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Abstract: The famous Toms effect (1948) consists of a substantial increase of the critical Reynolds
number when a small amount of soluble polymer is introduced into water. The most noticeable
influence of polymer additives is manifested in the boundary layer near solid surfaces. The task
includes the ratio of two characteristic length scales, one of which is the Prandtl scale, and the other
is defined as the square root of the normalized coefficient of relaxation viscosity (Frolovskaya and
Pukhnachev, 2018) and does not depend on the characteristics of the motion. In the limit case,
when the ratio of these two scales tends to zero, the equations of the boundary layer are exactly
integrated. One of the goals of the present paper is group analysis of the boundary layer equations in
two mathematical models of the flow of aqueous polymer solutions: the second grade fluid (Rivlin and
Ericksen, 1955) and the Pavlovskii model (1971). The equations of the plane non-stationary boundary
layer in the Pavlovskii model are studied in more details. The equations contain an arbitrary function
depending on the longitudinal coordinate and time. This function sets the pressure gradient of
the external flow. The problem of group classification with respect to this function is analyzed.
All functions for which there is an extension of the kernels of admitted Lie groups are found.
Among the invariant solutions of the new model of the boundary layer, a special place is taken by the
solution of the stationary problem of flow around a rectilinear plate.
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1. Introduction

The famous Toms effect [1] consists of a substantial increase of the critical Reynolds number when
a small amount of soluble polymer is introduced into liquid. The study of this phenomenon is the
subject of many experimental investigations [2–9]. A detailed bibliography of the studies devoted to
the flow of polymer solutions in pipes is presented in Reference [10].

For a theoretical description of the dynamics of polymer solutions, the Pavlovskii model [11] and
the second-order Rivlin-Ericksen fluid model [12] are commonly used. In both models, the unknown
functions are the velocity vector v and the pressure p. Pavlovskii’s equations have the form

dv
dt

= −1
ρ
∇p + ν∆v + κ

d∆v
dt

, divv = 0, (1)

where, d
dt = ∂

∂t + v · ∇, ρ is the fluid density, ν is the kinematic viscosity and κ is the normalized
relaxation viscosity [13]. These variables are considered positive constants. In the Rivlin-Ericksen
model, Equation (1) are replaced by the following:
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dv
dt

= −1
ρ
∇p + ν∆v + κ

(
d∆v
dt

+ 2Div(D ·W −W · D)

)
, divv = 0, (2)

where D and W are the symmetric and antisymmetric parts of the tensor ∇v, respectively.
The well-posedness of the initial-boundary value problems for systems (1) and (2) was studied in

References [14–19]. while the group properties of Equations (1) and (2) and the construction of their
exact solutions were studied in References [13,20–22].

One more model of the motion of aqueous polymer solutions was formulated in Reference [23].
In this model, the relations between the stress tensor and the strain rate tensor contains an integral
operator of Volterra type.

The main objective of the present research is to construct boundary layer equations of two
mathematical models of the flow of aqueous polymer solutions [11,12]. Another goal is to demonstrate
their solutions.

The manuscript is organized as follows. The next section is devoted to deriving boundary layer
equations: the equations of the laminar boundary layer in the Pavlovskii and Rivlin-Ericksen models.
Section 3 presents the application of the group analysis method for constructing exact solutions of the
boundary layer equations corresponding to the Pavlovskii model. In the Section following it, one class
of solutions of this system is analyzed. As the admitted Lie group of the studied equations is infinite,
then it is useful to apply group foliation, which is presented in Section 5. The stationary equations are
considered in Section 6. Section 7 is devoted to the group analysis of the boundary layer equations
of the Rivlin-Eriksen fluids. In the Section next to it, three new problems were formulated. The final
Section gives concluding remarks.

2. Derivation of Boundary Layer Equations

Most of the publications on the effect of polymer additives on the nature of the movement are
associated with a decrease in resistance in the turbulent flow regime in pipes and the boundary
layer. Therefore, it is not surprising that it was the turbulent boundary layer that has been the
focus of attention of researchers. As for the laminar boundary layer in an aqueous polymer solution,
publications on this subject are unknown to us. The equations of the laminar boundary layer in the
Pavlovskii and Rivlin-Ericksen models are thus derived below. We restrict ourselves to the case of
plane movements.

In coordinate representation, Equation (1) have the form:

ut + uux + vuy + ρ−1 px = ν∆u + κ(∆ut + u∆ux + v∆uy),
vt + uvx + vvy + ρ−1 py = ν∆v + κ(∆vt + u∆vx + v∆vy),

ux + vy = 0,
(3)

where ∆ is the Laplace operator with respect to x and y. The equations of system (3) should be reduced
to a dimensionless form. In this case, the difference in the longitudinal coordinate x and the transverse
coordinate y should be taken into account, together with the difference in the characteristic scales of
the longitudinal and transverse components of the velocity: |u| � |v|. This eliminates the situation
when u = 0 inside the flow region, with the exception of the solid part of the boundary, where the no
slip condition is required. It is assumed below that the function u is positive.

It is natural to introduce the velocity V of the oncoming flow as a characteristic velocity scale,
and take the length of the streamlined contour l as a characteristic longitudinal scale of length.
Then the characteristic time is determined as l/V. As for the characteristic transverse length scale,
there are two possibilities. In the classical theory of the boundary layer, it is defined as b = Re−1/2l,
where Re = Vl/ν� 1 is the Reynolds number. But in the problem under discussion there is another
length scale λ = κ1/2. Unfortunately, it is difficult to extract information on the value of the parameter
λ from References [6,7,11,23], but one can hope that this parameter is small. Below this parameter is
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chosen as the transverse length scale. Then the transition to dimensionless variables is carried out
according to the formulae

x = lx′, y = λy′, t = V−1lt′, u = Vu′, v = Vλl−1v′, p = V2 p′.

Further, the superscript for dimensionless variables is omitted. As a result, the following equations
are obtained:

ut + uux + vuy + px = χuyy + utyy + uuxyy + vuyyy + α(utxx + uuxxx + vuxxy + χuxx),

α(vt + uvx + vvy − vtyy − vvyyy − χvyy) = −py + α(vtxx + uvxxx + vvxxy + χvxx)

+α2(vtxx + uvxxx + vvxxy + χvyy), ux + vy = 0,

where α = (λ/l)2. The limit in this system for α→ 0 leads to the equations

ut + uux + vuy = −px + χuyy + utyy + uuxyy + vuyyy,
py = 0, ux + vy = 0.

(4)

System (4) appears to contain three sought functions u, v and p. However, the last one
is in fact, known. Accepting the assumption that u → U(x, y), ∂ku/∂yk → 0 when y → ∞,
(k = 1, 2, 3), where U(x, y) is the given function, one obtains the relation px + Ut + UUx/2 = const.
(This assumption is natural in the classical theory of a boundary layer [24]).

There is a single dimensionless parameter in system (4):

χ =
νl

Vλ2 ≡
b2

λ2 .

This parameter may turn out to be small due to the smallness of the coefficient ν or large values
of the quantity V. In this case, the Reynolds number should not be too large so that the motion
remains laminar. It is important to emphasize that the parameter λ is independent of the flow
characteristics and is determined only by the rheological properties embedded in the model of an
aqueous polymer solution.

Consider now the equations describing plane motion in the Rivlin-Ericksen model (2). If one
makes the asymptotic simplification procedure described above, the following system is obtained

ut + uux + vuy = −px + χuyy + 2uyuxy + utyy + uuxyy + vuyyy,
py = −2uyuyy, ux + vy = 0.

(5)

These equations differ from Equation (4) by the dependence of the pressure p on not only the
independent variables x and t, but also on y. Fortunately, the second equation in (5) can be integrated,

p = −u2
y + q(t, x),

and system (5) is reduced to the form

ut + uux + vuy = −P + χuyy + utyy + uuxyy + vuyyy + 4uyuxy,
ux + vy = 0,

(6)

where P = qx. The function q(t, x) is defined from the conditions on the external boundary of the
boundary layer. It should be noted that the stationary boundary layer equations in the second-order
fluid model were previously considered in Reference [25], and self-similar solutions were found there
as well.
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3. Group Classification of System (4)

As py = 0, then system (4) can be reduced to the system

ut + uux + vuy = −P + χuyy + utyy + uuxyy + vuyyy,
ux + vy = 0,

(7)

where P(x, t) = px(x, t).
In Equation (7) the function P(x, t) and the constant χ are arbitrary. The group classification

separates equations on classes up to equivalence transformations [26]. Equivalence transformations
do not change the differential structure of the equations. Notice also that all invariant solutions are
constructed up to equivalence transformations.

Calculations give that the equivalence group is defined by the generators

Xe
1 = ∂t, Xe

2 = x∂x + u∂u + P∂P, Xe
3 = −t∂t + u∂u + v∂v + 2P∂P + χ∂χ,

Xe
4 = ψ(x, t)∂y + (uψx(x, t) + ψt(x, t))∂v, Xe

5 = ϕ(t)∂x + ϕ′(t)∂u − ϕ′′(t)∂P.
(8)

The transformations corresponding to Xe
1 are shifting with respect to t, the transformations

corresponding to Xe
2 and Xe

3 allow scaling of P and χ, the transformations related with Xe
4 are

ȳ = y + ψ(x, t), v̄ = v + uψx(x, t) + ψt(x, t), (9)

and the transformations related with Xe
5 are

x̄ = x + ϕ(t), ū = u + ϕ′(t), P̄ = P− ϕ′′(t).

The equivalence group of transformations also possesses two involutions:

y→ −y, v→ −v,

and
x → −x, u→ −u, P→ −P.

An admitted generator is sought in the form

X = ξt∂t + ξx∂x + ξy∂y + ζu∂u + ζv∂v,

where the coefficients of the generator X depend on (t, x, y, u, v). Calculations lead to the study of the
classifying equation

k1(xPx − P) + k3Pt + ξPx = −ξ ′′, (10)

where
ξ = ξ(t), h = h(x, t),

and the generator is

X = k1(u∂u + x∂x) + k3∂t +
(
h∂y + (uhx + ht)∂v

)
+ (ξ ′∂u + ξ∂x).

Hence, the kernel of admitted Lie algebras is defined by the generators

Xh = h∂y + (uhx + ht)∂v,

where h(x, t) is an arbitrary function. An extension of the kernel occurs for particular functions P(t, x)
only, as we now show.
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3.1. Case Pxx 6= 0

In this case
ξ = −k1x− k3

Ptx

Pxx
.

The kernel of admitted Lie algebras is only extended if(
Ptx

Pxx

)
x
= k,

where k is constant. Hence, P = ektg(xe−kt), and the extension is defined by the generator

k(u∂u + x∂x) + ∂t.

Here the function g satisfies the condition g′′ 6= 0.
Consider the subalgebra consisting of the generators

Xk = k(u∂u + x∂x) + ∂t, Xh = h∂y + (uhx + ht)∂v.

As the commutator of these generators is [Xk, Xh] = Xµ, where µ = ht + kxhx, then the
requirement that they compose a Lie algebra leads to the condition

ht + kxhx = qh,

where q is constant. Hence, h = eqtH(z), where z = xe−kt, and H is an arbitrary function.
A representation of an invariant solution has the form

u(x, y, t) = xU(z), v(x, y, t) = y
(

z(U(z)− k)H′(z)
H(z)

+ q
)

,

and the reduced system of equations is

z2(U − k)U′ + zU2 + g = 0, (11)

H′

H
+

zU′ + U + q
z(U − k)

= 0.

Equation (11) is Abel’s equation of the second kind: using the change U = z−Ũ − k, it reduces to
the equation

(Ũ − 2kz)Ũ′ = −(g + k2z). (12)

Remark 1. Even the trivial case of Equation (12) when g = −k2z does not satisfy the condition g′′ 6= 0,
it provides the trivial solution of Equation (7):

P = −k2x, u = −kx + q0e−kt, v = ky,

where q0 is constant.

3.2. Case Pxx = 0

In this case
P(x, t) = xg(t) + µ(t).

Using the equivalence transformation corresponding to the generator Xe
5, one reduces µ = 0.

The classifying Equation (10) can be split

k3g′ = 0, ξ ′′ + ξg = 0.
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If g′ 6= 0, then k3 = 0 and the admitted generators are

u∂u + x∂x, g′i∂u + gi∂x, (i = 1, 2), (13)

where g1(t) and g2(t) compose a fundamental system of solutions of the second-order ordinary
differential equation ξ ′′ + ξg = 0.

If g′ = 0, then the generators (13) are extended by one more admitted generator ∂t.

4. One Class of Solutions of System (7)

Assuming that
v = v(y, t),

one finds that
u(x, y, t) = −xvy(y, t) + w(y, t).

Substituting this representation into (7), one obtains that up to equivalence transformations
P(x, t) = xg(t) and the functions v(y, t) and w(y, t) satisfy the system of partial differential equations

wt + vwy + wvyyy = wtyy + vwyyy + χwyy + wvy, (14)

vtyyy + vvyyyy + χvyyy + v2
y = vty + vvyy + vyvyyy + g. (15)

Next consider particular forms of the function w(y, t).
Assuming that w = α(t), Equation (14) reduces to

α′ = αvy. (16)

For the trivial solution α = 0 of this equation, the function v(y, t) satisfies the single Equation (15).
For an arbitrary function g(t) this equation admits the only generator

Xh = h∂y + h′∂v,

where h(t) is an arbitrary function. If g(t) is constant, then Equation (15) admits one more generator ∂t.
Consider solutions of Equation (15) invariant with respect to Xh: these solutions have the form

v(x, y, t) = yβ(t).

The function β(t) satisfies the equation

β′ = −g.

Hence, this invariant solution defines the classical irrotational flow

u(x, y, t) = −xβ(t), v(x, y, t) = yβ(t),

where β(t) = −
∫

g(t) dt.
Notice that for α 6= 0 in Equation (16), the function v(x, y, t) has similar form

v(x, y, t) = yβ(t) + γ(t),

where by virtue of the equivalence transformations (9), for β 6= 0 one can assume that γ = 0.
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Another form of the function w(y, t) analyzed here is the form

w(y, t) = α1(t)ey + β1(t)e−y + γ1(t),

where α1(t), β1(t) and γ1(t) are functions of time t such that α2
1 + β2

1 6= 0. Introducing

r = vyyy − vy − χ, (17)

Equations (14) and (15) become
r = −w−1(γ′1 + χγ1 + µ), (18)

rvy − ryv = rt + χr + g + χ2. (19)

If r 6= 0, then analysis of Equations (18) and (19) leads to a contradiction. Hence, r = 0, and then

g = −χ2, γ′1 + χγ1 + µ = 0,

and
v(y, t) = α2(t)ey + β2(t)e−y − χy + γ2(t),

where α2(t), β2(t) and γ2(t) are arbitrary functions of time t. Notice that as χ 6= 0, then without loss
of generality one can assume that γ2 = 0. Thus, one obtains the solution

u = −x(α2(t)ey − β2(t)e−y − χ) + α1(t)ey + β1(t)e−y + γ1(t),
v(y, t) = α2(t)ey + β2(t)e−y − χy,

(20)

where P = −(χ2x + γ′1 + χγ1).

5. Group Foliation with Respect to Xh

The group foliation reduces the study of a given system of equations to an analysis of automorphic
and resolving systems of equations [26]. The automorphic system of equations possesses the property
that all solutions of this system can be obtained from a single solution by action of an admitted Lie
group. The resolving system separates the orbits of different solutions.

5.1. Deriving the Resolving System

The study of group foliation with respect to Xh is similar to the study of the boundary layer
equations [26]. In the case of plane flow in dimensionless variables, the equations of the boundary
layer have the form

ut + uux + vuy = −P + uyy, ux + vy = 0, (21)

where P is a given function of x and t. System (21) admits an infinite Lie group of transformations,
which allows one to perform the procedure of its group foliation [26]. As a result, this system reduces
to a single equation for the function uy = ϕ(x, t, u) and a quadrature. It turns out that a similar
procedure is applicable to system (7).

The zero-order invariants are
t, x, u.

The first-order invariants are

ut + uux + vuy, ux + vy, uy.
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Hence, the automorphic system of equations corresponding to the generator Xh consists of
Equation (7) and

ux + vy = ω(t, x, u), uy = ϕ(t, x, u), ut + uux + vuy = ψ(t, x, u). (22)

Compatibility of the overdetermined system of Equations (7) and (22) leads to the following conditions.
First of all one notes that ω = 0.
If ϕ = 0, then Equation (7) are simplified to the equation

ut + uux = −P,

where v(x, y, t) = −yux(x, t) + v0(x, t), and v0(x, t) is an arbitrary function.
Assuming that ϕ 6= 0, from the last equation of (22) one finds that

v =
ψ− (ut + uux)

ϕ
. (23)

Substituting v into the equation
ux + vy = 0,

one derives that (
ψ

ϕ

)
u
=

ϕt + uϕx

ϕ2 . (24)

Introducing the function f = ϕ2/2, the resolving Equation (24) can be written in different form

2 f (1− fuu)( ftu + u fxu + χ fu)u + ( ftu + u fxu + χ fu − P)(2 f fuuu − (1− fuu) fu)

−(1− fuu)2( ft + u fx) = 0.
(25)

Substitution of v and

uy = ϕ, uyy = ϕϕu, utyy = (ϕϕu)t + (ϕϕu)uut, uxyy = (ϕϕu)x + (ϕϕu)uux

into (7) gives
(1− (ϕϕu)u)ψ = χϕϕu + (ϕϕu)t + u(ϕϕu)x − P. (26)

Consider the case (ϕϕu)u = 1 or

ϕ2 = u2 + 2(uλ1 + λ2),

where λ1(x, t) and λ2(x, t) are some functions. Substituting ϕ into Equation (26) and splitting it with
respect to u, one obtains

λ1t + χλ1 = P, λ1x = −χ.

Hence,
λ1(x, t) = −χx + g(t), g′ − χ2x + χg = P,

where because of χ 6= 0 and the equivalence transformation corresponding to Xe
5, one can assume that

g = 0. Thus,
λ1(x, t) = −χx, P = −χ2x.

The function u(x, y, t) is defined by the quadrature∫ du
ϕ(x, t, u)

= y + g̃(t, x). (27)
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Because of the equivalent transformation corresponding to Xe
4, one can assume that g̃ = 0.

The integral in (27) depends on 2λ2 − λ2
1. As for 2λ2 − λ2

1 6= 0 the expression for ψ and v are
cumbersome, we present here the result in case λ2 = λ2

1/2 or λ2 = χ2x2/2. In this case one has

ψ = χ (u− (u− χx) ln(u− χx)) .

Hence,
u = χx + ey, v = −χy.

This solution is a particular case of the solution (20).
Consider the case (ϕϕu)u 6= 1. From Equation (26), one finds that

ψ =
χϕϕu + (ϕϕu)t + u(ϕϕu)x − P

1− (ϕϕu)u
. (28)

The advantage of the group foliation of system (7) consists of the following. Let ϕ(x, t, u) be a
solution of the resolving Equation (24), then all solutions of the automorphic system of equations
can be obtained from any solution of the ordinary differential equation for u(x, y, t) with (x, t) being
parameters:

uy = ϕ(x, t, u). (29)

5.2. Some Classes of Solutions of (24)

There is the assumption that Equation (24) possesses solutions which are polynomials in u,

ϕ(t, x, u) =
m

∑
k=0

ϕk(t, x)uk.

This assumption is confirmed for m = 1, 2, 3, 4.
Hence, the function u(t, x, y) is obtained in quadratures by integrating Equation (29)∫ du

ϕ(t, x, u)
= y. (30)

Here two of these cases are presented: m = 1 and m = 2. For these cases one can easily integrate
Equation (29), and obtain a solution of the original Equations (4).

5.2.1. Case m = 1

In this case
ϕ(x, t, u) = uϕ1(x, t) + ϕ0(x, t). (31)

Substituting this representation into Equation (24), and splitting it with respect to u, one obtains

ϕ1x = 0, ϕ0x + ϕ1t = 0, ϕ0t − ϕ1P = 0. (32)

If ϕ1 = 0, then the trivial solution of the latter equations is

ϕ0 = k,

where k is constant. As ϕ 6= 0, then k 6= 0, and

u(x, y, t) = ky.
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Substituting this into the first equation of (7), one finds that

v(x, y, t) = −k−1P(x, t).

If ϕ1 6= 0, then Equation (32) give that

P(x, t) = xg(t) + µ(t),

and
ϕ0 = −xϕ1t + q, ϕ1tt + gϕ1 = 0, q′′ − ϕ1µ = 0,

where q(t), g(t) and µ(t) are functions of t. In this case

ψ = (ϕ2
1 − 1)−1(−uϕ1(ϕ1t + ϕ1χ) + x(ϕ2

1t + ϕ1t ϕ1χ− ϕ2
1g + g)− ϕ1tq− qϕ1χ− ϕ2

1µ + µ).

Using (30), one obtains
u = −ϕ0 ϕ−1

1 + eyϕ1 .

The function v(x, y, t) is defined by formula (23).
Consider the particular case where µ = 0 and g is constant. If g = k2 6= 0, then

ϕ1 = k1 cos(kt) + k2 sin(kt), ϕ0 = kx(k1 sin(kt)− k2 cos(kt)) + k3t + k4.

If g = −k2 6= 0, then

ϕ1 = k1e−kt + k2ekt, ϕ0 = kx(k1e−kt − k2ekt) + k3t + k4.

If g = −k2 6= 0, then
ϕ1 = k1t + k2, ϕ0 = k1kx + k3t + k4.

Here ki (i = 1, 2, 3, 4) are constant.

5.2.2. Case m = 2

Substituting the representation

ϕ(x, t, u) = u2 ϕ2(x, t) + uϕ1(x, t) + ϕ0(x, t) (33)

into Equation (24), splitting it with respect to u, and solving the overdetermined system of equations
for the functions ϕk(t, x), one obtains that up to equivalence transformations,

ϕ = k1e−2tχ (u + χx)2 −
k2

2
4k1

e2tχ,

where k1 6= 0 and k2 are constant. One also has that

ψ = χ2x, P = −χ2x.

The integral in (30) depends on the constant k2. If k2 6= 0, then

u = −
(

χx +
k2

2k1
etχ exp

(
k2ye−tχ)+ 1

exp (k2ye−tχ)− 1

)
, v = χy.
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If k2 = 0, then

u = − χ2x2y
χxy− k−1

1 e2tχ
, v =

k2
1χ2x2y2 + k1χxye2tχ − e4tχ

k1x(k1χxy− e2tχ)
.

5.3. Group Properties of Equation (24)

Equation (24) only admits a Lie group if Pxx = 0 or

P(x, t) = g(t)x + µ(t).

If g′ 6= 0, then the admitted generator has the form

X = k3(u∂u + x∂x + ϕ∂ϕ) + ξ ′∂u + ξ∂x,

where k3 is constant and ξ = ξ(t) is a function satisfying the equation

ξ ′′ + gξ − k3µ = 0. (34)

If g′ = 0, say g = k0, then the admitted generator has the form

X = k3(u∂u + x∂x + ϕ∂ϕ) + ξ ′∂u + ξ∂x + k2∂t,

where k2 and k3 are constant and ξ = ξ(t) is a function satisfying the equation

ξ ′′ + k0ξ + k2µ′ − k3µ = 0.

For the sake of simplicity, invariant solutions of Equation (24) with µ = 0 and g′ 6= 0 are only
considered here. In this case Equation (24) admits the generators

X1 = u∂u + x∂x + ϕ∂ϕ, X2 = ξ ′1∂u + ξ1∂x, X2 = ξ ′2∂u + ξ2∂x,

where ξ1(t) and ξ2(t) compose a fundamental system of solutions of the linear ordinary differential
Equation (34):

ξ ′′ + gξ = 0. (35)

An optimal system of subalgebras of the Lie algebra L3 = {X1, X2, X3} can be found in
Reference [27]. The set of all invariant solutions consists of the following solutions.

(a) Solutions invariant with respect to the generator X1. Such solutions have the representation

ϕ = x f (t, z), z = ux−1.

Substituting this representation of a solution into (28), one finds that

ψ =
χ f fz + ( f fz)t + f fz − z( f fz)z − g

1− ( f fz)z
.

The resolving Equation (24) becomes a partial differential equation with two
independent variables,

ft + z( f − z fz) =

(
ψ

f

)
z

f 2. (36)
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(b) Solutions invariant with respect to the generator αX2 + βX3, (α2 + β2 6= 0), have the representation

ϕ(x, t, u) = f (t, z) , z = u− x
ξ ′(t)
ξ(t)

,

where ξ(t) is an arbitrary solution of Equation (35). The reduced equation becomes

ft − ξ ′ξ−1z fz =

(
ψ̃

f

)
z

f 2, (37)

where

ψ̃ =
χ f fz + ( f fz)t − ξ ′ξ−1z( f fz)z

1− ( f fz)z
.

(c) Solutions invariant with respect to the subalgebra {X1, αX2 + βX3}, (α2 + β2 6= 0). These solutions
have the representation

ϕ(x, t, u) = f (t)
(

u− x
ξ ′(t)
ξ(t)

)
,

where ξ(t) is an arbitrary solution of Equation (35), and take the form (31).

6. Group Classification of Stationary System (4)

Consider the stationary case of system (4)

uux + vuy = −P + χuyy + uuxyy + vuyyy,
ux + vy = 0,

(38)

where P(x) = px(x).
Equivalence transformations (8) for the stationary case become

Ye
1 = x∂x + u∂u + P∂P, Ye

2 = u∂u + v∂v + 2P∂P + χ∂χ,

Ye
3 = ψ(x)∂y + uψ′(x)∂v, Ye

4 = ∂x.

The transformations corresponding to Ye
1 and Ye

2 allow scaling of P and χ, the transformations
related with Ye

3 are
ȳ = y + ψ(x), v̄ = v + uψ′(x).

As for the admitted Lie group, the classifying equation is

k1(xPx − P) + k2Px = 0

and the generator is
X = k1(u∂u + x∂x) + k2∂x + h∂y + uhx∂v,

where h = h(x). Hence, the kernel of admitted Lie algebras is defined by the generators

Xh = h∂y + uhx∂v.

Extensions of the kernel of admitted Lie algebras occur for particular cases of the function
P(x, t) only.

6.1. Case Px 6= 0

In this case
k2 = −k1

xPx − P
Px

,
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and an extension of the kernel of admitted Lie algebras only occurs for

(x− k)Px = P,

where k is some constant which, by virtue of the equivalence transformation corresponding to the shift
of x, can be assumed to equal 0. Hence,

P = αx, (α 6= 0),

and the additional generator is
u∂u + x∂x.

6.2. Case Px = 0

In this case
k1P = 0.

If P 6= 0, then the extension of the kernel is defined by the generator ∂x, whereas for P = 0 there
is one more admitted generator

u∂u + x∂x.

6.3. Invariant Solutions

Consider the generator
h∂y + uh′∂v + (u∂u + x∂x),

which is admitted if P = αx. The invariants are

u
x

, v− uK(x), y− K(x),

where

K(x) =
∫ h(x)

x
dx.

Using the equivalence transformation corresponding to the generator Ye
3 , one can set K = 0.

Hence, the representation of an invariant solution is

u = −xr′(y), v = −r(y),

where the function r(y) satisfies the equation

rr′′′′ − (r′ + χ)r′′′ − rr′′ + r′2 − α = 0, (39)

and α is constant.
To describe the flow near the critical point, it is necessary to subject the solution of Equation (39)

to the conditions
r(0) = r′(0) = 0, r′ → β = const, y→ ∞. (40)

For this it is necessary that α > 0 and β > 0. The last condition is imposed by analogy with
the problem of a flow near a critical point in the classical theory of a boundary layer [24]. Then,
without loss of generality, one can assume that α = β = 1.

Making the transition to the new variables z = χ−1/2y, q = χ−1/2r, problems (39) and (40) is
reduced to the form

δ(qq(4) − q̇q(3))− q(3) − qq̈ + (q̇)2 − 1 = 0; z > 0,
q(0) = q̇(0) = 0, q̇→ 1, z→ ∞,

(41)
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where δ = 1/χ, and the dot ‘̇’ means differentiation with respect to z. Problem (41) has already been
solved numerically for different values of the parameter δ [28]. The results of these calculations are
presented in Figure 1.

0 1 2 3 4 5 6

  z

0

0.2

0.4

0.6

0.8
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 = 0.2

 = 0.5

 = 1

 = 2

 = 5

Figure 1. Graphs of the function q̇ in the solution of problem (41) for different
values of the parameter δ.

Taking the limit in Equation (41) as δ → 0, one arrives at the problem of a critical point for the
Prandtl boundary layer equations studied by K. Hiemenz [24]. In References [29,30], the existence of a
solution of the problem (41) for 0 < δ ≤ 1 was proven, and the asymptotic behavior of its solution for
δ→ 0 was constructed in the form of an asymptotic series q = q0 + δq1 + δ2q2 + . . . , where q0 is the
Hiemenz solution. (Notice that for δ = 1 this problem has an exact solution q = z + exp(−z)− 1).

The fact of the existence of a regular limit of the solution of problem (41) for δ→ 0 is non-trivial,
since the parameter δ is a multiplier in the highest derivative. Small values of δ correspond to small
values of the normalized coefficient of the relaxation viscosity κ.

6.4. Group Foliation with Respect to Xh

Noticing that the generator Xh coincides with the generator admitted by the boundary layer
equations [26], one finds that the automorphic system of equations corresponding to the generator
Xh is

ux + vy = ω(x, u), uy = ϕ(x, u), uux + vuy = ψ(x, u). (42)

Compatibility of the overdetermined system of equations consisting of systems (38) and (42) lead
to the conditions that

ω = 0, ψ =
χϕϕu + u(ϕϕu)x − P

1− (ϕϕu)u
,

and the resolving equation

ϕ2
(

ψ

ϕ

)
u
− uϕx = 0. (43)

Calculations show that the resolving equation admits a Lie group only when P = αx + β.
The admitted generator has the form

X = k1(u∂u + x∂x + ϕ∂ϕ) + k2∂x,

where the constants k1 and k2 satisfy the condition

αk2 − βk1 = 0.
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6.5. Equation (38) in Mises Coordinates

Consider the system of boundary layer Equation (21) in the stationary case

uux + vuy = −P + uyy, ux + vy = 0, (44)

where P is a given function of x. The second equation in (44) allows one to introduce the stream
function ψ(x, y) using the relations ψy = u, and ψx = −v. Making the change in this system to the
new independent variable ψ instead of y, and denoting u(x, y) = U(x, ψ(x, y)), one obtains that the
function U(x, ψ) satisfies the equation

(U2)x = U(U2)ψψ − 2P. (45)

The variables x and ψ are called Mises’s variables. They are widely used in the theory of the
boundary layer [24]. The system of quasilinear Equation (44) does not have a certain type, which
complicates its study. In contrast, Equation (45) is a parabolic equation in which x plays the role of an
evolutionary variable.

Consider system (38). Using the change

u(x, y) = U(x, ψ(x, y)), u(x, y)− uyy(x, y) = W(x, ψ(x, y)),

one comes to the equations in the Mises variables

U
(

∂W
∂x
− χ

2
∂2(U2)

∂ψ2

)
+ P = 0,

U
2

∂2(U2)

∂ψ2 = U −W. (46)

The kernel of admitted Lie algebras of Equation (46) consists of the generator

∂ψ.

Extensions of the kernel are defined by the generator

X = k1(x∂x + ψ∂ψ + U∂U + W∂W) + k2∂x,

where the constants k1 and k2 satisfy the classifying equation

(xP′ − P)k1 + P′k2 = 0.

If P′ 6= 0, then an extension only occurs for P = qx, where q 6= 0 is constant, and the extension of
the kernel of admitted Lie algebras is defined by the generator

x∂x + ψ∂ψ + U∂U + W∂W .

Here, the equivalence transformation corresponding to the shift of x has been used. If P′ = 0 and
P 6= 0, then the extension of the kernel of admitted Lie algebras is defined by the generator

∂x,

and for P = 0 there is one more admitted generator

x∂x + ψ∂ψ + U∂U + W∂W .
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Remark 2. It should be noted here that the transition to the Mises coordinates led us to the reduction of
the infinite part of the Lie algebra admitted by Equation (38). This property is one of the main reason of the
application of the foliation.

For constructing invariant solutions of system (46) one needs to study the Lie algebra

X1 = ∂ψ, X2 = ∂x, X3 = x∂x + ψ∂ψ + U∂U + W∂W .

An optimal system of one-dimensional subalgebras of this Lie algebra consists of the subalgebras

{X1}, {X2 + αX1}, {X3}.

An invariant solution with respect to X1 is trivial, and provides that

u = u(x).

A solution invariant with respect to X2 + αX1 has the representation

U = U(z), W = W(z), z = ψ− αx.

Substituting this representation into (46), one finds that

W = U(1− (U2)′′,

and the function S = U2 satisfies the second-order ordinary differential equation

α(4SS′′ − S′ 2 − 4S) + 8zP = 4χS′ + 4q,

where q is constant of integration. In particular, if α = 0, one finds∫ dψ√
Pψ2 − qψ + q0

= χ−1/2y.

A solution invariant with respect to X3 has the representation

U = xU0(z), W = xW0(z), z = ψ/x.

The reduced system becomes
W0 = U0(1− (U2

0)
′′),

zU2
0U′′′0 + U0(4zU′0 −U0 − χ)U′′0 + zU′ 3 − (U0 + χ)U′ 20 − zU′0 + U0 = 0. (47)

One particular solution of the latter equation is

U0 = β

(
z +

χβ

1− β2

)
, (48)

where β 6= ±1 is constant.
The solution (48) was used for testing a Runge-Kutta code for finding a solution of Equation (47).

The results of the calculations are presented in Figure 2. In these calculations, solutions of Equation (47)
were found using the same first two initial values of the function U0(z) at the point z = a:

U0(a) = β

(
a +

χβ

1− β2

)
, U′0(a) = β.
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The graphs are presented for the following data: a = 1, β = 2, χ = 0.1 and the values of U′′0 (a):

U′′0 (a) : −10; −5; 0; 5; 50.

In Figure 2 these graphs are presented in bottom-up order. Notice that U′′0 (a) = 0 corresponds to
the exact solution (48). From the calculations presented in Figure 2 one can note that the increase of the
second-order derivative in the initial data leads to the solution, which for large values of z becomes
close to linear.

Figure 2. Solution U0(z) of Equation (47) for different values of U′′0 (a) : −10; −5; 0; 5; 50,
presented in bottom-up order.

7. Group Classification of the Boundary Layer Equations of Rivlin-Ericksen Fluids

Similar as for Equation (7), one derives that the classifying equation for the admitted Lie group is

k1(xPx − P) + k3Pt + ξPx = −ξ ′′,

where
ξ = ξ(t), h = h(t),

and the generator has the form

X = k1(u∂u + x∂x) + k3∂t +
(
h∂y + h′∂v

)
+ (ξ ′∂u + ξ∂x).

Hence, the kernel of admitted Lie algebras is defined by the generators

Xh = h∂y + h′∂v.

Extensions of the kernel of admitted Lie algebras are the same as for Equation (7).

8. Discussion

8.1. Voitkunskii-Amfilokhiev-Pavlovskii Model

In Reference [23], a hereditary model of the motion of aqueous polymer solutions was formulated.
It contains an integral operator of Volterra type and contains an additional material constant relaxation
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time of tangential stresses. In Reference [13], the equations of this model are reduced to the system of
differential equations

θ
∂

∂t
dv
dt

+
dv
dt

= − θ

ρ

∂∇p
∂t
− 1

ρ
∇p + νθ

∂∆v
∂t

+ ν∆v + κ
d∆v
dt

, divv = 0, (49)

where θ > 0 is a constant relaxation time. After reduction of system (49) to dimensionless variables,
another (in addition to χ) dimensionless parameter ϑ = θν/κ arises, which does not depend on the
flow characteristics and is determined only by the properties of the medium. It can be small, and then
a new problem of constructing an unsteady boundary layer for system (49) localized near the plane
t = 0 arises.

8.2. Blasius Problem

The classic problem of boundary layer theory is the Blasius problem on the uniform flow around
a rectilinear plate under zero angle of attack [24]. This problem has a self-similar solution. Below an
analogue of this problem is formulated for system (38), with P = 0 written in Mises variables.

The problem is to find a solution of the system

∂W
∂x
− χ

2
∂2(U2)

∂ψ2 = 0,
U
2

∂2(U2)

∂ψ2 = U −W (50)

in the half strip Sl = {x, ψ : 0 < x < l, ψ >}, satisfying the initial and boundary conditions

W = W0(ψ), x = 0, ψ ≥ 0, (51)

U = 0, ψ = 0; U → 1, ψ→ ∞, 0 ≤ x ≤ l. (52)

In contrast to the Blasius problem, the problem (50)–(52) does not have self-similar solutions.
Nevertheless, it is quite observable. For a given function W, the second equation of system (50) can
be considered as an ordinary differential equation for the function U with respect to the variable
ψ. A solution of the boundary value problem (52) for this equation forms the operator U = F[W].
Integrating the first Equation (50) with respect to x with the initial condition (51), one arrives at the
operator equation

W(x, ψ) = W0(ψ) +
χ

2
∂2{F[W(x, ψ)]2}

∂ψ2 . (53)

There is reason to believe that under the smoothness conditions and consistency on the function
W0(ψ), the problem (50)–(52) possesses a solution for any l > 0. It should be noted that the self-similar
Blasius solution [24] has an unremovable defect: the transverse velocity tends to infinity when
approaching the edge of the plate. We hope that by satisfying the condition ψ−1/2W0(ψ) ∈ C2[0, ∞),
the Equation (53) has a solution which corresponds to a regular solution of the analog of the Blasius
problem for the boundary layer system of Equation (38).

8.3. Separation

One of the central problems in the classical theory of the boundary layer is the problem of
separation of the boundary layer. It is known that if the inequality px ≥ a > 0 for x > 0 is
satisfied, then there is an x∗ such that the solution of system (4) cannot be prolonged for the values of
x > x∗ [24,31]. We believe that the condition of the positiveness of the function px is also sufficient
for the separation of the boundary layer in the Pavlovskii model of the motion of aqueous polymer
solutions and in the Rivlin-Ericksen model of a second-order fluid. An interesting question is the
dependence of the value x∗ on the parameter χ.
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9. Conclusions

The main results of our study are the construction of boundary layer equations of two
mathematical models of the flow of aqueous polymer solutions [11,12], and the application of the
group analysis method to their study.

In the previous section we have formulated three unsolved problems, which outline the plan
of future analysis. In addition, we will be studying invariant and partially invariant solutions of
system (6) of the boundary layer Rivlin-Ericksen model.

Our analysis allowed us to give a complete classification of invariant solutions of the boundary
layer equations of two models describing the behaviour of polymer solutions. The solutions presented
make it possible to evaluate the effect of polymer additives on the qualitative flow pattern in the
boundary layer. In addition, they can be used as tests for developing numerical methods for solving
systems of degenerate equations, which are systems (4) and (6).
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