, the system is observable.
2. If C = (1 0 0 0) : R4 → R, Rank(O) = 3, and the system is not observable. Therefore, by knowing

just the first variable, it is not possible to rebuild the system.
3. If C = (0 0 1 0) : R4 → R, Rank(O) = 4, and the system is observable. Hence, the third variable

contains enough information to recover any Σ-trajectories from a given initial condition.

3. Linear Control Systems on Lie Groups

The Appendix at the end of the article contains a short review of Lie theory; mainly, a basic notion
about Lie groups, Lie algebras, and some examples. The reference [29] is a very good starting point.

We begin this section by extending the definition of a linear control system from the Euclidean
space G = Rn to a connected arbitrary Lie group G. From a dynamic point of view, a linear control
system on the Abelian group Rn is determined by:

the drift A ∈ gl(n,R), and the B-column vectors bj ∈ Rn, j = 1, ..., m.

We start by the drift vector field A. For that, we need to extend the notion of the linear differential
equation

·
x(t) = Ax(t) from vector spaces to groups.

The first idea comes from the flow etA : Rn → Rn, t ∈ R, induced by matrix A, which is a
one-parameter group of Rn-automorphism. In fact, for any real number t, the linear map e−tA is
the inverse of etA. As a first approach, we impose on X the same property. This means that the flow ϕt

of the drift X :
{ϕt : t ∈ R} ⊂ Aut(G)

must be a subgroup of Aut(G), the Lie group of the automorphism of G. We call X an infinitesimal
automorphism. Therefore, the drift is determined by the formula:

X (g) = (
d
dt
)t=o ϕt(g).
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The Lie bracket between a linear and an invariant dynamic on Rn reads as:

[Ax, b] = −Ab ∈ Rn.

Thus, the linear vector field determined by A leaves invariant the Lie algebra T0Rn = Rn of Rn.
Therefore, we impose that X leaves invariant the Lie algebra g of G under the Lie brackets. In [19],
the authors introduced the following notion:

Definition 2. A vector field X on G is said to be linear if:

[X , Y] ∈ g, for any Y ∈ g, and X (e) = 0.

In [25], the author proved the following:

Theorem 4. Let X be a linear vector field on G. The following are equivalent:

1. X is linear;
2. X is an infinitesimal automorphism.

On the other hand, any vector b ∈ Rn determines by translation an invariant vector field Xb on
Rn, as follows:

Xb(x) = Σn
i=0bi(

∂

∂xi
)x ∈ TxRn

Since,
Bu = Σm

j=1ujbj

the linear control system ΣRn on Rn controls the matrix A through m invariant vector fields Xb1 , ..., Xbm .
Let G be a connected Lie group. In [19], the authors introduced the class of linear control systems

ΣG on G through the controlled family of differential equations:

ΣG : ġ(t) = X (g(t)) +
m

∑
j =1

uj(t)X j(g(t)), u ∈ U , (2)

parametrized as u ∈ U . Here, the drift X is linear, X1, ..., Xm are invariant vector fields,
and u = (u1, . . . , um) belongs to the class of admissible control functions U = L1

loc (R, Ω).
If G = Rn, we recover the definition of the linear control system in Euclidean spaces. In other

words, Formula (2) is a perfect generalization of Formula (1).

Remark 2. Any linear vector field X determines a derivation D = DX of g, defined as:

D : g→ g such that DX = −[X , X](e), for all X ∈ g.

Recall that [Ax, b] = −Ab as in the Euclidean case. As a matter of fact, for each t ∈ R, (dϕt)e = etD .
In particular, from the commutative diagram, we obtain:

g
(dϕt)e−→ g

exp ↓ ↓ exp
G −→

ϕt
G

⇒

ϕt(exp X) = exp(dϕt)eX = exp(etDX), for all t ∈ R, X ∈ g.
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Furthermore, assume G is also a simply connected and nilpotent Lie group. It is well known that
in this case, the exponential map is a diffeomorphism. Consider a derivation D, and for g ∈ G, take
X ∈ g such that log(g) = X. Therefore,

ϕt(g) = exp(etD log(g)), for all t ∈ R, g ∈ G.

Finally, consider the inner derivations D ∈ ∂g, induced by an element Y of g by the formula
D(·) = [· , Y] . Since it flows:

ϕt(g) = exp(tY)g exp(−tY), for all t ∈ R

is given by conjugation, and it is easy to determine the value of X = XD on G through the formula:

X = (
d
dt
)t=0 ϕt.

3.1. The Solution of a Linear Control System on Lie Groups

Let ΣG be a linear control system on the connected Lie group G. For a control u ∈ U , the solution of:

·
g(t) = X (g(t)) +

m

∑
j =1

uj(t)X j(g(t))

with arbitrary initial condition x ∈ G is given by:

γt(x) = ϕt(β(t, u) x),

where β(t) is a differentiable curve in g. Precisely, this curve satisfies the differential equation:[19]

·
β(t, u) = (ϕ−t)∗(

m

∑
j =1

uj(t)X j
X (�(t),u)) .

3.2. Observability Properties

In this section, we state the main ideas and results appearing in [28]. First, we introduce the notion
of a linear control system with an observation map on a Lie group. Through the shape of the solution
of ΣG given in the previous section, we are willing to show that as in the Euclidean space, it is possible
to characterize the observability property without the use of the control vectors. Actually, the algebraic
condition just depends on the drift vector field and the observation map. Therefore, we have here
the first symmetric situation between both classes of systems.

In this section, we will not show the proof of the main results. In fact, the mathematics involved
are hard and out of the scope of this article.

For any homomorphism h : G → H between Lie groups, the kernel, and the image of h:

Ker(h) = {x ∈ G : h(x) = eH} and Im(h) = {y ∈ H : ∃x ∈ G with h(x) = y}

are subgroups of G and H, respectively. Here, eH denotes the identity of H.

Definition 3. Let G be a connected Lie group. A linear control system with observation ΣOG on G is given

by the data contained in Formula (2) and the observation map h : G hom→ H, where H is a Lie group with
dim(G) ≤ dim(H).

We start with the indistinguishable and observable notions of ΣOG .
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Definition 4. Let ΣOG be a linear control system with observation on G:

1. Two elements g1 and g2 are indistinguishable, denoted by g1 Ig2, if:

ϕt(g1g−1
2 ) ∈ Ker(h), ∀ t ≥ 0

2. ΣOG is said to be observable from g ∈ G if the equivalence class I(g) is {g}.
3. ΣOG is said to be observable if it is observable from g ∈ G, for every g ∈ G.
4. ΣOG is said to be locally observable from g ∈ G if ∃ U(g), a neighborhood of g, with:

I(g) ∩U(g) = {g} .

5. ΣOG is said to be locally observable if it is locally observable from g, g ∈ G.

Remark 3. In the Euclidean case, the equivalence class of the origin I(0) is a subspace of Rn. This means
I(0) is trivial or at least contains a line. In the non-trivial case, the local notion above does not´have meaning.
However, in the group case, I(e) could be discrete and even finite, here e = eG. Thus, the locally observable
notion has perfect meaning. This is a fundamental difference between both Lie groups Rn and G.

The formula ϕt(g1g−1
2 ) ∈ Ker(h), ∀ t ≥ 0, associated with the indistinguishable notion comes

from the following analysis. Recall that ϕt is an infinitesimal automorphism and h is a homomorphism.
Therefore, given two state g1 and g2 and any control u ∈ U , we have:

g1 Ig2 ⇔ h(ϕt(β(t, u) g1) = h(ϕt(β(t, u) g2)⇔

h(ϕt(g1)) = h(ϕt(g2))⇔ h(ϕt(g1g−1
2 ) = eH .

In particular, by taking g2 = e, we obtain:

I = I(e) = {g ∈ G : ϕt(g) ∈ Ker(h), ∀ t ≥ 0} .

Furthermore, for any g ∈ G, I(g) = Ig. In fact,

g1 Ig2 ⇔ g2 ∈ Ig1.

In the sequel, we denote ΣOG also by (G,X , h, H).

Proposition 2. Consider the system ΣOG = (G,X , h, H). Then [28]:

1. I is a topologically closed and normal subgroup of G;
2. I = {g ∈ G : ϕt(g) ∈ Ker(h), ∀ t ∈ R}.

Coming back to the Euclidean case, certainly, any subspace of Rn is topologically closed. Since Rn

is an Abelian group, any subgroup is normal, actually Abelian as well. On the other hand, Proposition 1
implies that we have a complete symmetry between the indistinguishable class of the identity element
e of G and the neutral element 0 ∈ Rn,

I = {x ∈ Rn : ϕt(x) ∈ Ker(h), ∀ t ∈ R} .

3.3. Local Observability

As we mentioned, a continuous Lie group could contain discrete subgroups. For instance,
for any natural number k, the set:

R(k) =
{

z ∈ C : zk = 1
}
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is a finite subgroup of the circle S1. For example, R(4) =
{

π
2 , π, 3π

2 , 1
}

.
In the sequel, we show an algebraic version of Proposition 17. Let I and K be the Lie algebras

(the tangent space at the identity element e) of I and the kernel K = Ker(h) of h, respectively.
Define adi(X ) : g→ g inductively:

ad0(X ) = Id, ad1(X )(Y) = [X , Y] , ..., adi(X ) = adi−1(X )( [X , Y]).

Proposition 3. Consider the system ΣOG = (G,X , h, H). Then [28],

1. adi(X )(I) ⊂ I , for any natural number i ≥ 0;
2. I = ∩n−1

i=0 ad−i(X )(K).

The first condition means that the Lie bracket of any order between the drift X with elements in
I will remain in I . Precisely, let Y ∈ I , then:

[X , Y] ∈ I , [X , [X , Y]] ∈ I , [X , [X , [X , Y]]] ∈ I , ... and so on.

The idea of the proof of 2 is as follows. Since I ⊂ K, we need to prove:

∩n−1
i=0 ad−i(X )(K) ⊂ K,

which follows from 1.
Now, we are in a condition to state the main results about the observable system from the local

point of view.

Theorem 5. Consider the system ΣOG = (G,X , h, H). Then [28],

ΣOG is local observable⇔ ΣOG is local observable from e⇔ I = {0} .

This result says that the observability property of ΣORn on Rn and the local observability property
of ΣOG on G can be characterized in a symmetric way, i. e., with analogous mathematical tools. In fact,

I = {0} is equivalent to I = {e} .

In fact, in the Euclidean case e = 0. Therefore, we recover Theorem 3,

ΣORn is observable ⇔ I = {0} .

3.4. Observability

The local observability property of ΣOG just depends on the indistinguishable equivalence class
of e. To obtain an observability result, we need to consider something more: the set of fixed points of
the drift vector field X , given by:

Fix(X ) = {g ∈ G : ϕt(g) = e, for any t ∈ R} .

Theorem 6. Consider the system ΣOG = (G,X , h, H). Then [28],

ΣOG is observable⇔ I = {0} and Fix(X ) ∩ Ker(h) = {e} .

Proof. Idea of the proof: Since I = {e}, we get I = {0} . If g ∈ Fix(X ) ∩ Ker(h),

ϕt(g) = g ∈ Ker(h), ∀t ∈ R.
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By definition, g ∈ I, then g = e.
Reciprocally, consider the map:

Φ : R × G → G defined by Φ(t, g) = ϕt(g).

We observe that Φ : R × I → I is well defined. Pick g ∈ G, and define the application
Φg : R × {g} → G. The set:

Φg(R× {g}) = Im(Φg) = {ϕt(g) : t ∈ R}

is connected since the domain R× {g} is connected and Φg is continuous. By taking t = 0, we get g ∈
Im(Φg) ⊂ I.

I = {0} implies that I is a discrete subgroup of G. Therefore,

{g} = Im(Φg) so g ∈ Fix(X ).

However, g ∈ I ⊂ Ker(h). It turns out that g = e, ending the proof.

3.5. An Observability Algorithm

Let us denote by g
⊥

the dual space of g. In order to compute the Lie algebra I , it is suitable to use
a general algorithm provided by Isidori [2]. Starting from the Lie algebra K, we build a finite sequence
of invariant g

⊥
-subspaces, which converges to I⊥ ; see [28] for details. Let ΣOG = (G,X , h, H) be a

linear control system with observation. Consider the following steps:

1. Choose a basis B = {Y1, ..., Yp} of K;
2. Compute the subspace B⊥ = {w1, ..., wn−p} of g

⊥
;

3. Compute the ad(X )(B⊥)-basis to I⊥ , i.e.,

ad(X )(B⊥) = {adi(X )(wj) | 0 ≤ i, 1 ≤ j ≤ n− p},

ad0(X ) = Id, ad(X )(w) = w ◦ ad(X ),

adi(X )(w) = ad (adi−1(X )(w)), i ≥ 2.

The previous algorithm allows computing the relevant algebraic tool I .

Theorem 7. Let us consider the system ΣOG = (G,X , h, H). Therefore, [28]

I = (Span ad(X )(B⊥))⊥ (3)

Proof. It follows from Isidori‘s theorem in [2]. In fact, in this particular case, we obtain:

Span(ad(X )(B⊥)) = I⊥ . (4)

Recall that I can be computed by integration of the Lie algebra I .

3.6. Examples

In the sequel, we use the previous algorithm to compute some examples.
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Example 3. The Heisenberg–Lie group G of dimension three reads as:

G =

g =

 1 a c
0 1 b
0 0 1

 : a, b, c ∈ R

 .

Let us denote by
∗

eij the coefficient of a matrix such that the only non-null element is eij = 1. The Lie
algebra g of G is:

g = Span
{

X1 =
( ∗

e12

)
, X2 =

( ∗
e23

)
, X3 =

( ∗
e13

)}
,

where the only non-null bracket is
[
X1, X2] = X3. We consider the infinitesimal automorphism X

induced by the matrix X1 by conjugation:

X (x) =
(

d
dt

)
t=0

exp(tX1) g exp(−tX1) = bX3.

With these data, we develop two examples:

1. Let ΣOG = (G,X , h = π2,R) be a linear control system on G, where:

π2

 1 a c
0 1 b
0 0 1

 = b.

We have,

Ker(h) =


 1 a c

0 1 0
0 0 1

 : a, c ∈ R

 and K = Span
{

X1, X3
}

.

Thus, the β basis is
{

X1, X3} . It follows that the orthogonal basis β⊥ is generated by w = (X2)⊥.
Simple calculus shows that:[

X , X1
]
= 0,

[
X , X2

]
= X3 and

[
X , X3

]
= 0.

Since ad(X )(w) = w ◦ ad(X ), we obtain:

ad(X )(w)(X1) = 0, ad(X )(w)(X2) = (X2)⊥(X3) = 0 and ad(X )(w)(X3) = 0.

Thus, ad(X )(w) = 0 and adi(X )(w) for any i. It follows that:

{0} = adi(X )(β⊥) ⊂ K ⇒ I = K.

Consequently, ΣOG is not observable since it is not locally observable.
2. Let ΣOG = (G,X , h, G/ exp(tX1) be a linear control system on G, where:

h : G → G / exp(tX1) is the canonical projection.

We have,

Ker(h) =


 1 0 0

0 1 b
0 0 1

 : b ∈ R

 and K = Span
{

X2
}

.
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Therefore, β =
{

X2} and β⊥ =
{

w1 = (X1)
⊥

, w2 = (X3)
⊥
}

. However, ad(X )(w) = (X2)
⊥

.

Then, II = gI and I = {0} , which implies by Theorem 19 that the system ΣOG is locally
observable.

On the other hand, the set of fixed points on the drift:

Fix(X ) =


 1 a c

0 1 0
0 0 1

 : a, c ∈ R

 , in fact

ϕt(g) = exp(tX1) g exp(−tX1) = g⇔ b = 0.

It turns out that the only element in Fix(X ) and Ker(h) is the identity. From Theorem 6, the system
ΣOG = (G,X , h, G/ exp(tX1) is observable.

4. Conclusions

In this paper, we first showed that the symmetric property of the Gramian matrix determines
totally the observability property of any linear control system on a Euclidean space.

Second, the natural extension of a linear control system from Rn to a Lie group G contains many
symmetries. In fact, the drift A of ΣRn with flow etA ∈ Aut(Rn), t ∈ R, can be generalized to the drift
X of ΣG through the infinitesimal automorphism notion. Precisely, its flow ϕt ∈ Aut(G), for any t ∈ R.
Furthermore, the column vectors of the matrix B of ΣRn determine m constant vector fields on Rn,
which can be generalized as m invariant vector fields on the Lie group G.

On the other hand, we proved that there are many symmetries in the given data, which allow
characterizing the observability properties of ΣORn and ΣOG . For instance,

1. The equivalent class I(0) of 0 ∈ Rn and I(e) of e ∈ G have symmetric constructions;
2. The algebraic tool I allows characterizing the observability property of ΣORn . The natural extension

of I = I(0) from a subspace to a subgroup I = I(e) characterizes the locally observable property
of ΣOG .

It is worth saying that contrary to the Abelian group Rn, a Lie group G could contain discrete
subgroups. To approach this relevant difference, we considered the sets of fixed points of the drift
vector fields X . With that, we characterized the observability of ΣOG .
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Appendix A. A Short Review of Lie Theory

To define the class of linear control systems in a more general setting, we introduce some
basic notion of Lie theory; mainly, matrix Lie groups, Lie algebras, and two special classes of
dynamics: invariant and linear vector fields. For general facts of this matter, we mention the following
references [6,7,29,32].

A group G is said to be a topological group if the applications µ : G × G → G, defined by
µ(g, h) = gh and ι : G → G, determined by ι(g) = g−1 are continuous.

According to the solved Hilbert’s fifth problem, G has a structure of differential manifolds, and µ

and ι are analytical applications. We call this structure a Lie group. In particular, it is possible to define
the differential equation on G (vector fields) and to compute its solution through its flows.
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Example A1. The following sets are Lie groups with the natural structure:

1. The Euclidean space (Rn,+).
2. The multiplicative set GL(n,R) = {A : det(A) 6= 0} of invertible real matrices of order n. We denote by

GL+(n,R) the connected component, which contains the identity map Id.
3. The n-dimensional torus Tn = S1 × ....× S1, n-times, where S1 = {z ∈ C : |z| = 1} is the circle group.
4. The special linear group:

SL(n,R) =
−1
det(1)

and the special orthogonal group:

SO(n,R) = {A ∈ O(d) | AAt = Id and det(A) = 1}

5. A matrix representation of the Heisenberg–Lie group reads as:

G =

g =

 1 a c
0 1 b
0 0 1

 : a, b, c ∈ R

 .

Define the right and the left translations maps on G by:

Rg : G → G, Rg(x) = xg and Lg : G → G, Lg(x) = gx

respectively. Their inverses are given by Rg−1 and Lg−1 .

Definition A1. An invariant vector field X on G is determined by the formula Xg = (Rg)∗(Xe), g ∈ G.

Here, (Rg)∗ denotes de derivative of Rg at the identity element e of G. Just observe that any
invariant vector field is determined by its value at e.

The notion of Lie brackets is a measure of the non-commutative behavior between any
two dynamics. In the case of a matrix group, the Lie bracket corresponds to the commutator,
[A, B] = AB − BA.

Here is an example coming from real life. Imagine an airplane flying always at the same altitude
and moving 1000 km in every direction: first to the north, second to the west, then to the south,
and finally, to the east. Except for some special states, the initial and ending points of the trip are
always different!The plane moves through the solution of two vector fields on the sphere S2 ={

x ∈ R3 : ‖x‖ = 1
}

induced by rotational matrices A, B ∈ SO(d,R). In this case, [A, B] 6= 0.
Denote by g the vector space of right invariant vector fields on G. As a matter of fact,

X, Y ∈ g⇒ [X, Y] ∈ g.

Therefore, g is isomorphic to the tangent space TeG, and it is called the Lie algebra g of G.
The elements of g satisfy the skew-symmetric property:

[X, Y] = −[Y, X], for any X, Y ∈ g

and the Jacobi identity:

ad(X)([Y, Z]) + ad(Z)([X, Y]) + ad(Y)([Z, X]) = 0, if X, Y, Z ∈ g

Moreover, any subspace V ⊂ g is a subalgebra if:

X, Y ∈ V⇒ [X, Y] ∈ V
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V is an ideal if:
X ∈ V and Y ∈ g⇒ [X, Y] ∈ V.

Next, we show the algebra g of some groups through TeG:

1. T0Rn = Rn;
2. TId GL+(n,R) = gl(n,R);
3. Te S2 = R2;
4. TId SO(n,R) = {A ∈ gl(n,R ) | A + At = 0}, the skew-symmetric matrices;
5. sl(n,R ) = {A ∈ gl(n,R) | tr(A) = 0}, the trace zero matrices;
6. The Lie algebra of the Heisenberg group has the basis

{
X1, X2, X3} such that

[
X1, X2] = X3.

The exponential map exp : g→ G defined on any invariant vector field X ∈ g reads as:

exp(X) = Xt(e)t=1 = X1(e).

In the classical case of the matrix group, we recover:

exp : gl(d,R)→ GL+(d,R), exp A = (etA)(t=1) = eA.

Since d(exp)0 = e, ∃ V ⊂ G a neighborhood of e where exp is a diffeomorphism (local).
This fact comes from the inverse map theorem [32].

The set Aut(G) of G-automorphisms is a Lie group with Lie algebra aut(G) when G is
connected [32–35]. Furthermore, if G is also simply connected, aut(G) is isomorphic to the Lie
algebra ∂g of g-derivations, i.e., the set of linear maps D : g→ g, which satisfy the Leibniz rule
D[X, Y] = [DX, Y] + [X, DY].

A remarkable relationship between a homomorphism and its derivative is given by
the commutative diagram:

g
The derivative at e−→

d (ϕ)e

h

expg ↓ ↪→ ↓ exph

G
The homomorphism−→

ϕ
H

As an example, we recover the very well-known formula involving the determinant and the trace
of a matrix:

etrA = det(exp A), A ∈ gl(d,R).

where G = GL+(n,R), g = gl(n,R),H = R, and h = R.

Definition A2. A Lie algebra g is said to be:

1. Abelian if every bracket is null;
2. Nilpotent if the sequence adj(g) =

[
adj−1(g), ad1(g)

]
, j = 1, 2, ... stabilizes at zero, i.e.,

∃k ≥ 1 : adk(g) =
[
adk−1(g), ad1(g)

]
= 0

3. Solvable if the sequence ad(j)(g) =
[
ad(j−1)(g), ad(j−1)(g)

]
j = 1, 2, ... stabilizes at zero, i.e.,

∃k ≥ 1 : ad(k)(g) =
[
ad(k−1)(g), ad(k−1)(g)

]
= 0

4. Simple if g is not Abelian and does not contain non-proper ideals;
5. Semisimple if the solvable radical r(g) (the largest solvable Lie subalgebra of g) is null.
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We classify a Lie group with the same name that is inherited from the classification of its Lie
algebra.

Example A2.

1. Rn is Abelian;
2. Tm = S1 × ....× S1 is Abelian and compact;
3. Rn × Tn, n, m ∈ N is the general Abelian group shape;
4. The three-dimensional Heisenberg group is nilpotent;

5. The affine group

{(
A y
0 1

)
: A ∈ GL(n,R), y ∈ Rn

}
is solvable;

6. SO(n,R) is compact:
SO(n,R) = {A ∈ GL(n,R) | AAt = e}

7. SO(4,R) is compact and semisimple;
8. SL(n,R) is non-bounded and semisimple.
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